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Turing machines

The classical Turing machine: finitely many states, a
(bi-)infinite tape, a mobile i/o head pointing on a cell

(optionally: blank symbol, starting and halting states).

Halting Problem[Σ0
1-comp.] Given a TM and a finite starting

configuration, decide if a halting state is eventually reached.
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Reachability and similar questions

Reachability Problem[Σ0
1-comp.] Given a TM and two states

s and t, decide if state t is reachable from state s.

Totality Problem[Π0
2-comp.] Given a TM, decide if it

eventually halts starting from any finite configuration.

Mortality Problem[Σ0
1-comp.] Given a TM, decide if it

eventually halts starting from any configuration.

Periodicity Problem[Σ0
1-comp.] Given a TM, decide if every

configuration eventually loops by reaching itself again.
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The Transitivity Problem

Transitivity Problem[Π0
1-hard] Given a TM, decide if every

partial configuration is reachable from every partial
configuration (completed into a proper configuration).

A partial configuration specifies only a finite segment of the
tape plus the state and head position.

???????ab.bab
q
aa???????

Question How do we prove the undecidability of the
Transitivity Problem?

Question . . . and first, how do you build a transitive TM?
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Turing machines

A Turing machine is a triple (Q,Σ, δ) where Q is the finite
set of states, Σ is the finite set of tape symbols and
δ : Q×Σ→ Q×Σ×{−1,0,1} is the partial transition function.

A transition δ(s, a) = (t, b, d) means:

“in state s, when reading the symbol a on the tape,
replace it by b move the head in direction d and enter state t.”

Configurations are triples (s, c, p) ∈ Q× ΣZ × Z.

A transition transforms (s, c, p) into (t, c′, p + d) where
δ(s, c(p)) = (t, b, d) and c′ = c everywhere but c′(p) = b.

Notation (s, c, p) ` (t, c′, p + d) and closures `+ and `∗
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Definitions

A configuration (s, c, p) is:

- halting if δ(s, c(p)) is undefined, (s, c(p)) is a halting pair

- periodic if (s, c, p) `+ (s, c, p)

A TM (Q,Σ, δ) is:

- complete if δ is complete

- aperiodic if it has no periodic configuration

- surjective if every configuration has a preimage

- injective if every configuration has at most one preimage

For complete machines surjective is equivalent to injective.
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Reversibility

Injective TM are in fact reversible TM.

Definition A reversible TM M = (Q,Σ, δ) is characterized by
a partial injective map ρ and a map µ such that
δ(s, a) = (t, b, µ(t)) where ρ(s, a) = (t, b).

The reverse of M is M−1 where δ−1(t, b) = (s, a,−µ(s)).

(s, c, p) `M (t, c′, p + µ(t)) =⇒ (t, c′, p) `M−1 (s, c, p − µ(s))

A starting pair is a halting pair of the reverse.

A starting configuration is a halting config of the reverse.
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Naive dynamics

A topological dynamical system is a pair (X, T) where the
topological space X is the phase space and the continuous
function T : X → X is the global transition function.

The orbit of x ∈ X is O(x) = (Tn(x))n∈N.

Using the product topology one obtains a topological
dynamical system (X, T) for a TM where the phase space is
X = Q× ΣZ × Z and the transition function T is continuous.

Unfortunately, X is not compact, we follow Kůrka’s
alternative compact dynamical models TMH and TMT.
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Moving head vs moving tape dynamics

TMH

Xh ⊂ (Q∪ Σ)Z
Th : Xh → Xh

· · ·000000b000000000· · ·
· · ·0000001d00000000· · ·
· · ·000000b110000000· · ·
· · ·0000001p10000000· · ·
· · ·00000010d0000000· · ·
· · ·0000001b01000000· · ·
· · ·00000011d1000000· · ·
· · ·0000001q11000000· · ·
· · ·000000b101000000· · ·
· · ·0000001p01000000· · ·

...

