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Substitutions
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Rewriting rules that can be iterated to generate tilings with a
hierarchical global structure.
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Tilings

Local constraints that propagate to enforce some global
structure.

_,
.

(Ammann, Griinbaum, Shephard, 1992)
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Goal

Proposition Tilings generated by any fair substitution can
be enforced by finitely many local constraints.

Remark The result is constructive: given a substitution,
derive the set of local constraints.

This is well-known old technology!

Remark substitutions are at the heart of most classical
constructions of aperiodic sets of tiles.

We just extend (maybe simplify?) previous similar results.
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Mozes 1990

Theorem[Mozes 1990] The limit set of a non-deterministic
rectangular substitution (+ some hypothesis) is sofic.
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Goodman-Strauss 1998

Theorem[Goodman-Strauss 1998] The limit set of
homothetic substitution (+ some hypothesis) is sofic.

5/22



1. The classical recipe

2. Combinatorial substitutions

3. Main result

4. Conclusion & Open Pb




Wang tiles E
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A tile set T < =% is a finite set of tiles with colored edges.

The set of T-tilings X+ < TZ is the set of colorings of 72 by
T where colors match along edges.
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Two-by-two substitutions E
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A 2x2 substitution s : X — X® maps letters to squares of
letters on the same finite alphabet.

e

The substitution is extended as a global map S : 3Z° — 52°
on colorings of the plane:
VzeZ7?, Vkem, S(c)(2z+k)=s(c(z))(k)
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Limit set and history E
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The limit set As < 57 is the maximal attractor of S:

As= N (s'(2)),

teN

X,y EZ?

The limit set is the set of colorings admitting an history
(¢i)ien Where c; = s(Ci+1).

Idea To encode A; via local matching rules decorate s into
a locally checkable s* embedding a whole history.
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Self-simulation ot

A tile set T simulates a tile set T’ with an encoding
f 1" — " if tilings by T decompose via f in tilings by T’.

.

Tilings of a self-simulating tile set T with encoding s are (a
subset of) the limit set of s.

O, p) |

Idea To encode A; via local matching rules find fixpoints
of decorated simulation schemes.
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Tiles and tilings @
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Tile polytope of R% with finitely many (numbered) facets.
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Tiles and tilings @

Tiles are here considered up to translations and rotations.
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Tiles and tilings
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Tiling covering of R4 by facet-to-facet tiles.
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Decorations E@

L &
v <%

Decoration maps each point of tile boundaries to a color.
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Decorations ki
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matching if decorations are equal over common facets.
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Decorations E@
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Decorated tiling tiling by matching decorated tiles.
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Sofic tilings @

Decorated tile set T ~ set X; of decorated tilings.

Let 1T be the map which removes tile decorations.

Definition A set of tilings is sofic if it can be written as
1 (X+), where T is a finite decorated tile set.
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Sofic tilings @

Decorated tile set T ~ set X; of decorated tilings.

Let 7t be the map which removes tile decorations.

Definition A set of tilings is sofic if it can be written as
1 (X+), where T is a finite decorated tile set.

What (interesting) properties on tilings can (or cannot) be
enforced by soficity?
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Macro-tiles and macro-tilings @

Macro-tile finite partial tiling with (numbered) macro-facets.
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Macro-tiles and macro-tilings
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Combinatorial substitution @

Definition A combinatorial substitution is a finite set of
pairs (tile, macro-tile).

Let o = {(P;,Q;)}; be a combinatorial substitution.

Image under o of a tiling by the P;’s: macro-tiling by the
Q;’s with the same combinatorial structure.

Definition The limit set of a combinatorial substitution o is
the set of tilings which admit an infinite sequence of
preimages under o.

2. Combinatorial substitutions 15/22



Example @
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Rauzy combinatorial substitution
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Example @
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Tiles match in a tiling as macro-tiles in its image. ..
...and conversely.
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Example @
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Tiles match in a tiling as macro-tiles in its image. ..
...and conversely.
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Example @
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Tiles match in a tiling as macro-tiles in its image. ..
...and conversely.
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Example @
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Tiles match in a tiling as macro-tiles in its image. ..
...and conversely.
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Example @
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Any tiling decomposes into macro-tiles.
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Self-simulation

Definition A decorated tile set T self-simulates if it admits
tilings and there are T-macro-tiles s.t.

