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Abstract. Undecidability results of cellular automata properties usu-
ally concern one time step or long time behavior of cellular automata.
Intrinsic universality is a dynamical property of another kind. We prove
the undecidability of this property for one-dimensional cellular automata.
The construction used in this proof may be extended to other properties.

Cellular automata are simple discrete dynamical systems given by a triple
of objects: a regular lattice of cells, a neighborhood vector on this space, and
a finitely described local transition function defining how the state of a cell of
the lattice evolves according to the states of its neighbors. A configuration of a
cellular automaton is a mapping from the lattice of cells to the finite set of states
which assigns a state to each cell. The global transition function of the cellular
automaton, which defines its dynamics, transforms a configuration into another
one by applying the local transition function uniformly, and in parallel, to each
cell. A space-time diagram is an infinite sequence of configurations obtained by
iteration of the global transition function starting from an initial configuration.
A main concern of the study of cellular automata is to understand the links
between local and global properties of cellular automata: how can very simple
local transition functions provide very rich dynamics?

Recently, an algebraic framework was proposed by J. Mazoyer and 1. Ra-
paport [9] to induce an order on cellular automata which is somehow relevant
from the point of view of global behavior study. A cellular automaton is said to
simulate another one if, up to some rescaling of both cellular automata, the set
of space-time diagrams of the former includes the set of space-time diagrams of
the later. This relation is a quasi-order on the set of cellular automata and the
induced equivalent classes and order on these classes provide a natural way to
compare cellular automata. In [9], this order was proven to admit a global min-
imum and simple known dynamical properties were used to characterize classes
at the bottom of the order. In [10], we introduced a generalization of this or-
der by allowing a more general notion of cellular automata rescaling. Thanks
to these new geometrical transformations on cellular automata space-time dia-
grams, we were able to take new phenomena into account. In particular, contrary
to the original one, our new order admits a global maximum. This maximum
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corresponds to the set of intrinsically universal cellular automata, that is cellu-
lar automaton which can simulate any other cellular automaton step by step,
already present in the work of E. R. Banks [3] and formalized for the first time
by J. Albert and K. Culik [1].

In the present article, we prove that the intrinsic universality property is un-
decidable. Contrary to the computation universality for Turing machines, this
result is not a direct consequence of some Rice’s theorem because cellular au-
tomata behavior lacks such tool. This result explains the difficulty to exhibit
intrinsically universal cellular automata with a few states as discussed in [11].
Moreover, when interpreted in the framework of cellular automata comparison,
this implies that there exist no class of cellular automata that lie at the limit
downside intrinsically universal ones.

1 Definitions

A cellular automaton A is a quadruple (Zd,S, N, 5) such that Z<¢ is the d-
dimensional regular grid, S is a finite set of states, NV is a finite set of v vectors
of Z% called the neighborhood of A and § is the local transition function of A
which maps S” to S. Two classical neighborhoods for one-dimensional cellular
automata are the one-way neighborhood Ny, = {—1,0} and the first-neighbors
neighborhood N,y = {-1,0,1}.

A configuration C of a cellular automaton A maps Z? to the set of states of
A. The state of the i-th cell of C is denoted as C;. A configuration C is periodic
if there exists a basis (vy,...,vq) of Z¢ such that for any index k and any cell
i of Z¢, Citv, = C;. In the case of one-dimensional configurations, the smallest
strictly positive value for vy is the period of the configuration.

The local transition function ¢ of A is naturally extended to a global tran-
sition function G 4 which maps a configuration C of A to a configuration C’
of A satistying, for each cell i, the equation C, = 0 (City,,--.,City,), Where
{vy,...,v,} is the neighborhood of A. A space-time diagram of a cellular au-
tomaton A is an infinite sequence of configurations (C¢),c such that, for every
time ¢, Cyy1 = G4 (C¢). The usual way to represent space-time diagrams is to
draw the sequence of configurations successively, from bottom to top.

