Combinatorial substitutions and tilings

Thomas Fernique & Nicolas Ollinger

Journées SDA2, Caen — 20 juin 2011

Combinatorial substitutions and tilings

Thomas Fernique & Nicolas Ollinger

Journées SDA2, Caen — 20 juin 2011

Substitutions

Rewriting rules that can be **iterated** to generate tilings with a **hierarchical** global structure.

Tilings

Local constraints that propagate to enforce some global structure.

(Ammann, Grünbaum, Shephard, 1992)

Goal

Proposition Tilings generated by any **fair substitution** can be enforced by finitely many **local constraints**.

Remark The result is **constructive**: given a substitution, derive the set of local constraints.

This is well-known old technology!

Remark substitutions are at the heart of most classical constructions of aperiodic sets of tiles.

We just extend (maybe simplify?) previous similar results.

Mozes 1990

Theorem[Mozes 1990] The limit set of a **non-deterministic rectangular substitution** (+ some hypothesis) is sofic.

Goodman-Strauss 1998

Theorem[Goodman-Strauss 1998] The limit set of **homothetic substitution** (+ some hypothesis) is sofic.

1. The classical recipe

- 2. Combinatorial substitutions
- 3. Main result
- 4. Conclusion & Open Pb

Wang tiles

A tile set $\tau \subseteq \Sigma^4$ is a finite set of tiles with colored edges.

The set of τ -tilings $X_{\tau} \subseteq \tau^{\mathbb{Z}^2}$ is the set of colorings of \mathbb{Z}^2 by τ where colors match along edges.

1. The classical recipe 6/22

Two-by-two substitutions

A 2x2 substitution $s: \Sigma \to \Sigma^{\boxplus}$ maps letters to squares of letters on the same finite alphabet.

The substitution is extended as a global map $S: \Sigma^{\mathbb{Z}^2} \to \Sigma^{\mathbb{Z}^2}$ on colorings of the plane:

$$\forall z \in \mathbb{Z}^2, \ \forall k \in \mathbb{H}, \quad S(c)(2z+k) = s(c(z))(k)$$

Limit set and history

$$\Lambda_S = \left\{ \begin{array}{c} \\ \\ \end{array} \right\} \cup \left\{ \begin{array}{c} \\ \\ \end{array} \right\}_{x,y \in \mathbb{Z}^2}$$

The **limit set** $\Lambda_s \subseteq \Sigma^{\mathbb{Z}^2}$ is the maximal attractor of S:

$$\Lambda_{\mathcal{S}} = \bigcap_{t \in \mathbb{N}} \left\langle S^t \left(\mathbb{Z}^2 \right) \right\rangle_{\sigma}$$

The limit set is the set of colorings admitting an **history** $(c_i)_{i\in\mathbb{N}}$ where $c_i = s(c_{i+1})$.

Idea To encode Λ_s via **local matching rules** decorate s into a **locally checkable** s embedding a whole history.

1. The classical recipe 8/22

Self-simulation

A tile set τ simulates a tile set τ' with an encoding $f: \tau' \to \tau^n$ if tilings by τ decompose via f in tilings by τ' .

Tilings of a **self-simulating** tile set τ with encoding s are (a subset of) the **limit set** of s.

Idea To encode Λ_s via **local matching rules** find **fixpoints** of decorated simulation schemes.

1. The classical recipe 9/22

1. The classical recipe

2. Combinatorial substitutions

3. Main result

4. Conclusion & Open Pb

Tiles and tilings

Tile polytope of \mathbb{R}^d with finitely many (numbered) facets.

Tiles and tilings

Tiles are here considered up to translations and rotations.

Tiles and tilings

Tiling covering of \mathbb{R}^d by facet-to-facet tiles.

Decorations

Decoration maps each point of tile boundaries to a color.

Decorations

matching if decorations are equal over common facets.

Decorations

Decorated tiling tiling by matching decorated tiles.

Sofic tilings

Decorated tile set $\tau \rightsquigarrow \text{set } X_{\tau}$ of decorated tilings.

Let π be the map which removes tile decorations.

Definition A set of tilings is **sofic** if it can be written as $\pi(X_{\tau})$, where τ is a **finite** decorated tile set.

Sofic tilings

Decorated tile set $\tau \rightsquigarrow \text{set } X_{\tau}$ of decorated tilings.

Let π be the map which removes tile decorations.

Definition A set of tilings is **sofic** if it can be written as $\pi(X_{\tau})$, where τ is a **finite** decorated tile set.

What (interesting) properties on tilings can (or cannot) be enforced by soficity?

Macro-tiles and macro-tilings

Macro-tile finite partial tiling with (numbered) macro-facets.

Macro-tiles and macro-tilings

Macro-tiling macro-facet-to-facet tiling by macro-tiles.