TMT

Xt = ωΣ×Q× Σω
Tt : Xt → Xt

· · ·0000000b00000000· · ·
· · ·0000001d00000000· · ·
· · ·0000000b11000000· · ·
· · ·0000001p10000000· · ·
· · ·0000010d00000000· · ·
· · ·0000001b01000000· · ·
· · ·0000011d10000000· · ·
· · ·0000001q11000000· · ·
· · ·0000000b10100000· · ·
· · ·0000001p01000000· · ·

...
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Trace-shift dynamics

ST

ST ⊆ (Q× Σ)ω

σ : ST → ST

The column shift of TMT

0
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TMT

Xt = ωΣ×Q× Σω
Tt : Xt → Xt

· · ·0000000b00000000· · ·
· · ·0000001d00000000· · ·
· · ·0000000b11000000· · ·
· · ·0000001p10000000· · ·
· · ·0000010d00000000· · ·
· · ·0000001b01000000· · ·
· · ·0000011d10000000· · ·
· · ·0000001q11000000· · ·
· · ·0000000b10100000· · ·
· · ·0000001p01000000· · ·

...
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Topological transitivity

Definition A dynamical system (X, T) is transitive is it
admits a transitive point x such that O(x) = X.

Proposition (X, T) is transitive iff for every pair of open
sets U,V ⊆ X, there exists t such that T t(U)∩ V ≠∅.

TMH ∀u,v,u′,v′ ∃w,z,w′,z′,n Tnh (wu.vz) = w′u′.v′z′
TMT ∀u,v,α,u′,v′,β ∃w,z,w′,z′,n Tnt (wu,α,vz) = (w′u′, β, v′z′)
ST ∀u,v∈ST ∃w∈ST uwv ∈ ST

TMH transitive =⇒ TMT transitive =⇒ ST transitive.

TMH transitive implies complete, reversible and aperiodic
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Transitivities

Definition A point x ∈ X is periodic if it admits a period
p > 0 such that Tp(x) = x.

Proposition A TM with a periodic point is not ST transitive.

The single-state shift TM is TMT transitive but not TMH.
δ(q,x) = (q,x,ñ)

The single-state eraser TM is ST transitive but not TMT.
δ(q,x) = (q,0, ñ)

Question How do we construct a complete reversible
aperiodic TM?
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Cellular automata

Definition A CA is a triple (S, r , f ) where S is a finite set of
states, r ∈ N is the radius and f : S2r+1 → S is the local
rule of the cellular automaton.

A configuration c ∈ SZ is a coloring of Z by S.

The global map F : SZ → SZ applies f uniformly and locally:

∀c ∈ SZ,∀z ∈ Z, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SN×Z satisfies, for all t ∈ Z+,
∆(t + 1) = F(∆(t)).
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Space-time diagram

ti
m

e
g
o
es

u
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S = {0,1,2}, r = 1, f(x,y, z) = ⌊6450288690466/39x+3y+z⌋ (mod 3)
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The nilpotency problem (Nil)

Definition A DDS is nilpotent if
∃z ∈ X, ∀x ∈ X, ∃n ∈ N, Fn(x) = z.

Given a recursive encoding of the
DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if
∃z ∈ X, ∃n ∈ N, ∀x ∈ X, Fn(x) = z.

Given a recursive encoding of the
DDS, can we bound recursively n?
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The periodicity problem (Per)

Definition A DDS is periodic if
∀x ∈ X, ∃n ∈ N, Fn(x) = x.

Given a recursive encoding of the
DDS, can we decide periodicity?

A DDS is uniformly periodic if
∃n ∈ N, ∀x ∈ X, Fn(x) = x.

Given a recursive encoding of the
DDS, can we bound recursively n?

2. Cellular Automata 16/46



Undecidability results

Theorem Both Nil and Per are undecidable for CA.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

Remark Due to universe configurations both nilpotency
and periodicity are uniform.

The bounds grow faster than any recursive function: there
exists simple nilpotent or periodic CA with huge bounds.
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The Domino Problem (DP)
“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

a b c d
ab

a c

d

d
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Undecidability of DP

Theorem[Berger64] DP is undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar
structure using local rules.

Insert a Turing machine
computation everywhere using the
structure.

Remark Plenty of different proofs!
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“(. . . ) In 1966 R. Berger discovered the first aperiodic tile
set. It contains 20,426 Wang tiles, (. . . )
Berger himself managed to reduce the number of tiles
to 104 and he described these in his thesis, though they
were omitted from the published version (Berger [1966]).
(. . . )” [GrSh, p.584]





Reduction

A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .

≡

Theorem[Kari92] NW-DP àm Nil
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Revisiting DP

Theorem[Kari92] NW-DP is undecidable.

Remark Reprove of undecidability of DP with the
additionnal determinism constraint!

Corollary Nil is undecidable.

