
Introduction to Turing Machines

SITE : http://www.sir.blois.univ-tours.fr/˜mirian/

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 1/28

Problems that computers cannot solve

Problem: What a program does?

Not knowing when, if ever, something will occur is the ultimate
cause of our inability to tell what a program does

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 2/28

Programs that print ”Hello,Word” (1)

Kernighan and Ritchie’s hello-world program

main()

{

printf("Hello, world");

}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 3/28

Programs that print ”Hello,Word” (2)

Femat’s last theorem expressed as a hello-world program

main()

{

int n, total, x, y, z;

scanf("%", &n);

total = 3;

while (1) {

for (x = 1; x <= total -2; x++)

for (y = 1; y <= total -1 ; y++) {

z = total - x -y;

if (exp(x, n) + exp (y, n) == exp(z, n))

printf ("hello, word");

}

total ++

}

}

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 4/28

Programs that print ”Hello,Word” (3)

The program (Fermat) takes an input n and looks for positive integer solutions to
equation

xn + yn = zn

If the program finds a solution, it prints hello, world

If it never finds integer x, y, z to satisfy the equation, then it continues searching
forever , and never prints hello, world

If the value of n is 2, then it will find combinations of integers and thus:
For input n = 2 the program prints hello, world

For any integer n > 2, the program will never find a triple of positive integers to
satisfy xn + yn = zn (300 years to prove!)

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 5/28

Our hello-world problem

Determine whether a given C program, with a given input,
prints hello, world as the first 12 characters that it prints

Is it possible to have a program that proves the correction of
programs?

Any of the problems that mathematicians have not been able
to resolve can be turned into a question of the form

Does this program, with this input, print hello, world?

Is it possible to have a program that could examine any
program P and input I for P , and tell whether P , run with I as
its input, would print hello, world ?

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 6/28

The Hypothetical "Hello World" Tester

P

I

Hello-word

tester

Yes

No

H

Assume there is a program (H) that takes as input

A program P

Input I

and tells whether P within input I prints hello, world

(Output is either Yes or No)

If a problem has an algorithm like H, that always tells correctly whether an instance
of the problem has answer Yes or No, then the problem is said to be decidable.
Otherwise, the problem is undecidable.

GOAL: To prove that H does not exist (proof by contradiction).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 7/28

The Hypothetical "Hello World" Tester

P

I

Hello-word

tester

Yes

hello, word

H1

Assume H exists.

First modification: H1 prints hello, world exactly when H would print No

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 8/28

The Hypothetical "Hello World" Tester

Hello-word

tester

Yes

hello, word

H2
P

We want to restrict H1 so it:

Takes only input P , not P and I.

Asks what P would do if its inputs were its own code, i.e., what would H1 do on
inputs P as program and P as input I as well?

Second modification:

H2 first reads the entire input P and stores it in an array A.

H2 then simulates H1 but whenever H1 would read input from P or I, H2

reads from the stored copy in A.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 9/28

How can we prove that H2 cannot exist?

Hello-word

tester

Yes

hello, word

H2
H2

What H2 does when given itself as input ?

H2, given any program P as input:

Makes output Yes if P prints hello, world when given itself as input.

Prints hello, world if P (given itself as input) does not print hello, world.

Suppose that H2 makes the output Yes: Then the H2 in the box is saying about its
input H2 that H2 (given itself as input) prints hello, world as its first output.
But we just supposed that the first output H2 makes in this situation is Yes!

Thus it appears that the output of the box above is hello, world .
But if H2 (given itself as input) prints hello, world, then the output of the box must
be Yes

Whichever output we suppose H2 makes, we can argue that it makes the other
output. A PARADOX!!!!

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 10/28

Undecidable Problems and Reduction

A problem that cannot be solved by computer is called
undecidable

A problem is the question of deciding whether a given
string is a member of some particular language.

How to prove that a given problem is undecidable?

Once we have one problem that we know is undecidable,
we no longer have to prove the existence of a paradoxical
situation.
It is sufficient to show that if we could solve the new
problem, then we could use that solution to solve a
problem we already know is undecidable

This strategy is called reduction

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 11/28

Reduction ofP1 to P2

Instance

Undecidable

Construct DECIDE YES

NO

w x

Instance
P2

P1

Let P1 be an undecidable problem (we know that)
Let P2 be a new problem that we would like to prove is undecidable as well

We invent a construction that converts instances of P1 into instances of P2, i.e.:

any string in the language P1 is converted into a string un the language P2 and

and any string that is not in the language of P1 is converted into a string that is
not in the language of P2.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 12/28

Reduction ofP1 to P2

Once we have this construction, we can solve P1 as follows:

Given an instance of P1, i.e., given a string w that may or may not be in the
language P , apply the construction algorithm to produce a string x.

