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Abstract. Linear cellular automata have been studied in details using
algebraic techniques [3]. The generalization to families of polynomial cel-
lular automata seems natural. The following step of complexity consists
of bilinear cellular automata which study has begun with the work of
Bartlett and Garzon [2]. Thanks to bulking techniques [5], two-states
bilinear intrinsically universal cellular automata are constructed. This
result answers a question from Bartlett and Garzon [2] of 1995.

A cellular automaton consists of a regular network, for example a line of cells,
carrying finite values that are updated synchronously on discrete time steps
by applying uniformly a local rule. Despite their apparent simplicity, cellular
automata exhibit varied, sometimes complex, behaviors.

The properties of linear algebraic objects are easier to describe than the
properties of general objects. In the case of cellular automata, the study of linear
cellular automata has begun with the work of Martin et al. [3]. They showed that
linear cellular automata are really simple and they completely described their
behavior. In 1995, Bartlett and Garzon [2] studied bilinear cellular automata.
They proved that a particular sub-family of bilinear cellular automata, cellular
automata over Z¥ with p prime, is as complex as the whole family of cellular
automata. The question remained open whether bilinear cellular automata over
Z., were as complex as the whole family of cellular automata for small values
of m. Moreover, the result from Bartlett and Garzon [2] was given thanks to a
notion of simulation and w-universality that were not formally defined.

In the spirit of Mazoyer and Rapaport [4], we have introduced [5] a tool, called
geometrical bulking, to classify and prove properties on cellular automata. This
tool is based on a notion of simulation and a notion of space-time diagrams
rescaling. Within this scope, we formalized the notion of intrinsic universality
implicitly introduced by Albert and Culik IT [1], which corresponds to the notion
of m-universality in the paper of Bartlett and Garzon [2].

In the present paper, we close an open question from Bartlett and Garzon [2]
by constructing a two-states bilinear intrinsically universal cellular automaton.

* a longer version of this paper is available from the author, see [6]
** Nicolas.0llingerQens-lyon.fr



1 Cellular Automata and Geometrical Bulking

In the following, we only consider one-dimensional cellular automata, that is
straight lines of cells. We briefly recall some necessary definitions and theorems
about cellular automata and geometrical bulking. The interested reader is invited
to consult the longer version of this paper [6].

Definition 1. A cellular automaton A is a triple (S,{ni,...,nq},0) such that
S is a finite set of states, N is a finite ordered set of d integers called the neigh-
borhood of A and & is the local transition function of A which maps S¢ to S.

A configuration C of a cellular automaton A maps Z to the states set of A.
The state of the i-th cell of C is denoted as C;. The local transition function
0 of A is naturally extended to a global transition function G4 which maps a
configuration C of A to a configuration C’ of A satisfying, for each cell i, the
equation C; = 6 (Citnys---»Citny)-

A sub-automaton of a cellular automaton corresponds to a stable restriction
on the states set. A cellular automaton is a sub-automaton of another cellular
automaton if (up to a renaming of states) the space-time diagrams of the first
one are space-time diagrams of the second one. To compare cellular automata,
we introduce a notion of space-time diagrams rescaling. To formalize this idea,
we introduce the following notations:

ok. Let S be a finite state set and k be an integer. The shift o* is the bijective
map from S% onto S% which maps a configuration C to the configuration C’
such that, for each cell 4, the equation Cj, , = C; is satisfied.

. Let S be a finite state set and m be a strictly positive integer. The packing
map o™ is the bijective map from S% onto (Sm)Z which maps a config-
uration C to the configuration C' such that, for each cell 4, the equation
Ci = (Cmi,- - -, Crmitm—1) is satisfied.

Definition 2. Let A be a cellular automaton with states set S. A (m,n,k)-
rescaling of A is a cellular automaton AS™™F) with states set S™ and global
transition function G = o 0 0™ 0 G 0 0~

Definition 3. Let A and B be two cellular automata. Then B simulates A if
there exists a rescaling of A which is a sub-automaton of a rescaling of B.

This relation of simulation has good properties. In particular, in [5], we proved
that the relation of simulation is a quasi-order with a maximal induced equiv-
alence class exactly corresponding to the set of intrinsically universal cellular
automata in the sense of Albert and Culik IT [1]. As any cellular automaton
can be simulated by a one-way cellular automaton, that is a cellular automaton
with neighborhood {—1,0}, there exist intrinsically universal one-way cellular
automata. Therefore, to prove that a particular family of cellular automata con-
tains an intrinsically universal cellular automaton, it is sufficient to prove that
any one-way cellular automaton can be simulated by a cellular automaton from
the family. The details and the formal definitions of intrinsically universal cellu-
lar automata are presented in the longer version [6].



