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Course subjects
@ Automatas : on words, on trees.
@ Classes of schema languages.
@ Validation process.
@ Integrity Constraint Verification (general ideas).

Exercises
Exercises to be done after a course lecture (at home).
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Preliminaries Regular Expressions

Sequences

@ In our course, we often consider sequences of various kind...

@ For a given set X (we call it an alphabet), we write a sequence of
elements from X (we also say a word or a string ) by simply listing
them.

@ Length of a string : the number of positions for symbols in the
string.

@ Examples :

@ 01101 and 111 are strings from the binary alphabet ¥ = {0, 1}.

The length | 01101 |=5and | 111 |= 3.
@ abcbbbcc and bcabca are strings from alphabet © = {a, b, c}.

@ We write the sequence of length 0 by ¢ and we call it the empty
string or sequence
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Preliminaries Regular Expressions

Concatenation

Concatenation

The concatenation of two sequences s and t is written s.t (or st).
Example : Let x = 01101 and y = 110.
Then x.y = 01101110 and y.x = 11001101

Prefix and suffix

When sequence s can be written as t.u, we say thatt is a prefix of s
and that u is a suffix of s.

Powers of an alphabet

Y X : the set of strings of length k, each of whose is in X.
Examples : ¥° : {¢}, regardless of what ¥ is.

If £ = {0,1}, then: ¥ = {0,1} and ¥? = {00,01, 10,11} and
¥3 = {000,001, 010,011,100, 101,110,111}

v
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Preliminaries Regular Expressions

Kleene Star

Kleene Star
@ The set of all sequences of elements in ¥ is denoted ¥*.
Examples : {0,1}* = {¢,0,1,00,01,10,11,000,...}
@ The symbol x is called Kleene star and is named after the
mathematician and logician Stephen Cole Kleene.
o y*=3y0ustus?u...
oYyt =3'Uus?2uU... Thus: ¥* =T+t U {e}

Order on ©*

When a strict total order < is defined on X, the lexicographic order
<on X*canbedefined: s=<tiIF

e EITHER t = 5.8’ for some s’ (i.e., s is a prefix of t)

e OR ELSE s = u.a.s’ and t = u.b.t’ for some sequences u, s’,t’ and
some elements a,b witha < b

Examples: 11 < 112,112 <121
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Preliminaries Regular Expressions

Languages

@ If X is an alphabet, and L C ¥X*, then L is a (formal) language over
Y. In other words, a (possibly infinite) set of strings all of
which are chosen from some  ¥*.

@ Examples:

@ English or French.

@ The language of all strings consisting of n Os followed by n 1s
(n > 0): {¢,01,0011,000111,...}.

@ The set of strings of Os and 1s with an equal number of each :
{¢,01,10,0011,0101,1001,...}.

@ Y *is alanguage for any alphabet %.

@ (), the empty language, is a language over any alphabet.

@ {e}, the language consisting of only the empty string, is also a
language over any alphabet.
IMPORTANT : () # {€¢} since 0 has no strings and {¢} has one

o {w | w consists of an equal number of 0 and 1}.

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 9/58



Preliminaries Regular Expressions

Regular Expressions

A set of regular expressions over ¥, ranged over by r, is defined by
the following grammar :

r .= €
a
r.rs
ry|re
r*
That is :

@ c and any element a € ¥ are regular expressions;
@ when r; and r, are regular expressions, so are ry.r; and ry | ra.
@ whenr is a regular expression so is r*.

Example : Let ¥ = {a,b}. Thus (a | €).b and (a.b)* are regular
expressions.
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Regular Expressions (semantics)

The semantics of a regular expression is usually defined by
interpreting it as a language (i.e., set of strings (words) from ).

Formally the language L(r) of a regular expression r is defined as
follows :

L(e) = {e}

L(a) = {a}

L(ri.r2) = L(ry).L(r2) = {s1.82|s1 € L(r1),s2 € L((r2)}

L(ro [ r2) = L(r) UL(r2)

L(r*) = (L(r)* = {s1.52...8n|S1...8n € L(r),n>0}

Example : L((a | €).b) = {ab,b} and
L((a|b)*) = {¢,a,b,ab,ba, aa,bb,aaa, bbb, ...}
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Preliminaries Automata on words

String automata

A non-deterministic string automaton
A finite state automaton (FSA) on X is a 5-tuple
A=(Q,xU{e},6,do,F)

O Afinite set of states , commonly denoted by Q.

