Proving Languages not to be Regular

SITE: http://www.sir.blois.univ-tours.fr/~mirian/
Proving Languages not to be Regular

- Regular languages has at least four different descriptions:
 1. Languages accepted by DFA
 2. Languages accepted by NFA
 3. Languages accepted by ϵ-NFA
 4. Languages defined by regular expressions

- **NOT every language is a regular language**

- Powerful technique for showing certain languages not to be regular: Pumping Lemma
Theorem: The pumping lemma for regular languages

Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L such that $|w| \geq n$, we can break w into three strings, $w = xyz$, such that:

1. $y \neq \epsilon$
2. $|xy| \leq n$
3. For all $k \geq 0$, the string xy^kz is also in L

That is, we can always find a nonempty string y not too far from the beginning of w that can be "pumped"; that is, repeating y any number of times, or deleting it (case $k = 0$, keeps the resulting string in the language L
Proof

- Suppose \(L \) is regular and recognized by a DFA \(A \). Suppose \(A \) has \(n \) states.
- Let \(w \) be a string of length \(n \) or more, i.e., \(w = a_1 a_2 \ldots a_m \) where \(m \geq n \) and each \(a_i \) is an input symbol.
- For \(i = (0, 1, \ldots n) \) define state \(p_i \) to be \(\hat{\delta}(q_0, a_1 a_2 \ldots a_i) \), where \(\delta \) is the transition function of \(A \) and \(q_0 \) is the start state of \(A \).

That is, \(p_i \) is the state \(A \) is after reading the first \(i \) symbols of \(w \). Note that \(p_0 = q_0 \).
- It is not possible for the \(n + 1 \) different \(p_i \) (for \(i = (0, 1, \ldots n) \)) to be distinct, since there are only \(n \) different states (Pigeonhole principle).
- Thus we can find two different integers \(i \) and \(j \) (with \(0 \leq i < j \leq n \)) such that \(p_i = p_j \).
Proof (cont.)

- Now we can break \(w = xyz \) as follows:
 1. \(x = a_1 a_2 \ldots a_i \)
 2. \(y = a_{i+1} a_{i+2} \ldots a_j \)
 3. \(z = a_{j+1} a_{j+2} \ldots a_m \)

- That is, \(x \) takes us to \(p_i \) once; \(y \) takes us from \(p_i \) back to \(p_i \) (since \(p_i \) is also \(p_j \)), and \(z \) is the balance of \(w \).
- Note that \(x \) and \(z \) may be empty.
- However \(y \) cannot be empty (\(i \) is strictly less than \(j \)).
Now consider when A receives input xy^kz for $k \geq 0$:

- If $k = 0$ then the automaton goes from the start state to p_i on input x. Since p_i is also p_j, it must be that A goes from p_i to the accepting state on input z. Thus A accepts xz.

- If $k > 0$ then A goes from q_0 to p_i on input x, circles from p_i to p_i, k times on input y^k, and then goes to the accepting state on input z. Thus for any $k \geq 0$, xy^kz is also accepted by A.
The Pumping Lemma as an Adversarial Game

Theorems whose statement involves several alternatives of *for all* and *there exists* quantifiers can be thought of as a game between two players. The pumping lemma is an important example of this type of theorem.

We can see the application of the pumping lemma as a game, in which

1. **Player 1** picks the language L to be proved non regular.
2. **Player 2** picks n, but does not reveal to player 1 what n is; player 1 must devise a play for all possible n.
3. **Player 1** picks w, which may depend on n and which must be of length at least n.
4. **Player 2** divides w into x, y and z, obeying the constraints that are stipulated in the pumping lemma; $y \neq \epsilon$ and $|x.y| \leq n$. Again, player 2 does not have to tell player 1 what x, y and z are, although they must obey the constraints.
5. **Player 1** wins by picking k, which may be a function of n, x, y and z, such that $x.y^k.z$ is NOT in L.

Automata Theory, Languages and Computation - Mírian Halfeld-Ferrari – p. 7/8