2 Two-States Bilinear Cellular Automata

Bilinear cellular automata are polynomial cellular automata which polynomial
is a bilinear functional. Bartlett and Garzon [2] proved the universality of this
family of cellular automata in the special case where the states set is of the kind
Z% with p prime. We prove that the family of bilinear cellular automata with
states set Zs is universal, answering their question concerning bilinear cellular
automata with states set Z,, for small values of m.

Definition 4. A bilinear cellular automaton is a polynomial cellular automaton

of degree 2, that is, a cellular automaton which states set is a finite commutative

ring and which local transition function can be represented as a polynomial only
. . X d d

consisting of quadratic monomials: 6 (s1,-..,84) = D,y D1 bi,j8iS;-

Theorem 1. Each one-way cellular automaton can be simulated by a two-states
bilinear cellular automaton.

Proof. Let A be a one-way cellular automaton (S, {—1,0},0). Let n be the car-
dinal of S. Up to a renaming of states, we can assume that S = {0,1,...,n —1}.
We construct a two-states bilinear cellular automaton (Zs, {—r, ...,7}, P) which
simulates \A. The basic idea of the construction is to represent a cell of a con-
figuration of A by a block of cells all but one in the state 0. The position of
the cell with value 1 determines the state for the cell of the configuration of A.
To encode the transition §(¢,j) = k, we build a monomial s,s, where p is the
distance from the position of k to the position of ¢ and ¢ the distance from the
position of & to the position of j as represented on Fig. 1. To avoid multiplying
the monomial by (1 — s;) for every | between p and ¢, we must be sure that all
these cells can only be 0. Eventually the mapping from (i, j, k) to (p,q) must be
injective to avoid any “misinterpretation” of a monomial.
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Fig. 1. the idea of a cell encoding

A complete and motivated construction can be found in the longer version of
this paper [6]. Here, we only provide the technical part of the proof. We choose to
discriminate between the encoding of cells of a configuration of .4 thanks to the
parity of its position into the configuration. An even cell with value i is encoded
as a block of cells of size 18n? with value 1 at cell (6n + 2)i. An odd cell with
value j is encoded as a block of cells of size 18n? + 1 with value 1 at cell 6nj.

First, we show that the distance between two cells with value 1 permits
to know whether it correspond to two next encoded cells. The maximal dis-
tance between two cells with value 1 corresponding to two next encoded cells is



18n2% + 1 + (6n + 2)n = 24n? + 2n + 1. The minimal distance between two cells
with value 1 corresponding to two encoded cells at distance three or more is
18n2% — (6n + 2)n + 1802 + 1 = 30n? — 2n + 1. Asn > 1, it is clear that two cells
with value 1 correspond to two next encoded cells if and only if their distance is
less or equal to 24n2 + 2n + 1.

Second, we show that, when building a monomial s, s, encoding the transition
0(i,j) = k, the mapping from (4,7, k) to (p,q) is injective. As it is straightfor-
ward to compute, if the position of k is odd, p = 18n2 — (6n + 2)i + 6nk and
q = 6nj — 6nk; if the position of k is even, p = 18n% + 1 — 6ni + (6n + 2)k and
g = (6n + 2)j — (6n + 2)k. Being given p and ¢, computing p modulo 2 gives the
parity of the position of k. Then, depending of this parity, p modulo 6n permits
to obtain ¢ or k. From p, we then deduce both i and k. Finally, we compute j
from g. The mapping is injective.

From the above computations, we obtain the following polynomial.

n—1n-—1
P(S—r, ceey 31") = 81812 —(6n+2)i+6nd(i,7) S6nj—6nd(i,5)

=0 j=0 Tt 5180241 —6ni+(6n+2)3(i,j) S (6n+2)j— (6n+2)d(,5)
The parameter r can be chosen as 36n2 + 1. |

3 Conclusion and Open Problems

In this paper, we have proven, thanks to geometrical bulking, the existence of
two-states bilinear intrinsically universal cellular automata, drastically decreas-
ing the previous known number of states (using 2 states instead of 211211 states
in the paper of Bartlett and Garzon [2]). Our result naturally extends to higher
dimensions. The difference between linear and non-linear cellular automata is
worth studying. To continue the study of bilinear cellular automata, one has to
find a bound on the neighborhood size for intrinsical universality (our best today
estimation is a radius of 1297 cells).
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