@ Afinite set of input symbols , commonly denoted by ¥.

© A set of transition rules of the form a,q — q’ where gq,q’ € Q and

acxuUf{e}.
O Astartstate ,qg € Q
© A setof final or accepting states F (F C Q)
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Preliminaries Automata on words

String automata - semantics

Let A= (Q,%,d, 0o, F) be a string automaton (FSA).

@ The semantics of the string automata is defined in terms of runs.

@ Arunonastrings = a; ...a, is a sequence q .. .(, of states
from Q such that :
© . = qo is the initial state of the automaton A and
Q aqg—-qguiedforeachi=1,....,n—1.
@ Such a run accepts s when g, € F. In this case we say that the
automaton accepts the string (word)

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 13/58



Preliminaries Automata on words

Example
An automaton accepting strings with a sub-string 01 :

A = ({do,d1, 2}, {0, 1}, 6,00, {a1})

where the set of rules § is given by the transition table :

|o |1

— Qo | 92 || do
* Q| O | Qa2
Q2 || Q2 || Q1

0 0.1
Start qﬁ 0 qﬂ 1
NN
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Regular languages

@ The set of words accepted by an automaton A is called the
language of A and written L(A).

@ The class of languages each accepted by an FSA is called the
class of regular string languages . These languages can
alternatively be described by regular expressions.

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 15/58



Preliminaries Automata on words

Deterministic and non-deterministic automaton

@ A string automaton A = (Q, X, §, qo, F) is deterministic when :
© it has no e-transition and
@ for each state q € Q and label a € ¥ there is at most one transition
a,q—q’ €.
@ Alternatively, we can define § as a transition function from
(Z U {e}) x Q to 2. Then, the only difference between a NFA and
a DFA is the result that § returns : deterministic automata return a
singleton.

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015 16 /58



Preliminaries Automata on words

Example (1)
A DFA accepting strings with a sub-string 01 :

A = ({do,d1, 2}, {0, 1}, 6,00, {a1})

where ¢ is given by the transition table :

|o |1

— Qo | 92 || do
* Q| O | Qa2
Q2 || Q2 || Q1

0 0.1
Start qﬁ 0 qﬂ 1
NN
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Preliminaries Automata on words

Example (2)

Non-deterministic automaton that accepts all and only the strings of Os
and 1s that end in 01.

A= ({q0> da, q2}7 {O’ 1}7 57 Jo, {qZ})
where ¢ is given by the table below. Notice that for qg and 0, one

obtains {qo,q;}, i.e., transitions 0,qo — go and 0,qo — g are in 4.

1o | 1
— o || {do,q1} | {90}
q || 0 {az2}

* (o) 0 0

- (OO
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Example (3)

A NFA is allowed to make a transition spontaneously, without receiving an
input symbol. This capability does not expand the class of languages that can

be accepted by finite automata, but it does give us some added programming
convenience.

A= ({q07 di1, 92, Q3}> {av b}7 57 Jo, {QZ})
where ¢ is given by the transition table (notice the e-transition).

| a lb e
— o || {Go,q1} || 0 0
ap || 0 {go} || {92}
x Q2| 0 0 {as}
az || 0 0 {as}
Draw it!
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Preliminaries Automata on words

Example (4)

NFA that accepts decimal numbers consisting of : an optional + or —
sign ; a string of digits ; a decimal point and another string of digits.
Either the first or the second string of bits can be empty, but at least
one of the two strings must be non-empty.

0,1,..., 9 0,1,..., 9
Start €'+’7R

0,1.....9
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Preliminaries Important results

Important results on string automata

("]

(*]

For any string automaton with e-transitions, there is a string
automaton without e-transitions that accepts the same language.

For each non-deterministic string automaton (NFA), there is a
deterministic string automaton (DFA) that accepts the same
language.

Given a NFA, we can construct a DFA which, in practice has about
as many states as the NFA, although it has more transitions.
However, in the worst case , the smallest DFA can have 2" (for a
smallest NFA with n state).

For any regular expression there is a string automaton that
accepts the same language.

There is no FSA accepting the language {a'.b' | i > 0}
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Preliminaries Important results

Important results on regular string languages

Closure Properties of Regular Languages

Let L and M be regular languages. Then the following languages are
all regular :

Union : LU M.