3. Nilpotency and tilings 22/46



4. Periodicity and mortality



The Immortality Problem (IP)

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

Definition A Turing machine is mortal if all configurations
are ultimately halting.
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Undecidability of IP

Theorem[Hooper66] IP is undecidable.

Remark To prove it one needs aperiodic TM.

Idea of the proof

Simulate 2-counters machines à la Minsky
(
s,@1mx2ny

)
Replace unbounded searches by recursive calls to initial
segments of the simulation.
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Reduction: revisiting IP

Theorem[KO2008] R-IP àm TM-Per àm Per

Theorem[KO2008] R-IP is undecidable.

Remark Reprove of undecidability of IP with the additionnal
reversibility constraint!
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Immortality: a first attempt

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

[Hooper66] IP is undecidable for TM.
Idea TM with recursive calls! (we will discuss this) ♦

[Lecerf63] Every TM is simulated by a RTM.
Idea Keep history on a stack encoded on the tape. ♦

Problem The simulation does not preserve immortality due
to unbounded searches. We need to rewrite Hooper’s proof
for reversible machines.
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Immortality: simulating RCM

Theorem 7 IP is undecidable for RTM.

Reduction reduce HP for 2-RCM
(
s,@1mx2ny

)

Problem unbounded searches produce immortality.
Idea by compacity, extract infinite failure sequence

Hooper’s trick use bounded searches with recursive calls
to initial segments of the simulation of increasing sizes:

The RTM is immortal iff the 2-RCM is mortal on (s0, (0,0)).
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(
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)
Problem unbounded searches produce immortality.
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@@s11111x22222y
sc
x2222y ultimately in case of collision...
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Program it!
1 def [s|search1|t0, t1, t2〉 :
2 s. @α ` @α, l
3 l.→,u
4 u. x ` x, t0

5 | 1x ` 1x, t1

6 | 11x ` 11x, t2

7 | 111 ` 111, c
8 call [c

∣∣check1

∣∣p
〉

from 1
9 p. 111 ` 111, l

10

11 def [s|search2|t0, t1, t2〉 :
12 s. x ` x, l
13 l.→,u
14 u. y ` y, t0

15 | 2y ` 2y, t1

16 | 22y ` 22y, t2

17 | 222 ` 222, c
18 call [c

∣∣check2

∣∣p
〉

from 2
19 p. 222 ` 222, l
20

21 def [s
∣∣test1

∣∣z,p
〉

:
22 s. @αx ` @αx, z
23 | @α1 ` @α1,p
24

25 def [s
∣∣endtest2

∣∣z,p
〉

:
26 s. xy ` xy, z
27 | x2 ` x2,p
28

29 def [s
∣∣test2

∣∣z,p
〉

:
30 [s|search1|t0, t1, t2〉
31

[
t0

∣∣endtest2
∣∣z0,p0

〉
32

[
t1

∣∣endtest2
∣∣z1,p1

〉
33

[
t2

∣∣endtest2
∣∣z2,p2

〉
34 〈z0, z1, z2|search1|z]
35

〈
p0,p1,p2

∣∣search1

∣∣p
]

36

37 def [s|mark1|t, co〉 :
38 s. y1 ` 2y, t
39 | yx ` yx, co
40

41 def [s|endinc1|t, co〉 :
42 [s|search2|r0, r1, r2〉
43 [r0|mark1|t0, co0〉
44 [r1|mark1|t1, co1〉
45 [r2|mark1|t2, co2〉
46 〈t2, t0, t1|search2|t]
47 〈co0, co1, co2|search2|co]
48

49 def [s|inc21|t, co〉 :
50 [s|search1|r0, r1, r2〉
51 [r0|endinc1|t0, co0〉
52 [r1|endinc1|t1, co1〉
53 [r2|endinc1|t2, co2〉
54 〈t0, t1, t2|search1|t]
55 〈co0, co1, co2|search1|co]
56

57 def [s|dec21|t〉 :
58 〈s, co|inc21|t]
59

60 def [s|mark2|t, co〉 :
61 s. y2 ` 2y, t
62 | yx ` yx, co
63

64 def [s|endinc2|t, co〉 :
65 [s|search2|r0, r1, r2〉
66 [r0|mark2|t0, co0〉
67 [r1|mark2|t1, co1〉
68 [r2|mark2|t2, co2〉
69 〈t2, t0, t1|search2|t]
70 〈co0, co1, co2|search2|co]
71