The limit set Q(A) of a d-dimensional cellular automaton A with set of states
S is the non-empty set of configurations of A that can appear at any time step
in a space-time diagram. Formally,

Q) = () Gl (SZd) .
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A fized point C of a cellular automaton A is a configuration of A such that
G 4(C) = C. Thus, we say that a configuration C evolves to a fixed point if there
exists a time ¢ such that G%(C) is a fixed point.



A cellular automaton A is nilpotent if any configuration of A evolves to a
same fixed point, i.e. Q(A) is a singleton. Symmetrically, a cellular automaton A
is nilpotent for periodic configurations if any periodic configuration of A evolves
to a same fixed point. Notice that in both cases, the fixed point configuration
has to be monochromatic, i.e. consisting of only one state s. To emphasize the
choice of s, we will speak of s-nilpotency.

A sub-automaton! of a cellular automaton corresponds to a stable restriction
on the set of states. A cellular automaton is a sub-automaton of another cellular
automaton if (up to a renaming of states) the space-time diagrams of the first
one are space-time diagrams of the second one. To compare cellular automata,
we introduce a notion of rescaling space-time diagrams. To formalize this idea,
we introduce the following notations:

ok, Let S be a finite set of states and k be a vector of Z?. The shift o* is
the bijective map from SZ° onto SZ* which maps a configuration C to the
configuration C’ such that, for each cell i, the equation C; , = C; is satisfied.
o™. Let S be a finite set of states and m = (mq,...,mg) be a finite sequence of

strictly positive integers. The packing map o™ is the bijective map from S z

d
onto (S™1ma)%" which maps a configuration C to the configuration €’ such
that, for each cell ¢, the equation C; = (Cmi, ey Cm(i+1)—1) is satisfied. The
principle of 0(®2) is depicted on Fig. 1.
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Fig. 1. The way 0®?) cuts 72 space

Definition 1. Let A be a d-dimensional cellular automaton with set of states
S. A (m,n, k)-rescaling of A is a cellular automaton A™"™*) with set of states

Smimd gnd global transition function Gitm’”‘k) =oFoomoGY oo ™.

Definition 2. Let A and B be two cellular automata. Then B simulates A if
there exists a rescaling of A which is a sub-automaton of a rescaling of B.

The relation of simulation is a quasi-order on cellular automata. It is a gen-
eralization of the order introduced by Mazoyer and Rapaport [9]. In [10], we
motivate the introduction of this relation and discuss its main properties. In
particular, it induces a maximal equivalence class which exactly corresponds to
the set of intrinsically universal cellular automata as described by Banks [3] and
Albert and Culik IT [1].

! The prefix sub emphasizes the fact that (S’%,G) is an (algebraic) sub-structure of
(SZ, G). One could have also used the terminology divisor as the set of space-time
diagrams of one automaton is included into the one of the other.



Definition 3. A cellular automaton A is intrinsically universal if, for each cel-
lular automaton B, there exists a rescaling of A of which B is a sub-automaton.

As any one-dimensional cellular automaton can be simulated by a one-way
cellular automaton, that is a cellular automaton with neighborhood Noyc,, there
exist intrinsically universal one-way cellular automata. Therefore, to prove that
a particular one-dimensional cellular automaton is intrinsically universal, it is
sufficient to prove that it can simulate any one-way cellular automaton. In par-
ticular, the intrinsically universal cellular automaton of section 3 is constructed
by mean of one-way cellular automata simulation.

2 Deciding Properties of Cellular Automata

One time step behavior of cellular automata, like the injectivity or the surjec-
tivity of the global transition function (for cellular automata, injectivity implies
bijectivity) have been well studied. Both properties have been proved decidable
for one-dimensional cellular automata by Amoroso and Patt [2]. However, in
the case of higher dimensions, both properties have been proved undecidable by
Kari [6]. There is a gap of complexity between dimensions one and two. The
proofs of Kari rely on reductions to tiling problems of the plane and aperiodic
tilings studied by Robinson [12].