Intersection : L N M.

Complement : L where L = ¥* \ L.

Difference : L \ M.

Reversal : LR =wR :w e L.

Closure : L*.

Concatenation : L.M.

®© 6 6 ¢ ¢ ¢ ¢
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Introducing Tree Automata

@ FSA (on words) are used to define word languages, i.e., subsets
of X*.

@ lItis possible to define tree automata whose propose is to define
subsets of the set of all trees.

@ Tree automata provide a finite-state acceptor model for trees that
naturally corresponds to schemas

@ With FSA (on words) there is no difference between left-to-right
(one that reads a word from left to right) and a right-to-left (one
that reads a word from right to left) automata.

@ Trees can be read top-down or bottom up . However, there is a
difference between top-down and bottom-up tree automata.
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Ranked and Unranked Tree Automata

There are two types of tree automata :

Ranked
Trees are ranked, i.e., the number of children per node is bounded.
@ A lot of work has already been done in this field, easier to specify.

@ XML trees can be seen as binary trees. Each node has two
pointers : a left one pointing to the first child and a right one
pointing to the next sibling.

Unranked

Trees are unranked, i.e., there is no prior bound on the number of
children of a node.

@ Extension of ranked automata, a better adaptation to XML world.

v
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Binary tree automata

Bottom-up non-deterministic tree automata

A non-deterministic bottom-up tree automata is a 4-tuple
A= (X,Q,F,A)where
@ X is an alphabet. We usually distinguish between two disjoint
alphabets : a leaf alphabet (Xe5s) and an internal one (Zinternal)-
@ Q is a set of states.
@ F is a set of accepting states F C Q.

@ A is a set of transition rules having one of the forms :
| - gwhenl € Ljeat
a(ql» qZ) —q when a € Zinternal
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Binary tree automata - semantics

Let A = (X,Q,F, A) be a bottom-up non-deterministic binary tree
automaton.
@ The semantics of A is described in terms of runs.

@ Given aranked tree t, arun r of .4 ont is a mapping from dom(t)
to Q such that for each p € dom(t) we have r(p) = g € Q where :

o if p is a leaf position then there exists a transitiona — q € A or
o if p is an internal position then there exists a transition
a(g1,0z2) —» g € Awithr(p.0) =g, and r(p.1) = g.
A bottom-up run is successful if r(e) € F.
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Example

Let A= ({a’ I}a {q07 q1}> {qO}v A) where

a(g:,g1) — Qo
A=¢ a(do,q) — 1
| — (1

o :
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Example

Let A= ({a’ I}a {q07 q1}> {qO}v A) where

a(g:,g1) — Qo
A=¢ a(do,q) — 1
| — (1

(=)
|
q ®

1
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Example

Let A= ({a’ I}a {q07 q1}> {qO}v A) where

a(g:,g1) — Qo
A=¢ a(do,q) — 1
| — (1

N

eoe's

a1 Q1 d
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Example

Let A= ({a’ I}a {q07 q1}> {qO}v A) where

a(g:,g1) — Qo
A=¢ a(do,q) — 1
| — (1

Jo c Jo
1 a1 o1 1
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Example

Let A= ({a’ I}a {q07 q1}> {qO}v A) where

a(g:,g1) — Qo
A=¢ a(do,q) — 1
| — (1

Jo c Jo
1 a1 o1 1
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Remarks

@ The definition can be extended to ranked trees with symbols of
arbitrary arity.

@ A bottom-up tree automata with e-transition may contain rules of
the form ¢,q — q’ where g,q’ € Q, in addition to the labeled
transition rules. This means that if a node is in state q, then it may
move to state g'.

@ Itis also possible to define (and build) deterministic bottom-up
tree automata by forbidding e-transitions and transitions having
the same left-hand side (with different right-hand side).
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Definitions

@ We define the language L(.A) to be the set of trees accepted by A.

@ A language accepted by a bottom-up tree automaton is called
a regular tree language.
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Top-down tree automata

Binary top-down tree automata
A non-deterministic top-down tree automata is a 5-tuple
A= (X,Q,l,F,A) where

@ X is an alphabet.

@ Q is a set of states.

@ | C Q is a set of initial states.

@ F is a set of accepting states F C Q.

