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From Mealy to OCA

Reset Mealy automata OCA
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Proposition

The group generated by the reset automaton (X, X, p, Id) is finite

if and only if the OCA (X, f : (b,a) — pa(b)) is periodic.

> In the general case of CA, the periodicity problem is
undecidable (Kari-Ollinger[2008]), the proof uses an encoding
of some class of Turing machines and cannot be adapted to
OCA.

> In our case, Boyle and Maass [2000] have given a decidable
characterization of a subclass of the periodic ones (when every
two-letter word is a wall). But the general question is still
open.




Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X — X is a continuous map.
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Definition The orbit of x € X is the sequence (F"(x))
obtained by iterating F.

In this talk, X = S is endowed with the Cantor topology
(product of the discrete topology on S), and F is a
continuous map invariant by translation.
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Cantor topology

Definition The Cantor topology on SZ is the product
topology over Z of the discrete topology on S.

Remark The Cantor topology is metric and compact.

ve,o e S d(e.c) = 2~ min{lpl[eprcp}

-6 0 3 4 6
d(c,c’)=1/8

Definition A subshift is a non-empty set both topologically
closed and closed by translation.
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The nilpotency problem (Nil)

Definition A DDS is nilpotent if
dJze X,VxeX,dne N, F'(x) = z.

Given a recursive encoding of the
DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if
Jze X,dne N, Vx € X, F''(x) = z.

Given a recursive encoding of the
DDS, can we bound recursively n?
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The periodicity problem (Per)

Definition A DDS is periodic if
Vx e X,dn e N, F'(x) = x.

Given a recursive encoding of the
DDS, can we decide periodicity?

A DDS is uniformly periodic if
IneN, Vx € X, F'(x) = x.

Given a recursive encoding of the
DDS, can we bound recursively n?
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Cellular automata

Definition A CA is a triple (S,7, f) where S is a finite set of
states, ¥ € N is the radius and f : $2r+l g js the local
rule of the cellular automaton.

A configuration ¢ € SZ is a coloring of Z by S.

il Ul SN BN =i

The global map F: S — S applies f uniformly and locally:
Vce St vzez, F(c)(z) = f(c(z=7),...,c(z+71)).

A space-time diagram A € SN*Z satisfies, for all t € Z*+,
A(t+1) = F(A(t)).
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Space-time diagram

'''''''''''''''''''''''' = _:I,"I.:- .

§=1{0,1,2},v =1, f(x,y,2) = [6450288690466/3%¥*3¥+2| (mod 3)
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Theorem There exists Turing-universal CA.
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Turing un

d la Cook (rule 110)
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Curtis-Hedlund-Lyndon’s theorem

[m]={c€SZ‘Vp€Z,

pl<r=c(p) =m(p)}

Ly ]

-7 v

Remark The clopen sets are finite unions of cylinders.
Therefore in this topology continuity means locality.

Theorem [Hedlund69] Cellular automata coincide with
continuous maps invariant by translation.

1. Cellular Automata
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Undecidability results

Theorem Both Nil and Per are recursively undecidable.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

Remark Due to universe configurations both nilpotency
and periodicity are uniform.

The bounds grow faster than any recursive function: there
exists simple nilpotent or periodic CA with huge bounds.

1. Cellular Automata
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The Domino Problem (DP)

“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

2 [ c I |
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Undecidability of DP

Theorem[Berger64] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar
structure using local rules.

Insert a Turing machine
computation everywhere using the

structure.

Remark Plenty of different proofs!

2. Nilpotency and tilings
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“(...) In 1966 R. Berger discovered the first aperiodic tile
set. It contains 20,426 Wang tiles, (...)

Berger himself managed to reduce the number of tiles to
104 and he described these in his thesis, though they
were omitted from the published version (Berger [1966]).
(..) [G¥Sh, p.584]
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APPENDIX I

A SIMPLER SOLVABLE DOMINO SET WITH NO TORUS

The skeleton set, K, analyzed in PART 3, is a solvable domino set
with no torus. Since it is designed to serve also as a base set for model-
ing of Turing machines, it is not surprising that simpler solvable, torus-
less domino sets exist. One such set, call it Q, is specified by Tables
9-12. The first three tables show the base, skeleton, and parity proto-
types of Q. Although these tables show symbols in the center of domino
edges, the base, skeleton, and parity channels should be thought of as
distinct. Table 12 serves the same function for Q as did Table 4 for K,
namely that of specifying which products of prototypes are permitted.
However, since Q is a fairly small set, it is not too cumbersome to
enumerate only those dominoes which are actually used in solutions of Q,
104 in all. (No concerted attempt has been made to find the smallest
solvable torus-less domino set.)