Test whether x is in P2, and give the same answer about w and P1.

If w ∈ P1, then x ∈ P2; so the algorithm says YES

If w 6∈ P1, then x 6∈ P2; so the algorithm says NO

Since we assumed that NO algorithm to decide the membership of a string in P1

exists, we have a proof BY CONTRADICTION, that the hypothetical decision
algorithm for P2 does not exist
P2 is undecidable

What are you doing?

We prove that:
If P2 is decidable then P1 is decidable

This is the same as to prove the contrapositive of the above statement:
If P1 is undecidable then P2 is undecidable

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 13/28

Propose of the theory of undecidable problems

To provide guidance to programmers about what they might or might not be able to
accomplish through programming

Pragmatic impact :

Intractable problems:

Decidable problems.

Require large amount of time to solve them.

Contrary to undecidable problems, which are usually rarely attempted in
practice, the intractable problems are faced everyday.

Yield to small modifications in the requirements or to heuristc solutions.

We need tools that allow us to prove everyday questions undecidable or intractable

We need to rebuild our theory of undecidability, based not on C programs, but based
on a very simple model of computer called Turing Machine

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 14/28

The Turing Machine

Informally...

TM is essentially a finite automaton that has a single tape of infinite length on
which it may read and write data.

Advantage of TM over programs as representation of what can be computed: TM is
sufficiently simple that we can represent its configuration precisely, using a simple
notation much like ID’s of a PDA.

History

1936: Alan Turing proposed the TM as a model of any possible computation.

This model is computer-like, rather than program-like, even though true electronic or
electromechanical computers were several years in the future.

All the serious proposals for a model of computation have the same power; i.e., they
compute the same functions and recognize the same languages.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 15/28

Notation for the TM

Finite control

.Xn. . .XiX2X1BB B B

Finite control: can be in any of a finite set of states

Tape: divided into cells; each cell can hold one of a finite number of symbols.

Initially the input (a finite-length string) is placed on the tape

All other tape cells initially hold a special symbol: blank

Blank is tape symbol (not an input symbol)

Tape head: always positioned at one of the tape cell. Initially, the tape head is at the
leftmost cell that holds the input.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 16/28

A move of the TM

A move of the TM is a function of the state of the finite control and
the tape symbol scanned. In one move the TM will

1. Change state

2. Write a tape symbol in the cell scanned.

3. Move the tape head left or right

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 17/28

TM: Formal notation

M = (Q, Σ, Γ, δ, q0, B, F)

Q: The finite set of states of the finite control

Σ: The finite set of input symbols

Γ: The complete set of tape symbols;
Σ is always a subset of Γ

δ: The transition function
The arguments of δ(q, X) are: a state q and a tape symbol X.
The value of δ(q, X), if it is defined, is (p, Y, D) where:

p is the next state, in Q

Y is the symbol, in Γ, written in the cell being scanned, replacing whatever
symbol was there.

D is a direction (either L or R), telling us the direction in which the head moves.

q0: The start state (q0 ∈ Q) in which the finite control is found initially.

B: blank symbol (B ∈ Γ but B 6∈ Σ).

F : the set of final or accepting states (F ⊆ Q).

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 18/28

Instantaneous Descriptions for TM

We use the instantaneous description to describe the configuration.

An ID is represented by the string:

X1X2 . . . Xi−1qXiXi+1 . . . Xn

where:

1. q is the state of the TM.

2. The tape head is scanning the ith symbol from the left.

3. X1X2 . . . Xn is the portion of the tape between the leftmost
and the rightmost nonblank

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 19/28

Moves (1)

Let M = (Q, Σ, Γ, δ, q0, B, F).

We use the notation ⊢M (or ⊢) to represent moves of a TM M from one configuration
to another.
∗

⊢M is used as usual.

The next move is leftward:
If δ(q, Xi) = (p, Y, L) then:

X1X2 . . . Xi−1 q XiXi+1 . . . Xn ⊢M X1X2 . . . Xi−2 p Xi−1 Y Xi+1 . . . Xn

Exceptions:

1. If i = 1, then M moves to the blank to the left of X1

qX1X2 . . . Xn ⊢M p B Y X2 . . . Xn

2. If i = n and Y = B, then the symbol B written over Xn joins the infinite sequence of
trailing blanks and does not appear in the next ID.

