Substitutions combinatoires et pavages Thomas Fernique & Nicolas Ollinger LIF, Aix-Marseille Université, CNRS GdT MC2 - 10 mars 2011 Tile polytope of \mathbb{R}^d with finitely many (numbered) facets. Tiles are here considered up to translations and rotations. Tiling covering of \mathbb{R}^d by facet-to-facet tiles. Tiling covering of \mathbb{R}^d by facet-to-facet tiles. **Decoration** maps each point of tile boundaries to a color. matching if decorations are equal over common facets. **Decorated tiling** tiling by matching decorated tiles. Decorated tiling tiling by matching decorated tiles. ## **Sofic tilings** Decorated tile set $\tau \rightsquigarrow \text{set } \Lambda_{\tau}$ of decorated tilings. Let π be the map which removes tile decorations. **Definition** A set of tilings is **sofic** if it can be written as $\pi(\Lambda_{\tau})$, where τ is a **finite** decorated tile set. ## Sofic tilings Decorated tile set $\tau \rightsquigarrow \text{set } \Lambda_{\tau}$ of decorated tilings. Let π be the map which removes tile decorations. **Definition** A set of tilings is **sofic** if it can be written as $\pi(\Lambda_{\tau})$, where τ is a **finite** decorated tile set. What (interesting) properties on tilings can (or cannot) be enforced by soficity? # Macro-tiles and macro-tilings Macro-tile finite partial tiling with (numbered) macro-facets. # Macro-tiles and macro-tilings Macro-tiling macro-facet-to-facet tiling by macro-tiles. #### Combinatorial substitution **Definition** A **combinatorial substitution** is a finite set of pairs (tile, macro-tile). Let $\sigma = \{(P_i, Q_i)\}_i$ be a combinatorial substitution. **Preimage** under σ of a tiling by the P_i 's: macro-tiling by the Q_i 's with the same **combinatorial structure**. **Definition** The **limit set** of a combinatorial substitution σ is the set of tilings which admit an infinite sequence of preimages under σ . From Rauzy generalized substitution... From Rauzy generalized substitution... ... to Rauzy combinatorial substitution. Any tiling decomposes into macro-tiles. . Combinatorial Substitutions #### 3. Main result #### Main result **Theorem[FO 2010]** The **limit set** of a **good** combinatorial substitution is **sofic**. **Remark** The result is **constructive**: given a substitution we recursively construct a decorated set of tiles. This extends (and simplifies?) previous similar results. 3. Main result 7/17 #### **Mozes 1990** **Theorem[Mozes 1990]** The limit set of a **non-deterministic rectangular substitution** is sofic. 3. Main result 8/17 ## Goodman-Strauss 1998 **Theorem[Goodman-Strauss 1998]** The limit set of **homothetic substitution** (+ some hypothesis) is sofic. 3. Main result 9/17 ## **Recipe** [O 2008] A substitution s generates a limit set $\Lambda_s = \bigcap_t \operatorname{Img}(s^t)$. The limit set is the set of colorings admitting an **history** $(c_i)_{i \in \mathbb{N}}$ where $c_i = s(c_{i+1})$. A tile set τ **simulates** a tile set τ' with an encoding $f: \tau' \to \tau^n$ if tilings by τ decompose via f in tilings by τ' . Tilings of a **self-simulating** tile set τ with encoding s are the **limit set** of s. To encode Λ_s via **local matching rules** decorate s into a **locally checkable** s• embedding a whole history. 3. Main result 10/17 #### Self-simulation **Definition** A decorated tile set τ **self-simulates** if it admits tilings and there are τ -macro-tiles s.t. - 1. any τ -tiling is also a macro-tiling by these τ -macro-tiles; - 2. each τ -macro-tile is **combinatorially equivalent** to a τ -tile. **Proposition** If τ self-simulates, then $\pi(X_{\tau})$ is a subset of the limit set of the combinatorial substitution with pairs τ -macro-tile/equivalent τ -tile. 3. Main result 12/17 Fix a set of macro-tiles and let T_1, \ldots, T_n be all their tiles. To enforce τ -tilings to be τ -macro-tilings: decorations specify tile neighbors within macro-tiles and mark macro-facets. 3. Main result 13/17 This yields so-called macro-indices on tile facets. The macro-indices of facets of a τ -tile must then be encoded on the corresponding macro-facets of its simulating τ -macro-tile. 3. Main result 13/17 This yields so-called neighbor-indices on tile facets. 3. Main result 13/17 We force these neighbor-indices to come from the same tile T_i , called parent-tile, by carrying its index i between macro-facets, where it is converted into the suitable neighbor-index. Such tile indices are encoded on facets by so-called parent-index. This yields, once again, a new index on each tile facets... But the trick is that the neighbor-indices and parent-indices of facets of a τ -tile can be encoded on the corresponding big enough macro-facets of the equivalent τ -macro-tile without any new index! In big enough macro-tiles, we can then carry these pairs of neighbor/parent indices up to a central tile along a star-like network. On internal facets not crossed by this network, we <u>copy</u> the <u>macro-index</u> on the <u>neighbor-index</u> (this redundancy is later used). The pairs on a <u>central</u> τ -tile can be those of any <u>non-central</u> τ -tile (from which the central τ -tile is said to derive). The τ -macro-tile with parent-index i is combinatorially equivalent to T_i endowed with the pairs of the central τ -tile. But is it a τ -tile? If T_i is a central tile, then its pairs can be derived from any non-central τ -tile (as for any central tile)... ... in particular from the non-central τ -tile from which are also derived the pairs of the central τ -tile of our τ -macro-tile. In this case, the equivalent decorated T_i is a derived central τ -tile. Otherwise, consider the non-central τ -tile from which derives our central τ -tile; at least one facet is internal and not crossed by a network: its neighbor and macro indices are equal (by redundancy). Thus, by copying the neighbor and parent indices (derivation)... ... one copies a macro-index on our central τ -tile, and thus on the whole corresponding network branch. A tile on this k-th branch which also knows the parent-index i can then force this macro-index to be the one on the k-th facet of a decorated T_i (recall that all the decorated T_i have the same one). In this case, the equivalent decorated T_i is the non-central τ -tile from which derives the central τ -tile of our τ -macro-tile. #### Main result **Theorem[FO 2010]** The **limit set** of a **good** combinatorial substitution is **sofic**. Remark No need to care about geometry. But, what is a good combinatorial substitution? **Definition** A **good** combinatorial substitution is both **connecting** and **consistent**. 3. Main result #### **Connecting** **Intuitively** A substitution is **connecting** if there is enough space inside macro-tiles to wire the networks. 3. Main result #### Consistent **Definition** A combinatorial substitution is **consistent** if any tiling by macro-tiles admits a preimage under the substitution. **Remark** This is where the **geometrical** consistency hides. **Open Pb Characterize** consistent combinatorial substitutions. 3. Main result #### Conclusion and open problem The **global** hierarchical structure associated to a substitution system can be enforced by **local** matching rules. **Open Pb** Is it possible to describe the **geometry** of tiles by finite local **combinatorial** constraints? 4. Conclusion 17/17