Figure 24 shows, separately, skeleton signals and parity signals in
the same portion of a solution of Q. If Figure 24 is rotated one-eighth
turn clockwise, its skeleton signals bear a strong resemblance to the
CD-signals of K.

A person who understands the skeleton set should have no trouble
convincing himself of the likelihood that all solutions of Q look line exten~

sions of Figure 24. The following hints will help.
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Nilpotency and limit set

Definition The limit set of a CA F is the non-empty subshift

A= ) F" (s7)

neN

Remark Ar is the set of configurations appearing in
biinfinite space-time diagrams A € SZ%Z such that
VteZ At +1) = F(A(t)).

Lemma A CA is nilpotent iff its limit set is a singleton.

2. Nilpotency and tilings 13/44



Reduction

A state L € S is spreading if f(N) = L when L € N.

A CA with a spreading state L is not nilpotent iff it admits a
biinfinite space-time diagram without 1.

A tiling problem Find a coloring A € (S {J_})Zz satisfying
the tiling constraints given by f.

Theorem[Kari92] NW-DP <, Nil

2. Nilpotency and tilings 14/44



Revisiting DP

Theorem[Kari92] NW-DP is recursively undecidable.

Remark Reprove of undecidability of DP with the
additionnal determinism constraint!

Corollary Nil is recursively undecidable.

2. Nilpotency and tilings 15/44
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The Immortality Problem (IP)

“(T») To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes 1
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Btichi, 1962)

Definition A TM is a triple (S, >, T) with S the set of states,
3. the alphabet and T a set of instructions of two kinds:

(s,0,t) : “in state s move in direction 6 and enter state t.”
(s,a,t,b) : “in state s, reading letter a, write letter b and enter statet.”

A configuration ¢ € S x 2% is a pair (s,c) where s is the
state and the head points at position 0 of the tape c.

For deterministic TM, the global map G: S x 3% — § x 32
which applies instructions is a partial continuous map.

3. Periodicity and mortality 16/44



Undecidability of IP

Definition A TM is mortal if all configurations are ultimately
halting.

Theorem[Hooper66] IP is recursively undecidable.

Remark To prove it one needs aperiodic TM.

Idea of the proof

Simulate 2-counters machines d la Minsky (s,@1"x2"y)

Replace unbounded searches by recursive calls to initial
segments of the simulation.

3. Periodicity and mortality 17/44



Periodicity and reversibility

Definition A CA F is reversible if there exists a CA G such
that G = F1.

Theorem A CA is reversible iff it is bijective.

Remark Periodicity implies reversibility.

Definition ATM (S,X, T) is reversible if (S,3, T71) is
deterministic, where

(s,6,t)7! (t,5,5)
(S)alt)b)_l = (tlb!S!a’)

3. Periodicity and mortality 18/44



Reduction

Theorem[KO2008] R-IP <;, TM-Per <,, Per

Idea for TM-Per <,, Per

Let M = (S,X%,T) be a complete RTM

Let (57,2, f) be the RCA with set of states

SX (§X{+,-}U{—,—1}) simulating M on + and M~ on —.
In case of local inconsistency, invert polarity.

The RCA is periodic iff M is periodic.

3. Periodicity and mortality 19/44



Revisiting IP

Theorem[KO2008] R-IP is recursively undecidable.

Remark Reprove of undecidability of IP with the additionnal
reversibility constraint!

Corollary TM-Per and Per are recursively undecidable.

3. Periodicity and mortality 20/44



Immortality: a first attempt

“(T>) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I1” (Btichi, 1962)

3. Periodicity and mortality 21/44
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Immortality: a first attempt

“(T>) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape 1” (Btichi, 1962)

[Hooper66] IP is undecidable for DTM.
Idea TM with recursive calls! (we will discuss this) o

[Lecerf63] Every DTM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. O

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.

3. Periodicity and mortality 21/44



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

3. Periodicity and mortality 22/44



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111111111111x2222y search x —
S
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111111111111x2222y bounded search 2
S2
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111111111111x2222y bounded search 3
S3
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

0@sxy1111111111x2222y recursive call
So
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

00@s11111x22222yx2222y ultimately in case of collision...
Sc
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

0@sxy1111111111x2222y ...revert to clean
Sb

3. Periodicity and mortality 22/44



Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111111111111x2222y pop and continue bounded search 1
S1
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@1111111111111x2222y bounded search 2
S2
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111111]1111111x2222y bounded search 3
S3
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@sxy1111111x2222y recursive call
So
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM (s,@1"x2"y)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

@111@sxy1111111x2222y recursive call
So

The RTM is immortal iff the 2-RCM is mortal on (sg, (0,0)).