X1 . . . Xn−1qXn ⊢M X1X2 . . . Xn−2 p Xn−1

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 20/28

Moves (2)

The next move is rightward:
If δ(q, Xi) = (p, Y, L) then:

X1X2 . . . Xi−1 q Xi Xi+1 . . . Xn ⊢M X1X2 . . . Xi−2Xi−1 Y p Xi+1 . . . Xn

Exceptions:

1. If i = n then the i + 1st cell holds a blank, and that cell was not part of the previous
ID.

X1 . . . Xn−1 q Xn ⊢M X1X2 . . . Xn−1 Y p B

2. If i = 1 and Y = B, then the symbol B written over X1 joins the infinite sequence of
trailing blanks and does not appear in the next ID.

q X1X2 . . . Xn ⊢M p X2 . . . Xn

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 21/28

A TM for the language {0n
1
n | n ≥ 1}

M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1, X, Y, B}, δ, q0, B, {q4})

State Symbol

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 22/28

Transition diagram for TM

q0 q1 q2

q4q3

B/B →

Y/Y →

Y/Y →

Y/Y →

0/0→

1/Y ←
0/X →

Y/Y ←

0/0←

X/X →

q00011 ⊢ Xq1011 ⊢ X0q111 ⊢ Xq20Y 1 ⊢ q2X0Y 1 ⊢ Xq00Y 1

⊢ XXq1Y 1 ⊢ XXY q11 ⊢ XXq2Y Y ⊢ Xq2XY Y ⊢ XXq0Y Y

⊢ XXY q3Y ⊢ XXY Y q3B ⊢ XXY Y Bq4B

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 23/28

The language of a TM

Let M = (Q,Σ,Γ, δ, q0, B, F) be a TM. Then L(M) is the set of
strings w ∈ Σ∗ such that

q0 w
∗
⊢ α p β

for some state p ∈ F and any tape string α and β.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 24/28

The language of a TM

The set of languages we can accept using a TM is often called the recursively
enumerable languages or RE languages.

There is another notion of acceptance that is commonly used for TM: acceptance by
halting .

We say a TM halts if it enters a state q scanning a tape symbol X, and there is no
move in this situation, i.e., δ(q, X) is undefined.

We can always assume that a TM halts if it accepts

Unfortunately, it is not always possible to require that a TM halts even if it does
not accept

Recursive languages: Languages for which TM do halt, regardless of whether or
not they accept
TM that always halt, regardless of whether or not they accept, are good model of an
algorithm

If an algorithm to solve a given problem exists, then we say the problem is decidable .

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 25/28

Alan Turing, the father of modern computer science. - Biography

• June 23, 1912 - June 7, 1954: English mathematician, logician, and cryptographer
• With the Turing test, Turing made a significant and characteristically provocative
contribution to the debate regarding artificial intelligence: whether it will ever be possible to
say that a machine is conscious and can think.
• He provided an influential formalisation of the concept of the algorithm and computation
with the Turing machine, formulating the now widely accepted "Turing" version of the
Church-Turing thesis: any practical computing model has either the equivalent or a
subset of the capabilities of a Turing machine .
• During World War II, Turing worked at Britain’s code breaking centre, and was for a time
head of the section responsible for German Naval cryptanalysis. He devised a number of
techniques for breaking German ciphers, including the method of the bombe, an
electromechanical machine which could find settings for the Enigma machine.
• After the war, he worked at the National Physical Laboratory, creating one ofthe first
designs for a stored-program computer, although it was never actually built. In 1947 he
moved to the University of Manchester to work, largely on software, on the Manchester Mark
I then emerging as one of the world’s earliest true computers.
• In 1952, Turing was convicted of "acts of gross indecency" after admitting to a sexual
relationship with a man in Manchester. He was placed on probation and required to undergo
hormone therapy. Turing died after eating an apple laced with cyanide in 1954, sixteen days
short of his 42nd birthday. His death is regarded by most as an act of suicide.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 26/28

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 27/28

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 28/28

	Problems that computers cannot solve
	Programs that print ''Hello,Word'' (1)
	Programs that print ''Hello,Word'' (2)
	Programs that print ''Hello,Word'' (3)
	Our hello-world problem
	The Hypothetical "Hello World" Tester
	The Hypothetical "Hello World" Tester
	The Hypothetical "Hello World" Tester
	How can we prove that H2 cannot exist?
	Undecidable Problems and Reduction
	Reduction of P_1 to P_2
	Reduction of P_1 to P_2
	Propose of the theory of undecidable problems
	The Turing Machine
	Notation for the TM
	A move of the TM
	TM: Formal notation
	Instantaneous Descriptions for TM
	Moves (1)
	Moves (2)
	A TM for the language ${0^n 1^n mid n geq 1}$
	Transition diagram for TM
	The language of a TM
	The language of a TM
	Alan Turing, the father of modern computer science. - Biography