@ A is a set of transition rules having the form :

q — a(ds, d2).
whereae ¥ and q,q1,02 € Q
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Top down tree automata - semantics

Run
@ A run of top-down automaton A = (X,Q,I,F,A) on a binary tree t
is a mapping r : dom(t) — Q such that
o r(e)el;
o for each node p with label a, rule r(p) — a(r(p.0),r(p.1)) isin A.

@ Arun is accepting if for all leaves p we have r(p) € F.

Deterministic binary top-down automata

We say that a binary tree automaton is (top-down) deterministic if | is
a singleton and for each a € ¥ and q € Q thereis at most one
transition rule of the form  q — a(qi1,Qy).
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Example

Let A= ({a,1},{do,q1},{do}, {d1}, A) where

:{ do — a(ds,01)
d: — a(do,do)

Note : In general this tree automaton accepts trees in which every leaf
is at an even depth.

\@
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Example

Let A= ({a,1},{do,q1},{do}, {d1}, A) where

:{ do — a(ds,01)
d: — a(do,do)

Note : In general this tree automaton accepts trees in which every leaf

is at an even depth.
:
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Example

Let A= ({a,1},{do,q1},{do}, {d1}, A) where

{ do — a(d1,ds)
d:  — a(do,do)

Note : In general this tree automaton accepts trees in which every leaf
is at an even depth.
oF

e
BO0B
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Example

Let A= ({a,1},{do,q1},{do}, {d1}, A) where

A:{ o — a(G1,0)
d: — a(do,do)

Note : In general this tree automaton accepts trees in which every leaf
is at an even depth.
o

a1 e q1
@ qo
[of1 q d1 d1

1
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Deterministic top-down automata are weaker(1)

@ Consider the language L; = {a(b(l,1),c(l,1)),a(c(l,1),b(l,1))}.

o Let A= (%,Q,l,F,A) be atop-down tree automaton where

Q= {0d0,01,92,03}

= {do}
F= {as}
do — a(gy,d2)
A — do —a(dz,01)
d: — b(gs,ds)

g2 — c¢(0s,03)

@ Clearly A accepts L but A is not a top-down deterministic tree
automaton.

@ Can we build a top-down deterministic tree automaton that
accepts L, ? We will prove that this is NOT possible.
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Deterministic top-down automata are weaker(2)

@ We suppose that the language L, is accepted by a top-down

deterministic tree automata A" = (£, Q’,I’,F’, A’).

@ By definition, I’ must be a singleton set {q(} and since L; contains
a tree with root labeled a, there must be a transition rule
ao — a(g;.a5) € A for some q7,95 € Q and no other transition for

g with label a.

@ Since A’ accepts both trees in L, in state g there must also be

the following transitions in A

where all g € F.

a3
a5
a3
a5

— b(

— ¢(

— C(d13,A4)
— b(023,d24)

@ But this implies that A’ must accept also trees a(b(l, 1), b(l,1)) and
a(c(l,1),c(l,1)). A contradiction!
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Regular tree languages

The following are equivalent :
@ L is a regular tree language.
@ L is accepted by a non-deterministic bottom-up automaton.
@ L is accepted by a deterministic bottom-up automaton.
@ L is accepted by a non-deterministic top-down automaton.
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Important results

Generally speaking, one can show for regular tree languages the same
results as for regular string languages (sometimes the complexity is
higher). In particular :

@ Given a tree automaton, one can find an equivalent (bottom-up
only) automaton that is deterministic (with possibly an exponential
blow-up).

@ Regular tree languages are closed under complement,
intersection and union.
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Ranked tree automata for XML

Binarization technique

@ One can represent any unranked tree by a binary tree where the
left child of a node represents the first child and the right child its
next sibling in the original unranked tree.

@ This is called the first-child and next-sibling encoding. Others
encodings exist.
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Tree automata
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Ranked tree automata for XML

Relation between ranked and unranked tree automata
@ Let codips be the one-to-one mapping that encodes an unranked
tree t into cods.ns(t), the binary tree with first-child and
next-sibling.
@ Let decods.ps be its inverse mapping that decodes the binary tree
thereby encoded.
@ One can prove that :

@ for each unranked tree automaton Aynrank, there exists a ranked
tree automaton accepting codsens (L(Aunrank )) @nd conversely,

@ for each ranked tree automaton A.nk, there is an unranked tree
automaton accepting decodsns (L(Arank ))-
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Unranked bottom-up tree automata

Non-deterministic bottom-up tree automata

A non-deterministic bottom-up tree automaton is a 4-tuple
A= (X,Q,F,A)where X is an alphabet, Q is a set of states, F C Q is
a set of final states an A is a set of transition rules of the form

alE] — ¢

where a € ¥, E is a regular expression over Q and q € Q
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Unranked tree automata - semantics

Let A = (X,Q,F,A) be an unranked tree automata.