3. Periodicity and mortality 22/44



Programming tips and tricks (1/2)

We designed a TM programming language called Gnirut:
http://github.com/nopid/gnirut

First ingredient use macros to avoid repetitions:

[ P Lab/&ckd( N e |
Ky t

12 bla 2[1
[s|search|a) (d|search|t]
def [s|search|t) : 6 [s|search|a)
S.XEX, U 7 a. —,b
u. —,r g8 b.arb,clbra,c

r.1=2,u|lx+Fx,t 9 ¢c. —,d
o (d|search]|t]

uoa woN =
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http://github.com/nopid/gnirut

Programming tips and tricks (2/2)

Second ingredient use recursive calls:

0l1
. #\@25[ . ./\. — It@z‘# .
11l ’10
- 3°
1@, . @11
[slincr|t)
1 fun [s|incr|t) : g call [alincr|b) from # < call 2
2 S. —,r
3 r.0O-1Lb|1l+1,c
4 call [clincr|d) from 1 < call 1
5 d1l+0,b
6 b. —,t
7
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Immortality: skeleton

[slcheck; [t) satisfies s. @u1™x - @x1™Xx,t or s. @,1® 1t or halt.
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Immortality: skeleton

[slcheck; [t) satisfies s. @u1™x - @x1™Xx,t or s. @,1® 1t or halt.

[s|search; |tg, t1, to) satisfies s. @u1™X +— @y1™X, tinf31 OF
S [3]
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Immortality: skeleton

[slcheck; [t) satisfies s. @u1™x - @x1™Xx,t or s. @,1® 1t or halt.

[s|searchy|to, t1,t2) satisfies s.@y1™x = @u1™X, tyu3;  OF
RCM ingredients:
testing counters [s|testl]|z p) and [s]|test2 |z, p)
increment counter [slincl|t, co) and [s]inc2|t, co)
decrement counter [s|decl|t, co) and [s|dec2|t, co)
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Immortality: skeleton

[slcheck; [t) satisfies s. @u1™x - @x1™Xx,t or s. @,1® 1t or halt.
[s|searchy|to, t1,t2) satisfies s.@y1™x = @u1™X, tyu3;  OF

RCM ingredients:

testing counters [s|testl]|z p) and [s]|test2 |z, p)
increment counter [slincl|t, co) and [s]inc2|t, co)
decrement counter [s|decl|t, co) and [s|dec2|t, co)

Simulator [ s|[RCM|co1, coz,...) initialize then compute
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Immortality: skeleton

[slcheck; [t) satisfies s. @u1™x - @x1™Xx,t or s. @,1® 1t or halt.
[s|searchy|to, t1,t2) satisfies s.@y1™x = @u1™X, tyu3;  OF

RCM ingredients:

testing counters [s|testl]|z p) and [s]|test2 |z, p)
increment counter [slincl|t, co) and [s]inc2|t, co)
decrement counter [s|decl|t, co) and [s|dec2|t, co)

Simulator [ s|[RCM|co1, coz,...) initialize then compute

|[s|checka|t) = [s|[RCMy]|coq, coy,...) + (col,coz,...IRCMals]l
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Program it!

a
s

[slsearch, |to, t, t2) :
LGy Gy,

<

Xt

1x, 6

X+ 11tz
1-111c

call [c|checki | p) from 1
9 p1l1+111/

==
121 I
BERe

11 def [s|search;|ty, ty, t2) :
12 sxExl

B L—u
oouwyFyt

5|2yt
6o |22y 22yt
7222+ 222,¢

18 call [c|check; |p) from 2
1w p.222+ 222,

21 def [s|testl|z,p):
2 5 Qux - Qax,z
2 | @l Gul,p

25 def [s|endtest2|z,p) :
% sxXy XY,z
27 |x2+x2,p

29 def [s|test2|zp):

30 [slsearchy|to, t1, t2)
31 [to]endtest2| zg, py)
32 [t1 |endtest2|zy, p,)
33 [t |endtest2 |z, p,)
34 (z0,21,22]search; |z]
35 (po,p1, pa|searchy | p]

37 def [s|mark,|t, co) :

