
Compilers
SITE : http://www.info.univ-tours.fr/˜mirian/

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 1/24

Introduction

Compiler : A program that reads a program written in one language (the source program)
and translates it into an equivalent program in another language (the target program)
Important part of this translation process: the compiler reports to its user the presence of
errors in the source program

COMPILER

ERROR MESSAGES

TARGET PROGRAMSOURCE PROGRAM

Interpreters: Instead of producing a target program as a translation, an interpreter
performs the operations implied by the source program

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 2/24

So... we need to build too many compilers!?

There are thousands of source languages (Fortran, C, Pascal or specialized
languages) and target languages (another programming language or a machine
language): Too many compilers?

Despite an apparent complexity, the basic tasks that any compiler must perform
are essentially the same

At the highest level, a compiler has a front end and a back end

It is desirable for the front end to deal with aspects of the input language, but to
keep it as independent of the machine as possible

The back end should concentrate on dealing with the specifics of output
language, and try to remain independent of the input.

Problem of generating a suite of compilers for n different languages to m different
machines.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 3/24

Highest level of abstraction of a compiler

Intermediate Representation

Front end

source language

Target or Object Language

Back end

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 4/24

The phases of a compiler

Conceptually, a compiler operates in phases, each of which transforms the
source program from one representation to another

In practice, some of the phases may be grouped together

One can say that the phases are grouped into two parts:

1. Analysis - The typical compiler front end
Breaks up the source program into constituent pieces and creates an
intermediate representation of the source program

(a) Lexical analysis
(b) Syntax analysis
(c) Semantic analysis

2. Synthesis
Constructs the desired target program from the intermediate representation
The back end corresponds to the phases of code generation and
optimization

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 5/24

Phases of a Compiler

LEXICAL ANALYZER

SYNTAXE ANALYZER

SEMANTIC ANALYZER

INTERMEDIATE CODE GENERATOR

CODE OPTMIZER

CODE GENERATOR

ERROR
HANDLER

SYMBOL
TABLE
MANAGER

SOURCE PROGRAM

TARGET PROGRAM

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 6/24

Lexical Analysis: Scanner

Read a stream of characters and breaks it up into tokens (groups of characters
having some relation among them)

Each token represents a sequence of characters treated as one entity , i.e.,
they are the smallest program units that are individually meaningful

The blanks separating the characters of the tokens would normally be eliminated

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 7/24

Example: In Java and C

abc : identifiers

if and return : reserved words

42: integer literals

1.2E-3: floating point literals

+ ; <=: Operators

{ (; : punctuation

”a string” : string literals

/∗ a comment : comments

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 8/24

Example

In lexical analysis the characters in the assignment statement
position := initial + rate * 60
would be grouped into the following tokens:

Type of the token Value of the token

identifier position

the assignment symbol :=

identifier initial

the plus sign +

identifier rate

the multiplication sign ∗

numbers 60

Note: The types in the first column are usually represented by codes

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 9/24

Lexical Analysis (cont.)

The implementation of a lexical analyzer is based on finite state automata
Example: The identifiers in Pascal are described by a regular expression

letter (letter | digit | underline)∗

Lexical analysis can be complicated in some languages (ex, Fortran)

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 10/24

Syntax Analysis: Parser

The parser receives the tokens from the lexical analyzer and checks if t hey
arrive in the correct order (the one defined in the language)

It involves grouping the tokens into grammatical phrases that are used by the
compiler to synthesize output

In general, the syntax of a programming language is described by a context
free grammar

The job of the parser is to recover the hierarchical structure of the program from
the stream of tokens received from the lexical analyzer

The output of the parser depends on the implementation of the compiler: usually
a tree

Parse tree : describes the syntactic structure of the input

Syntax tree : a compressed (and more common) representation of the parse tree
in which the operators appear as the interior node and the operands of an
operator are the children of the node

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 11/24

Parse tree

expression

number

expressionidentifier

expression

expression

expression

identifier

position

identifier

statement
assignement

rate

initial

60

:=

+

∗

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 12/24

Syntax tree

+

∗

rate 60

initial

position

:=

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 13/24

Semantic Analysis

Checks the source program for semantic errors and gathers type information for
the subsequent code generation phrase

Uses the syntax analysis phase to identify the operators and operands of the
expressions and statements

In a context free grammar, it is not possible to represent a rule such as:
All identifier should be declared before being used
The verification of this rule concerns the semantic analysis.