@ The semantics of A is described in terms of runs

@ Given an unranked tree t, arun of Aontisamapping from
dom(t) to Q where, for each position p whose children are at
positions pO,...,p(n — 1) (with n > 0), we have r(p) = q if all the
following conditions hold :

o t(p)=ack,

@ the mapping r is already defined for the children of p, i.e.,
r(p.0)=do, ..., r(p.(n—1)) =gs_1 and

o the word go.qy .. .Qn_1 isin L(E).

@ Arunr is successful if r(e) is a final state.
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Example
Let A= ({a,1},{da,Gc, Q1 }, {da}, A) where
algz.9"-(dc [ €)] —da
A=< clq] — e

| [€] —qy Special rule for leaves
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Example

Let A = ({a7 |}7 {qaa q07 q|}7 {Qa}a A) Where
aldz.97.(dc | €)] — da

A=4¢ cla] — Qc
| [€] —qy Special rule for leaves

Q a q ar

Mirian Halfeld Ferrari (IT4BI) XML-Automata 17 février 2015

42 /58



Example
Let A = ({a7 |}7 {qaa q07 q|}7 {Qa}a A) Where
ag3.9/-(dc | €)] — 0a
A=4q clq] — Qe
| [€] —qy Special rule for leaves
de
q
Ga Ja
6 A
&) q q a
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Example
Let A = ({a7 |}7 {qaa q07 q|}7 {Qa}a A) Where
afg3.9"(dc | €)] — 0a
A=4q clq] — Qe
| [€] —qy Special rule for leaves
Ja e
q
Ga Ja
6 A
&) q q a
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Example
Let A = ({a7 |}7 {Qaa q07 q|}7 {Qa}a A) Where
ag3.9/-(dc | €)] — 0a
A=4q clq] — Qe
| [€] —qy Special rule for leaves
Ja
Ja e
q
Ga Ja
6 &1}
&) q q a
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Deterministic bottom-up automata

Determinism

An unranked tree automata .4 is deterministic when there is no
possibility that it reaches two different states for the same input. In
other words, for any two transition rules having the form a[E;] — q;
and a[E;] — gz in A, we have L(E;) NL(Ey) = 0.
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Important results and comments

Closure properties

As unranked tree automaton can be associated to a ranked tree
automaton recognizing the same language (through encoding)... one
can prove that unranked tree automata are closed under union,
intersection and complement.

Top-down automata

@ Defined in a similar way of the ranked version. We do not discuss
them here.

@ Deterministic top-down automata are weaker (similar as their
ranked counter part)
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Schemas and tree grammar

Regular Tree Grammar (RTG)

A regular tree grammar (RTG) is a 4-tuple G = (N, T,S,P), where :
@ N is a finite set of non-terminal symbols ;
@ T is afinite set of terminal symbols ;
@ S is a set of start symbols, where S C N and

@ P is a finite set of production rules of the form X — a[R], where
X e€N,aeT,andR is a regular expression over N.

(We say that, for a production rule, X is the left-hand side, aR is the
right-hand side, and R is the content model.)

Schemas
Schemas for XML documents can be formally expressed by RTG.
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P:

Dir — directory[Person*]

Person — student[DirA | DirB])

Person — professor [DirB]

DirA — direction[Name.Number?.Add?]
DirB — direction[Name.Add?.Phone*]
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Classes of Schemas (some definitions)

Grammar Context : Competing Non-Terminals

Two different non-terminals A and B (of the same grammar G) are said
to be competing with each other if

(i) a production rule has A in the left-hand side,

(i) another production rule has B in the left-hand side, and

(iii) these two production rules share the same terminal symbol in the
right-hand side.

Automaton Context : Competing States

Let A = (Q, X, Qf, A) be a tree automaton. Two different states q; and
gy in Q are competing if A contains different transition rules

(al[E1] — g1 and a[E,] — q2) which share the same label a.