38 s.yle2y,t
39 | yx - yx, co

3. Periodicity and mortality

def [slendinc|t, co) :
[s|searchy|ro, r1, r2)
[rolmark [to, cop)
[r1Imark; [}, coy)
[rz2|mark, |t2, co2)
(2, to, ti | searchy | t]
{coy, coy, coz|search; | co]

def [s]inc2; |t, co) :
[s|searchy | ro, r1, r2)
[rolendinc, |to, cop)
[r1lendinc, [t1, cor)
[r2|endinc, |t,, coz)
(to, t1, tz|searchy [ ]
(coy, coy, co |search, | o]

def [sldec2,|t) :
(s, colinc2, |t]

def [s/marks|t, co) :
s.y2+2y.t
| yx = yx,co

def [slendinc|t, co) :
[slsearchy|ro, r1, r2)
[rolmark; |to, cop)
[r1|marks|t;, cor)
[r2|marks|t2, cos)
(t2, to, t1|searchy[t]
{coy, coy, coz|search; | co]

def [slinc2;|t, co) :
[slsearchy [ro, r1, r2)
[rolendinc: | to, cop)
[r1lendinc, |, coy)
[r2lendinc, |ts, cos)
(to, ty, ta|search, |t]
{coy, cor, coz|search; | co]

def [sldec2;|t) :
(s, colinc2; [t]

83 def [s|pushine, | t,co) :

s |xylr Ixy,pt
s | xyx - 1yx, pco
& [c|ending | pt0, peo0)

88 pt0. —,t0

s 0.2+ 2,pt

o pt—,t

91 pco0.x - 2, pco

92 pco. —,zco
93 zco. 1+ x,co

95 def [slincl;|t,co) :

96 [slsearchy|ro, r1,72)
a7 [ro|pushing, | to, coo)
98 [ri|pushinc, |1, cor)
s [r2|pushing | t2, cos)
100 (ta, to, ty|searchy |t]

101 (oo, oy, coy|search; |co]
102
103 def [s|decly|t):

j0a (s, colincl,|t]
105

106 def [s|pushinc, |t, co) :
07 sx2-1xc

108 |xy2 - 1xy, pt

109 | xyy - lyy, pco

10 [c|endinc; | pt0, pco0)

W pto. —,t0
Nz 0.2+ 2,pt
n3 pt. —,t

N4 pco0. x - 2,pco

ns  peo. -, zco

N6 zco. 1k x,co

n7

18 def [slincly|t, co) :

ne  [slsearch, |ro, r1, r2)
120 [ro | pushinc, | to, cop)
121 [r1|pushinc, | t1, co )
122 [r2|pushine, | t2, co»)
123 (t2, to, t1]search, |t]
124 {coy,coy, coy|search |co]

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152

153
154
155
156
157
158
159
160
161

def [s|decl|t) :
(s, colincly|t]

def [slinit;[r) :

def [s|RCM;|coy, coz) =
[slinit; [ so)
[soltestl|siz, n)
[s1]incl; sz, cor)
[s2linc2y |53, coz)
[ss[testi] m,51,)
(5120519 [testl ] s1]

def [slinitz|r) :
s—u
u.22 - xy,e
e, r

def [s|RCMz|coy, coz) :
[slinitz]so)
[soltestl|s;z, n)
[s1linclz|sz, cor)
[s2]inc2; |s3, co)
[ss[testi] n',51,)

(512519 | testl | ]

fun [s|check,|t) :
[SIRCM; |coy, coa, ..}
(co, coz,...[RCM; |t]

fun [slchecky|t) :
[sIRCMz|coy, coa, ...}
(co1, oz,...[RCM, 1]
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Going further

What is the equivalent of an aperiodic tileset for RTM?

Open Problems with conjectures

Periodicity and Immortality in Reversible Computing

Conjecture 1 It is undecidable whether a given complete 2-RCM
admits a periodic configuration. (proven if you remove complete or
replace 2 by 3)

Conjecture 2 There exists a complete RTM without a periodic con-
figuration. (known for DTM [BCNOZ2))

Conjecture 3 It is undecidable whether a given complete RTM admits
a periodic configuration. (known for DTM [BCN02])

J. Kar and N. Ollinger. Periodicity and Immortalty in Reversible G
MF

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is >;-complete.
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4. Dynamics of Turing machines



Turing machines (quintuples)

We go back to more classical TM.

Definition A Turing machine is a triple (Q, 3, ) where Q is
the finite set of states, X is the finite set of tape symbols and
0:Q XX - QxXx{«,»}is the transition function.