Long time behavior of cellular automata deals with the limit set of cellular
automata: the set of configurations that can appear after any possible number
of time steps. This set is known to be either a singleton either an infinite set. In
the first case, the unique configuration of the limit set is monochromatic and the
cellular automaton is said nilpotent. Nilpotency has been proved undecidable
for two-dimensional cellular automata by Culik II, Pachl, and Yu [4]. This
result has been extended to one-dimensional cellular automata by Kari [5] using
a reduction to the tiling problem of the plane for NW-deterministic tile sets.
Eventually, Kari [7] has generalized his result to an analog of Rice’s theorem for
limit set properties of cellular automata: every non-trivial long time behavior
properties of cellular automata are undecidable.

Long time behavior of cellular automata on periodic configurations has also
its literature because previous results do not automatically extend to periodic
configurations. In the case of one-dimensional cellular automata, Sutner [13]
proved that it is undecidable to know whether each periodic configuration of
a one-dimensional cellular automaton evolves to a fixed point. This result was
recently extended by Mazoyer and Rapaport [8] as follows: it is undecidable to
know whether each periodic configuration of a one-dimensional cellular automa-
ton evolves to a same fixed point. The proof still uses a reduction to a particular
tiling problem. In the present article, we prove an undecidability result by re-
duction to a simple variant of Mazoyer and Rapaport’s result, CA-1D-NIL-PER.



CA-1D-NIL-PER

Input A one-dimensional cellular automaton A and
a particular state s from A

Question Is A s-nilpotent for periodic configurations ?

Some dynamical properties of cellular automata are neither one time step nor
long time properties. An example of such properties is the intrinsic universality.
Briefly, a cellular automaton is intrinsically universal if it can simulate, in a
particular sense, any other cellular automaton step by step. In the classical case
of Turing machines, computational universality, even if not formally defined, is
undecidable considering Rice’s theorem. In the case of cellular automata, there
is no such tool. We will now prove that the problem CA-1D-UNIV is undecidable
using a new technique which should work for other dynamical properties.

CA-1D-UNIV
Input A one-dimensional cellular automaton A
Question Is A intrinsically universal 7

3 An Intrinsically Universal Cellular Automaton

Our proof of the undecidability of the intrinsic universality problem of one-
dimensional cellular automata proceeds by reduction to the nilpotency problem
for periodic configurations and relies on the existence of a particular intrinsically
universal cellular automaton /. We briefly describe its structure and properties.

The cellular automaton U is defined by simulation of a multi-head Turing
machine M = (Q,,, X,,, 7) with set of states @,,, alphabet ¥, and whose transi-
tion function 7 maps Q,, x X, to Q,, x X,, x {+, ], —}. Notice that the behavior
of M on configurations where several heads share a same position is undefined.
By simulation, we mean here that ¢/ is defined as

U= (Zv({} UQM) X Zu"NvN76u)‘

A state of U is a pair constituted of a head or a blank and a letter. A configuration
of U looks like a configuration of M:

aaaabbababaaabbaaababbd

The local transition function §,, is defined in order to emulate M according
to 7 on locally valid configurations of M. By locally valid configurations of M we
mean configurations where no two heads are in the von Neumann neighborhood
of each other. To fully define J,,, we simply ask that no new head is created, for
example by destroying heads that locally invalidate a configuration.

We also give some constraints on intrinsic simulation. For each one-way cel-
lular automaton 4, there must exist a positive integer m and an injective map



¢ from S, into S77" such that U simulates A according to ¢ without shift: there

Gé{m,n,O)

exists some n such that po G4 = o @ where P is the extension of ¢ to

Z - . . .
S, i.e. the following diagram commutes:
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Moreover ¢ has the following three properties:

First, each macro-cell (a block of cells encoding one cell of the simulated
cellular automaton) is driven by a Turing head. Formally, there exists a state sq
of M such that, for each state s of A, its image ¢(s) contains sy as the head
component of its first cell and no head elsewhere.