72 def [s|inc22|t, co〉 :
73 [s|search1|r0, r1, r2〉
74 [r0|endinc2|t0, co0〉
75 [r1|endinc2|t1, co1〉
76 [r2|endinc2|t2, co2〉
77 〈t0, t1, t2|search1|t]
78 〈co0, co1, co2|search1|co]
79

80 def [s|dec22|t〉 :
81 〈s, co|inc22|t]
82

83 def
[
s
∣∣pushinc1

∣∣t, co
〉

:
84 s. x2 ` 1x, c
85 | xy1 ` 1xy,pt
86 | xyx ` 1yx,pco
87 [c

∣∣endinc1

∣∣pt0,pco0
〉

88 pt0.→, t0
89 t0. 2 ` 2,pt
90 pt.←, t
91 pco0. x ` 2,pco
92 pco.←, zco
93 zco. 1 ` x, co
94

95 def [s|inc11|t, co〉 :
96 [s|search1|r0, r1, r2〉
97

[
r0

∣∣pushinc1

∣∣t0, co0
〉

98
[
r1

∣∣pushinc1

∣∣t1, co1
〉

99
[
r2

∣∣pushinc1

∣∣t2, co2
〉

100 〈t2, t0, t1|search1|t]
101 〈co0, co1, co2|search1|co]
102

103 def [s|dec11|t〉 :
104 〈s, co|inc11|t]
105

106 def
[
s
∣∣pushinc2

∣∣t, co
〉

:
107 s. x2 ` 1x, c
108 | xy2 ` 1xy,pt
109 | xyy ` 1yy,pco
110 [c

∣∣endinc2

∣∣pt0,pco0
〉

111 pt0.→, t0
112 t0. 2 ` 2,pt
113 pt.←, t
114 pco0. x ` 2,pco
115 pco.←, zco
116 zco. 1 ` x, co
117

118 def [s|inc12|t, co〉 :
119 [s|search1|r0, r1, r2〉
120

[
r0

∣∣pushinc2

∣∣t0, co0
〉

121
[
r1

∣∣pushinc2

∣∣t1, co1
〉

122
[
r2

∣∣pushinc2

∣∣t2, co2
〉

123 〈t2, t0, t1|search1|t]
124 〈co0, co1, co2|search1|co]

125

126 def [s|dec12|t〉 :
127 〈s, co|inc12|t]
128

129 def [s|init1|r〉 :
130 s.→,u
131 u. 11 ` xy, e
132 e.←, r
133

134 def [s|RCM1|co1, co2〉 :
135 [s|init1|s0〉
136 [s0|test1|s1z,n〉
137 [s1|inc11|s2, co1〉
138 [s2|inc21|s3, co2〉
139

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
140

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
141

142 def [s|init2|r〉 :
143 s.→,u
144 u. 22 ` xy, e
145 e.←, r
146

147 def [s|RCM2|co1, co2〉 :
148 [s|init2|s0〉
149 [s0|test1|s1z,n〉
150 [s1|inc12|s2, co1〉
151 [s2|inc22|s3, co2〉
152

[
s3

∣∣∣test1
∣∣∣n’, s1p

〉
153

〈
s1z, s1p

∣∣∣test1
∣∣∣s1

]
154

155 fun [s|check1|t〉 :
156 [s|RCM1|co1, co2, . . .〉
157 〈co1, co2, . . .|RCM1|t]
158

159 fun [s|check2|t〉 :
160 [s|RCM2|co1, co2, . . .〉
161 〈co1, co2, . . .|RCM2|t]
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The SMART machine C

Conj[Kůrka97] Every complete TM has a periodic point.

Thm[BCN02] No, here is an aperiodic complete TM.

Rk It relies on the bounded search technique [Hooper66].

In 2008, I asked J. Cassaigne if he had a reversible version of
the BCN construction. . .

. . . he answered with a small machine C which is a reversible
and (drastic) simplification of the BCN machine.
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The SMART machine C

A 4-state 3-symbols TM with nice properties:

complete no halting configuration

reversible reversed by a TM. . .

time-symetric . . . essentially itself (up to details)

aperiodic no time periodic orbit

substitutive substitution-generated trace-shift language

TMH-transitive dense orbits with moving head

TMT-minimal every orbit is dense with moving tape

How does it work?