1. any T-tiling is also a macro-tiling by these T-macro-tiles;
2. each T-macro-tile is combinatorially equivalent to a
T-tile.

Proposition If T self-simulates, then m(X~) is a subset of
the limit set of the combinatorial substitution with pairs
T-macro-tile/equivalent t-tile.
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A self-simulating decorated tile set T

i

Fix a set of macro-tiles and let Ty,..., T), be all their tiles.
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A self-simulating decorated tile set T

To enforce T-tilings to be T-macro-tilings: decorations
specify tile neighbors within macro-tiles and mark
macro-facets.
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A self-simulating decorated tile set T
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This yields so-called macro-indices on tile facets.
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A self-simulating decorated tile set T

47

The macro-indices of facets of a T-tile must then be encoded
on the corresponding macro-facets of its simulating
T-macro-tile.
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A self-simulating decorated tile set T

e

This yields so-called neighbor-indices on tile facets.
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A self-simulating decorated tile set T

We force these neighbor-indices to come from the same tile
Tj, called parent-tile, by carrying its index i between
macro-facets, where it is converted into the suitable
neighbor-index.
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A self-simulating decorated tile set T

Such tile indices are encoded on facets by so-called
parent-index.
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A self-simulating decorated tile set T

This yields, once again, a new index on each tile facets. ..
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A self-simulating decorated tile set T

But the trick is that the neighbor-indices and parent-indices
of facets of a T-tile can be encoded on the corresponding
big enough macro-facets of the equivalent T-macro-tile
without any new index!

3. Main result
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A self-simulating decorated tile set T

In big enough macro-tiles, we can then carry these pairs of
neighbor/parent indices up to a central tile along a star-like
network.
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A self-simulating decorated tile set T

On internal facets not crossed by this network, we copy the
macro-index on the neighbor-index (this redundancy is later
used).
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A self-simulating decorated tile set T

The pairs on a central T-tile can be those of any non-central
T-tile (from which the central T-tile is said to derive).
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A self-simulating decorated tile set T

The T-macro-tile with parent-index i is combinatorially
equivalent to T; endowed with the pairs of the central T-tile.
But is it a T-tile?
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A self-simulating decorated tile set T

If T; is a central tile, then its pairs can be derived from any
non-central T-tile (as for any central tile). ..
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A self-simulating decorated tile set T

...in particular from the non-central T-tile from which are
also derived the pairs of the central T-tile of our T-macro-tile.

. Main result 18/22



A self-simulating decorated tile set T

In this case, the equivalent decorated T; is a derived central
T-tile.
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A self-simulating decorated tile set T

Otherwise, consider the non-central T-tile from which derives
our central T-tile; at least one facet is internal and not
crossed by a network: its neighbor and macro indices are
equal (by redundancy).
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A self-simulating decorated tile set T

Thus, by copying the neighbor and parent indices
(derivation). ..

n result 18/22



A self-simulating decorated tile set T

ST

...one copies a macro-index on our central T-tile, and thus
on the whole corresponding network branch.
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A self-simulating decorated tile set T

A tile on this k-th branch which also knows the parent-index
i can then force this macro-index to be the one on the k-th
facet of a decorated T; (recall that all the decorated T; have

the same one).
3. Main result 18/22



A self-simulating decorated tile set T

In this case, the equivalent decorated T; is the non-central
T-tile from which derives the central T-tile of our
T-macro-tile.

3. Main result 18/22
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Main result 797

Theorem[FO 2010] The limit set of a good combinatorial
substitution is sofic.

Remark No need to care about geometry.
But, what is a good combinatorial substitution?

Definition A good combinatorial substitution is both
connecting and consistent.
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Connecting
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A substitution is connecting if there is enough

space inside macro-tiles to wire the networks.

Intuitively
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- ?
Consistent {7?
Definition A combinatorial @iﬁ
substitution is consistent if any
tiling by macro-tiles admits a ﬁ
preimage under the substitution. X

Remark This is where the
geometrical consistency hides. g

Open Pb Characterize consistent
combinatorial substitutions.
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Conclusion and open problem 727

The global hierarchical structure associated to a substitution
system can be enforced by local matching rules.

Open Pb Is it possible to describe the geometry of tiles by
finite local combinatorial constraints?
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