Combinatorial substitution

Definition A **combinatorial substitution** is a finite set of pairs (tile, macro-tile).

Let $\sigma = \{(P_i, Q_i)\}_i$ be a combinatorial substitution.

Image under σ of a tiling by the P_i 's: macro-tiling by the Q_i 's with the same **combinatorial structure**.

Definition The **limit set** of a combinatorial substitution σ is the set of tilings which admit an infinite sequence of preimages under σ .

Rauzy combinatorial substitution

Tiles match in a tiling as macro-tiles in its image...

... and conversely.

Tiles match in a tiling as macro-tiles in its image...

 \dots and conversely.

Tiles match in a tiling as macro-tiles in its image...

 \dots and conversely.

Tiles match in a tiling as macro-tiles in its image...

...and conversely.

Any tiling decomposes into macro-tiles.

- 1. The classical recipe
- 2. Combinatorial substitutions

3. Main result

4. Conclusion & Open Pb

Self-simulation

Definition A decorated tile set τ **self-simulates** if it admits tilings and there are τ -macro-tiles s.t.

- 1. any τ -tiling is also a macro-tiling by these τ -macro-tiles;
- 2. each τ -macro-tile is **combinatorially equivalent** to a τ -tile.

Proposition If τ self-simulates, then $\pi(X_{\tau})$ is a subset of the limit set of the combinatorial substitution with pairs τ -macro-tile/equivalent τ -tile.

3. Main result 17/22

A self-simulating decorated tile set au

Fix a set of macro-tiles and let T_1, \ldots, T_n be all their tiles.

A self-simulating decorated tile set au

To enforce τ -tilings to be τ -macro-tilings: decorations specify tile neighbors within macro-tiles and mark macro-facets.

3. Main result 18/22

A self-simulating decorated tile set au

This yields so-called macro-indices on tile facets.

3. Main result 18/22

The macro-indices of facets of a τ -tile must then be encoded on the corresponding macro-facets of its simulating τ -macro-tile.

This yields so-called neighbor-indices on tile facets.

We force these neighbor-indices to come from the same tile T_i , called parent-tile, by carrying its index i between macro-facets, where it is converted into the suitable neighbor-index.

Such tile indices are encoded on facets by so-called parent-index.

This yields, once again, a new index on each tile facets...

But the trick is that the neighbor-indices and parent-indices of facets of a τ -tile can be encoded on the corresponding big enough macro-facets of the equivalent τ -macro-tile without any new index!

In big enough macro-tiles, we can then carry these pairs of neighbor/parent indices up to a central tile along a star-like network.

On internal facets not crossed by this network, we <u>copy</u> the <u>macro-index</u> on the <u>neighbor-index</u> (this redundancy is later used).

The pairs on a <u>central</u> τ -tile can be those of any <u>non-central</u> τ -tile (from which the central τ -tile is said to derive).

The τ -macro-tile with parent-index i is combinatorially equivalent to T_i endowed with the pairs of the central τ -tile. But is it a τ -tile?

If T_i is a central tile, then its pairs can be derived from any non-central τ -tile (as for any central tile)...

... in particular from the non-central τ -tile from which are also derived the pairs of the central τ -tile of our τ -macro-tile.

In this case, the equivalent decorated T_i is a derived central τ -tile.

Otherwise, consider the non-central τ -tile from which derives our central τ -tile; at least one facet is internal and not crossed by a network: its neighbor and macro indices are equal (by redundancy).

Thus, by copying the neighbor and parent indices (derivation)...

... one copies a macro-index on our central τ -tile, and thus on the whole corresponding network branch.

A tile on this k-th branch which also knows the parent-index i can then force this macro-index to be the one on the k-th facet of a decorated T_i (recall that all the decorated T_i have the same one).

In this case, the equivalent decorated T_i is the non-central τ -tile from which derives the central τ -tile of our τ -macro-tile.

- 1. The classical recipe
- 2. Combinatorial substitutions
- 3. Main result

4. Conclusion & Open Pb

Theorem[FO 2010] The **limit set** of a **good** combinatorial substitution is **sofic**.

Remark No need to care about geometry.

But, what is a good combinatorial substitution?

Definition A **good** combinatorial substitution is both **connecting** and **consistent**.

Intuitively A substitution is **connecting** if there is enough space inside macro-tiles to wire the networks.

Definition A combinatorial substitution is **consistent** if any tiling by macro-tiles admits a preimage under the substitution.

Remark This is where the **geometrical** consistency hides.

Open Pb Characterize consistent combinatorial substitutions.

Conclusion and open problem

The **global** hierarchical structure associated to a substitution system can be enforced by **local** matching rules.

Open Pb Is it possible to describe the **geometry** of tiles by finite local **combinatorial** constraints?