Remark : we assume that no two transition rules have the same state
in the right-hand side and the same label in the left-hand side, since
two rules of this kind can be written as a single one.

4
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P, [ A;
Dir — directory[Person*] directory [0person] — Qdir
Person — student[DirA | DirB]) student[Qgira | Gaire] — Gperson
Person — professor [DirB] professor [qgirs] — Operson

DirA — direction[Name.Number?.Add?] | direction[Qname.Qnumber ?-Oadd 7] — Cdira
DirB — direction[Name.Add?.Phone*] direction[Qname -Qadd ?-Oghone] — Jdirs
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Classes of Schemas (Local Tree Grammar)

Local Tree Grammar

(LTG) A local tree grammar is a regular tree grammar that does not
have competing non-terminals.

Local Tree Language

(LTL) A local tree language (LTL) is a language that can be generated
by at least one LTG, or, a LTL is a regular tree language accepted by a
tree automaton that does not have competing states.
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P3 [ As
Dir — directory [Student*.Professor *] directory [Qguq -Opror] — Hdir
Student — student[Name.Number?.Add?] student [gname -Onumber ?-Oadd ?] — Qstud

Professor — professor[Name.Add?.Phone”] | professor [gname-Qadd ?-Ophone] — Jprof
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Classes of Schemas (Single-Type Tree Grammar)

Single-Type Tree Grammar

(STTG) A single-type tree grammar (STTG) is a regular tree
grammar in normal form, where

(i) for each production rule, non terminals in its regular expression do
not compete with each other, and

(i) starts symbols do not compete with each other.

Single-Type Tree Language

(STTL) A single-type tree language (STTL) is a language that can be
generated by at least one STTG, or, a STTL is a regular tree language
accepted by a tree automaton having the following characteristics :

(i) For each transition rule, the states in its regular expression do not
compete with each other and

(ii) the set Qs is a singleton.

v
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Example

P2 ‘ AZ
Dir — directory[Person*] directory [0person] — Qdir
Person — student[DirA]) student[ddira] — Gperson
Person — professor [DirB] professor [dgirs] — Cperson

DirA — direction[Name.Number?.Add?] | direction[Qname.Qnumber ?-Oadd 7] — Cdira
DirB — direction[Name.Add?.Phone*] direction[Qname -Qadd ?-Oghone] — Jdirs
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata

Classes of regular languages

Expression power
LTL ¢ STTL C RTL )

Properties

The LTL and STTL are closed under intersection but not under union;
while the RTL are closed under union, intersection and difference.
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Classes of Schemas and Validation Classes of Schemas and corresponding tree automata
XML Schema Languages

Grammar | XML Schema Language

LTG DTD
STTG XSD
RTG RELAX
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Classes of Schemas and Validation Validation Process

A general validation algorithm

@ Let A be a general tree automaton and t an XML tree.
@ In general, we can have many successful runs of A over t.

@ In this context, we can define a general validation algorithm where
arun of 4 over t associates a set of states QO to each position
p € dom(t) where Q, is composed by all the states g such that :

© There exist a transition rule a[E] — q in A.

Qtp)=a
© Thereisawordw = qy,...,q, in L(E) such that
d: € Q1,...,0n € On, Where Q; ... 9, are the set of states

associated to each element child of p.

@ Arunr is successful if r(e) is a set containing at least one final
state.
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Classes of Schemas and Validation Validation Process

Simplified versions of validation algorithm

Restricted forms of schema languages permit simplified versions of a
validation algorithm

LTG
@ The sets Qp are always singleton.
@ There is only one rule associated to each label.

STTG

Although it is possible to have competing states, the result of a
successful run of such an automaton can consider just a single type
(state) for each node of the tree.
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Simplified versions of validation algorithm

Building simplified versions

® While reading an XML document, we can store information useful
to avoid the possible ambiguity of state assignment, expressed by
the transition rules.

@ For instance, in the implementation of the run of a tree automaton
for XSD, each tree node can always be associated to one single
state.

@ This state is obtained by intersecting a set of “expected” states
(computed during the sequential reading of the document so far)
and the set of states obtained by the bottom-up application of the
rules of the automaton.
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Classes of Schemas and Validation Validation Process
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