Second, during the simulation, the Turing heads move like a comb. Formally,
for each configuration C of A and for each time ¢, the head components of the con-
figuration C(*) = G! (®(C)) of U contains heads exactly at positions (mi + I;)
for some ;.

i€Z

Third, we can extend the simulation macro-cells to bigger m by padding
them and still have the same properties. Formally, there exists a letter a of M
such that, for each positive integer [, the sum m + [ and the injective map

QOIZSA—)SZH—I

s = (¢(s)) (-,a)’

are valid choices to replace m and ¢ and keep the same simulation properties.

Let us now sketch what the behavior of such a cellular automaton ¢ could
be. The following ideas are depicted on Fig. 2, where the head movements during
the times that are not depicted are represented by straight segments.

The first idea of the construction is to cut the line of cells regularly into
blocks of cells. Each block corresponds to a macro-cell which encodes one cell
of the simulated one-way cellular automaton. The border line between two such
blocks is materialized by two border letters # separated by a void of letters ..

Inside the block, several regions are distinguished and separated by a letter
@. In a first region is stored the state of the macro-cell. A second region is used
during the transition to store the state of the neighbor macro-cell state. A third
region is used to temporarily store the next state of the macro-cell. Finally,
a last region is required to store the transition table of the simulated cellular
automaton.

One transition of the simulated macro-cell is operated thanks to the following
steps. First, the head copies the state of the neighbor macro-cell in the appro-
priate storage region. Next, the transition table is read entirely. At each step,
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Fig. 2. Typical behavior of the intrinsically universal cellular automaton U

the values of the stored states are compared to the current position inside the
transition table and the result of the transition is copied into the next state
storage region, or this copy is emulated if the values do not match. Once the
reading of the transition table is achieved, the head replaces the content of the
state storage region by the content of the next state storage region and cleans
up the storage areas. Afterwards, the head goes back to its initial position and
enters state sg.

4 Undecidability of the Intrinsic Universality Problem

Once convinced that such a U exists, consider the following transformation which
is the key idea of our reduction. For each cellular automaton A and each state
s of A, we define a product cellular automaton A ®4 U by

A®;U=(Z,S, x {-,%} xS, N, UNocn UN,,0),

a three layers automaton whose local transition rule § is described layer by layer.



The bottom layer is the energy production layer. It consists of a configuration
of A which evolves according to the local transition function 4 of A.

The middle layer is the energy diffusion layer. It consists of a configuration
on states - (no energy) and * (an energy dot). The evolution of this layer is the
one of a shift but: if the bottom layer of a cell does not contain state s the middle
layer produces an energy dot *; if the upper layer of a cell contains a head state
and its middle layer receives an energy dot * from its neighbor, the middle layer
dissipates the incoming energy dot and receives a no energy state.

The upper layer is the energy consumption layer. It consists of a configuration
of U which evolves according to the local transition function of &/ under the
control of the middle layer. If the upper layer of a cell contains a head state in a
cell of its neighborhood then, if the middle layer of the cell containing the head
receives an energy dot x, the upper layer evolves according to U.

Lemma 1. For any cellular automaton A, the automaton A®sU is intrinsically
universal if and only if A is not s-nilpotent on periodic configurations.

Proof. Let A be a cellular automaton and s a state of A. The proof is by dis-
crimination on the s-nilpotency on periodic configurations of A.