Transition 6(s,a) = (t,b,d) means:

“in state s, when reading the symbol a on the tape,

replace it by b move the head in direction d and enter state t.”
Remark We do not care about blank symbol or initial and

final states, we see Turing machines as dynamical systems.
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Reversible Turing machines

Intuitively, a TM is reversible if there exists another TM to
compute backwards: “T> = Tfl". Forget technical details. ..

Definition A TM is reversible if 6 can be decomposed as:

o(s,a) (t,b,p(t))  where (t,b) = 0(s,a)
p o Q- {«4»}
(02 E GQXZ

Remark 67 1(t,b) = (s,a, ¢(p(s)))
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Moving head vs moving tape dynamics

TMH

- -000000b000000000- - -
- -0000001d00000000- - -
- - 000000b110000000- - -
--0000001p10000000- - -
- -00000010d0000000- - -
- -0000001b01000000- - -
--00000011d1000000- - -
- -0000001gq11000000- - -
- - 000000b101000000- - -

-0000001p01000000- - -

Xp c (Qu)?
T, : Xp-—-Xp

4. Dynamics of Turing machines

TMT
Xy = YIxQxzx®

Tt 5 Xt d Xt

- -0000000b00000000- - -
- -0000001d00000000- - -
- - 0000000b11000000- - -
- -0000001p10000000- - -
--0000010d00000000- - -
- -0000001b01000000- - -
--0000011d10000000- - -
- -0000001gq11000000- - -
- -0000000b10100000- - -

-0000001p01000000- - -
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Trace-shift dynamics

ST T™T

St (Qx2)® Xy = ®PIxQxI®

o:5t - St Ie @ Xp— Xy

b0
do
0011001110 bl
bdbpdbdgbp " pl
do
b0
di
ql
bl
pO

The column shift of TMT
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Searching for a reduction

We want to prove the following:

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is >;-complete.

In the partial case we use the following tool:

Prop[KOO08] To find if a given (aperiodic) RTM can reach a
given state t from a given state s is 3;-complete.
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The partial case

Principle of the reduction Associate to an (aperiodic) RTM
M with given s and t a new machine with a periodic orbit if

and only if t is reachable from s.

©®|

We need to find a way to complete the constructed machine.

We will embed it into a complete aperiodic RTM.

4. Dynamics of Turing machines
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The SMART machine ¢

Conj[Kiurka97] Every complete TM has a periodic point.
Thm[BCNO2] No, here is an aperiodic complete TM.

Rk It relies on the bounded search technique [Hooper66].

In 2008, | asked J. Cassaigne if he had a reversible version of

the BCN construction. ..

... he answered with a small machine ¢ which is a reversible
and (drastic) simplification of the BCN machine.
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The SMART machine ¢

A 4-state 3-symbols TM with nice properties:
complete no halting configuration
reversible reversed by a TM. ..
time-symetric ...essentially itself (up to details)
aperiodic no time periodic orbit
substitutive substitution-generated trace-shift language

TMT-minimal every orbit is dense with moving tape

How does it work?

5. a SMART machine 37/44



Olm»

—\ /-)
0[0 » C@L@D 0]0 «




0\0»( )0\04
*\*»

I\OA 0\l<



0\0»( ‘Hib )
(-/
—
N—
0|0 «

[
|0
A
0
m
<
























Recursive behavior

PING, (n):

for i=1 to n:
d. 0|1, b «
PING((i—1)

d. x|x, q «

for i=n downto 1:
g. 0|12, b «
PING((i—1)

q. 10, x(y) T(y)

f(0)
f(n+1)

5. a SMART machine

PING ((1n):

for i=1 to n:
b. 0[1,d »
PING, (i — 1)

b. x|x, p »

for i=n downto 1:
p. 0|12, d »
PING, (i — 1)

p. ¥10, &' () T' ()

=2
=3f(n)
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Substitutive trace subshift

5. a SMART machine

0011
bdbp

0021
pdbp

0x2Xx
pdqgp

0011
dbdq

0021
qbdq

O0x2x
qbpq
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SMART is transitive in TMH, TMT and ST

Proposition (“’2 -2 2% ) is a transitive point.

Proof

(Forward) For all k = 0:

(wz.zzw ) ¥ (wzzok.ookz‘“)
p a

(Backward) For every partial configuration (% 5 Y ), there
existw,w’ € {0,1,2}* and k > 0 big enough such that

<w220k.00’<2w> -k (wzwu : vw'2“’)
a o=
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Typical use

Combining the SMART machine with a generic Embedding
technique provides new undecidability results.

Theorem Transitivity is H(l)-hard in TMH, TMT and ST.

Theorem Minimality is ={-hard in TMT and ST.
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