The basic idea is the use of asymbol table to store important information

Important component of semantic analysis is type checking :
The compiler checks that each operator has operands that are permitted by the
source language specification
Example: arithmetic operator applied to an integer and a real

First phase that deals with the meanings of programming language constructs

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 14/24

Intermediate Code Generator

Some compilers generate an explicit intermediate representation of the source
program

We can think of this intermediate representation as a program for an abstract
machine

This is the solution for avoiding the construction of M ×N compilers (where M is
the number of source language and N is the number of object language)

Two important properties of the intermediate representation:

easy to produce

easy to translate into the target program

Example: three-address code

temp1 := inttoreal(60)

temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 15/24

Code Optimization

Attempts to improve the intermediate code, so that faster-running machine code
will result

Some optimizations are trivial. Example: The intermediate code

temp1 := inttoreal(60)

temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

can be performed by using two instructions:

temp1 := id3 * 60.0

id1 := id2 + temp1

There is a great variation in the amount of code optimization different compilers
perform. In those that do the most, called optimizing compilers, a significant
fraction of the time of the compiler is spent on this phase

However, there are simple optimizations that significantly improve the running
time of the target program without slowing down compilation too much

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 16/24

Code Generation

Final phase of the compiler

Generation of target code (in general, machine code or assembly code)

Intermediate instructions are each translated into a sequence of machine
instructions

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 17/24

Code Generation: example

Translation of the intermediate code

temp1 := id3 * 60.0

id1 := id2 + temp1

into some machine code:

MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1

MOVF R1, id1

where:

the first and the second operands of each instruction specify a source and a
destination, respectively

The F in each instruction tells us that the instruction deals with floating-points
numbers

The # indicates that 60.0 is to be treated as a constant

Registers 1 and 2 are used
Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 18/24

Symbol Table Management

A compiler needs to record information concerning the objects found in the
source program (such as variables, labels, statements, type declarations, etc)

A Symbol Table is a data structure containing a record for each identifier, with
fields for the attributes of the identifiers
Note: Attributes provide information about identifiers: storage allocation, type,
scope, names, etc

Symbol Table allows the compiler to find a record for each identifier quickl y
and to store or retrieve data from that record quickly

When an identifier is detected by the lexical analyzer, it is entered in the symbol
table. However, the attributes of an identifier cannot normally be determined
during lexical analysis.

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 19/24

Error Detection and Reporting

Each phase can encounter errors. However, after detecting an error, a phase
must somehow deal with that error, so that compilation can proceed, allowing
further errors in the source program to be detected.

One of the most important task of a compiler

A difficult task due to the following 2 reasons:

1. An error can hide another one

2. An error can provoke a lot of other errors (all of them solved by correcting
the first one)

Two criteria can be followed:

1. Stop when the first error is found (usually not very helpful, but can be used
by an interactive compiler)

2. Find all the errors

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 20/24

Phases and passes

In logical terms a compiler is thought of as consisting of stages and phases

Physically it is made up of passes

The compiler has one pass for each time the source code, or a representation of
it, is read

Many compilers have just a single pass so that the complete co mpilation
process is performed while the code is read once

The various phases described will therefore be executed in parallel

Earlier compilers had a large number of passes, typically due to the limited
memory space available

Modern compilers are single pass since memory space is not usually a problem

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 21/24

Use of tools

The 2 main types of tools used in compiler production are:

1. a lexical analyzer generator

Takes as input the lexical structure of a language, which defines how its
tokens are made up from characters

Produces as output a lexical analyzer (a program in C for example) for the
language

Unix lexical analyzer Lex

2. a symbol analyzer generator

Takes as input the syntactical definition of a language

Produces as output a syntax analyzer (a program in C for example) for the
language

The most widely know is the Unix-based YACC (Yet Another
Compiler-Compiler), used in conjunction with Lex.
Bison: public domain version

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 22/24

Lexical analyzer generator and parser

generator

Lexical analysis

generator

LEXICAL

ANALYZER

Parser generator

lexical
structure

Syntactic
definition

Character
sequence

Symbol
sequence

Symbol
sequence

Parse tree

PARSER

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 23/24

Applications of compiler techniques

Compiler technology is useful for a more general class of applications

Many programs share the basic properties of compilers: they read textual input,
organize it into a hierarchical structure and then process the structure

An understanding how programming language compilers are designed and
organized can make it easier to implement these compiler like applications as
well

More importantly, tools designed for compiler writing such as lexical analyzer
generators and parser generators can make it vastly easier to implement such
applications

Thus, compiler techniques - An important knowledge for computer science
engineers

Examples:

Document processing: Latex, HTML, XML

User interfaces: interactive applications, file systems, databases

Natural language treatment

Automata Theory, Languages and Computation - Mı́rian Halfeld-Ferrari – p. 24/24

	small {Introduction}
	small {So... we need to build too many compilers!?}
	small {Highest level of abstraction of a compiler}
	small {The phases of a compiler}
	small {Phases of a Compiler}
	small {Lexical Analysis: Scanner}
	small {Example: In Java and C}
	small {Example}
	small {Lexical Analysis (cont.)}
	small {Syntax Analysis: Parser}
	small {Parse tree}
	small {Syntax tree}
	small {Semantic Analysis}
	small {Intermediate Code Generator}
	small {Code Optimization}
	small {Code Generation}
	small {Code Generation: example}
	small {Symbol Table Management}
	small {Error Detection and Reporting}
	small {Phases and passes}
	small {Use of tools}
	small {Lexical analyzer generator and parser generator}
	small {Applications of compiler techniques}