If A is not s-nilpotent on periodic configurations, there exists a configuration
C of A which is periodic both in space and time and is not s-monochromatic.
Let p be a spatial period of C. To prove that A ®, U is intrinsically universal,
we prove that it in the maximal equivalence class for the simulation relation
by proving that it can simulate any one-way cellular automaton. Consider any
one-way cellular automaton B. Let m, n and ¢ be the parameters of one of our
particular intrinsic simulations of B by U such that p divides m (use padding
property if necessary). Then, A ®, U simulates BY for some strictly positive T
with parameters m, T'n and ¢ where 1 is obtained from ¢ using the following
ideas. The bottom layer of 1 consists of periods of C. The upper layer of 1 is
directly given by ¢. As C is periodic and its period divide m, it periodically
produces energy for the universal simulation, preserving the comb structure,
thus allowing the simulation to take place with a given slowdown. By a simple
pigeonhole reasoning, it is possible to choose a middle layer for v such that during
any simulation this layer appears on a periodic duration basis ¢ (remember that
each macro-cell produces and consums energy the same way whatever state it
encodes). As it is straightforward to see, by choosing for T a value such that ¢
divides T'n, the following two properties hold: ¢ is injective and A®,U simulates
BT with parameters m, Tn and ).

If A is s-nilpotent on periodic configurations, we prove that A ®,; I cannot
simulate the cellular automaton B = (Z, {o, @}, Noca, &) where ({o, o}, @) is the
cyclic group (Zz,+) where o corresponds to 0 and e to 1. Assume that A ®g U
is intrinsically universal. In particular, it simulates B: let w, and w, be the
respective encoding of its states. The automaton B admits a space-time diagram
A periodic in both space and time with the following filling pattern:

(ol 1 J
[ Jo) 3
000



As A is s-nilpotent on periodic configurations, the bottom layer of the space-
time diagram of the simulation of B on A stops creating energy on the middle
layer after a finite time. Thus, either w, and w, cannot contain both energy cells
on their middle layer and heads on their upper layer (because the heads would
consume the whole energy in finite time which would be a problem to preserve
the injectivity of the encoding).

If there is a head in the upper layer of w, or w, then the middle layer is
empty of energy cells: the bottom layer behaves periodically and the other layers
are constant, thus A ®, U behaves like a periodic automaton on the simulation
configurations.

If there is no head in the upper layer of w, and w, then the first layer is
periodic, the second layer is a shift and the third layer is constant, thus A ®, U
behaves like a cartesian product of a shift and a periodic automaton on the
simulation configurations.
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Fig. 3. Pascal triangle modulo two produced by B

In both cases, these behaviors fail to capture the behavior of B as the behavior
of B on the configuration o-monochromatic but on cell 0 which has state e cannot
be simulated by such cellular automaton as it produces a Pascal triangle modulo
two (as depicted on Fig. 3) which cannot be obtained by the product of a shift
and a periodic cellular automaton. |

Theorem 1. The intrinsic universality problem of one-dimensional cellular au-
tomata is undecidable.

Proof. This proposition is a corollary of the previous lemma. As the computa-
tion of the cellular automaton A® U from the cellular automaton A is recursive,
the decidability of the intrinsic universality problem of one-dimensional cellular
automata would imply the decidability of s-nilpotency problem on periodic con-
figurations. |

5 Cellular Automata Dynamics and Computation

The dynamical properties of cellular automata known to be undecidable are one
time step or long time behavior properties. We were able to prove the undecid-
ability of the intrinsic universality of one-dimensional cellular automata, which



is a dynamical property of another kind, using a particular reduction to a long
time behavior property.

The key idea of our proof is to combine an intrinsically universal cellular
automaton with a second cellular automaton which acts as an energy provider.
The first automaton consumes energy provided by the second one. The product
cellular automaton is intrinsically universal if and only if the energy provider is
not nilpotent for periodic configurations. It should be possible to replace intrinsic
universality by other dynamical properties to prove other undecidability results.

Intrinsic universality plays the same role for cellular automata dynamics
as computation universality for Turing machines. A formalization of this idea
seems worth studying as it would certainly lead to a better understanding of the
way computation occurs inside space-time diagrams and provide undecidability
results of the same kind as Rice’s theorem.
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