A pushdown automata (PDA) is essentially an ϵ-NFA with a stack.

On a transition the PDA:

1. Consumes an input symbol.
2. Goes to a new state (or stays in the old).
3. Replaces the top of the stack by any string (does nothing, pops the stack, or pushes a string onto the stack)
Example: Let’s consider

\[L_{wwr} = \{ww^R : w \in \{0, 1\}^*\}, \]

with “grammar” \(P \to 0P0, \ P \to 1P1, \ P \to \epsilon. \)

A PDA for \(L_{wwr} \) has tree states, and operates as follows:

1. Guess that you are reading \(w \). Stay in state 0, and push the input symbol onto the stack.

2. Guess that you’re in the middle of \(ww^R \). Go spontaneously to state 1.

3. You’re now reading the head of \(w^R \). Compare it to the top of the stack. If they match, pop the stack, and remain in state 1. If they don’t match, go to sleep.

4. If the stack is empty, go to state 2 and accept.
The PDA for L_{wwr} as a transition diagram:

```
0, Z_0 /0 Z_0
1, Z_0 /1 Z_0
0, 0 /0 0
0, 1 /0 1
1, 0 /1 0
1, 1 /1 1
0, 0 / ε
1, 1 / ε
```

Start q_0 q_1 q_2
A PDA is a seven-tuple:

\[P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F), \]

where

- \(Q \) is a finite set of states,
- \(\Sigma \) is a finite input alphabet,
- \(\Gamma \) is a finite stack alphabet,
- \(\delta : Q \times \Sigma \cup \{\epsilon\} \times \Gamma \to 2^{Q \times \Gamma^*} \) is the transition function,
- \(q_0 \) is the start state,
- \(Z_0 \in \Gamma \) is the start symbol for the stack, and
- \(F \subseteq Q \) is the set of accepting states.
Example: The PDA

\[
\begin{align*}
0, Z_0 &/ 0 Z_0 \\
1, Z_0 &/ 1 Z_0 \\
0, 0 &/ 0 0 \\
0, 1 &/ 0 1 \\
1, 0 &/ 1 0 \\
1, 1 &/ 1 1 \\
\end{align*}
\]

is actually the seven-tuple

\[P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\}) \]

where δ is given by the following table (set brackets missing):

<table>
<thead>
<tr>
<th></th>
<th>0, Z_0</th>
<th>1, Z_0</th>
<th>0,0</th>
<th>0,1</th>
<th>1,0</th>
<th>1,1</th>
<th>ϵ, Z_0</th>
<th>$\epsilon, 0$</th>
<th>$\epsilon, 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rightarrow q_0$</td>
<td>$q_0, 0Z_0$</td>
<td>$q_0, 1Z_0$</td>
<td>$q_0, 00$</td>
<td>$q_0, 01$</td>
<td>$q_0, 10$</td>
<td>$q_0, 11$</td>
<td>q_1, Z_0</td>
<td>$q_1, 0$</td>
<td>$q_1, 1$</td>
</tr>
<tr>
<td>q_1</td>
<td>q_1, ϵ</td>
<td>q_1, ϵ</td>
<td>q_1, ϵ</td>
<td>q_2, Z_0</td>
<td>$q_1, 0$</td>
<td>$q_1, 1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ast q_2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Instantaneous Descriptions

A PDA goes from configuration to configuration when consuming input.

To reason about PDA computation, we use *instantaneous descriptions* of the PDA. An ID is a triple

\[(q, w, \gamma)\]

where \(q\) is the state, \(w\) the remaining input, and \(\gamma\) the stack contents.

Let \(P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)\) be a PDA. Then \(\forall w \in \Sigma^*, \beta \in \Gamma^*:\)

\[(p, \alpha) \in \delta(q, a, X) \Rightarrow (q, aw, X\beta) \vdash (p, w, \alpha\beta).\]

We define \(\vdash^*\) to be the reflexive-transitive closure of \(\vdash\).
Example: On input 1111 the PDA

\[
\begin{align*}
0, Z_0 &/ 0Z_0 \\
1, Z_0 &/ 1Z_0 \\
0, 0 &/ 00 \\
0, 1 &/ 01 \\
1, 0 &/ 10 \\
1, 1 &/ 11 \\
0, 0 &/ \epsilon \\
1, 1 &/ \epsilon \\
\end{align*}
\]

has the following computation sequences:
(\(q_0, 1111, Z_0 \))

(\(q_0, 111, 1Z_0 \)) (\(q_1, 1111, Z_0 \)) \(\rightarrow \) (\(q_2, 1111, Z_0 \))

(\(q_0, 11, 11Z_0 \)) (\(q_1, 111, 1Z_0 \)) \(\rightarrow \) (\(q_1, 11, Z_0 \))

(\(q_0, 1, 111Z_0 \)) (\(q_1, 11, 11Z_0 \)) (\(q_2, 11, Z_0 \))

(\(q_0, \varepsilon, 1111Z_0 \)) (\(q_1, 1, 111Z_0 \)) (\(q_1, 1, 1Z_0 \))

(\(q_1, \varepsilon, 1111Z_0 \)) (\(q_1, \varepsilon, 11Z_0 \)) (\(q_1, \varepsilon, Z_0 \))

(\(q_2, \varepsilon, Z_0 \))