5. a SMART machine 32/46



PINGñ PONGñ
∗|∗ ð

0|0 ñ 0|0 ð

0|� ñ �|0∆



PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ñ 0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð



PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ñ 0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ



PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ



PINGñ PONGñ

PONGð PINGð

∗|∗ ð
0|0 ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð



PINGñ PONGñ

PONGð PINGð

∗|∗ ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð



PINGñ PONGñ

PONGð PINGð

∗|∗ ð

0|� ñ �|0∆

∗|∗ ñ
0|0 ð0|0 ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ



PINGñ PONGñ

PONGð PINGð

∗|∗ ð

0|� ñ �|0∆

∗|∗ ñ

�|0∆ 0|� ð

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ



PINGñ PONGñ

PONGð PINGð

∗|∗ ð

∗|∗ ñ

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ



d q

p b

∗|∗ ð

∗|∗ ñ

0|1 ð
1|0 ñ

0|2 ð

2|0 ð

0|1 ñ
1|0 ð

0|2 ñ

2|0 ñ



Recursive behavior

PINGñ(n):
for i=1 to n:

d. 0|1, b ð
PINGð(i− 1)

d. x|x, q ð
for i=n downto 1:

q. 0|2, b ð
PINGð(i− 1)

q. y |0, α(y) τ(y)

PINGð(n):
for i=1 to n:

b. 0|1, d ñ
PINGñ(i− 1)

b. x|x, p ñ
for i=n downto 1:

p. 0|2, d ñ
PINGñ(i− 1)

p. y |0, α′(y) τ′(y)f(0) = 2

f(n+ 1) = 3f(n)
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Substitutive trace subshift
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SMART is (TMH-)transitive

Proposition
(
ω2 . 2 2ω

p

)
is a transitive point.

Proof
(Forward) For all k á 0:(

ω2 . 2 2ω
p

)
`∗

(
ω2 2 0k . 0 0k 2ω
q

)
.

(Backward) For every partial configuration ( u . v← α → ), there
exist w,w′ ∈ {0,1,2}∗ and k > 0 big enough such that(

ω2 2 0k . 0 0k 2ω
q

)
`∗

(
ω2 w u . v w′ 2ω← α →

)
.

�
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Searching for a reduction

If we want to prove the following:

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is Σ1-complete.

In the partial case we use the following tool:

Prop[KO08] To find if a given (aperiodic) RTM can reach a
given state t from a given state s is Σ1-complete.
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The partial case

Principle of the reduction Associate to an (aperiodic) RTM
M with given s and t a new machine with a periodic orbit if
and only if t is reachable from s.

M M−1s t s

We need to find a way to complete the constructed machine.
We will embed it into a complete aperiodic RTM.
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Reversing time

Combine Turing machines to construct bigger ones.

Reversing the time Given a reversible TM M = (Q,Σ, δ),
construct M+ = (Q× {+},Σ, δ+) and M− = (Q× {−},Σ, δ−)
where (s,+) encodes M in state s running forward and (s,−)
running backward.

A typical use connects halting pairs from one machine to the
corresponding starting pair of the other.
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Embedding technique

A TM I with starting pairs (s1, a1), . . . , (sn, an) and halting
pairs (t1, a1), . . . , (tn, an) is innocuous if starting from
(si, c, p + µ(si)) where c(p) = ai the machine might only halt
in (ti, c, p).

The embedding HI of an invited innocuous TM I inside a
host TM H is the TM containing a copy of both I and H
where one transition δ(p,a) = (q, b,∆) from H is replaced by

p q

s1 s2
. . . sn

I

t1 t2 . . . tn−1 tn

a|a1 µ(s1)

a1|a2 µ(s2) an−1|an µ(sn)

an|b∆
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Undecidability of transitivity

BRA Reachability Problem[Σ0
1-comp. too] Given a binary

reversible aperiodic TM, a starting pair (s, a) and a halting
pair (t, b), decide if (t, b) is reachable from (s, a).

Theorem BRA Reachability Problem àm Transitivity Problem

Proof
Let M, (s, a), (t, b) be an instance of the BRA Reachability
Problem and M′ be a copy of M with a third symbol $.

Apply Reversing time to 2 copies of M′ to construct an
innocuous TM I as follows.

SMARTI is transitive iff (t, b) is not reachable from (s, a). �
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M′2− M′2+s, a t, b s, a

(q1, b1)
...(qm, bm)(p1, a1)

...(pm, am)

M′1+ M′1−s, a t, b s, a

(p1, a1)...(pm, am) (q1, b1)...(qm, bm)



Conclusion

The embedding technique can be used to prove several
undecidability results on TM.

Theorem Transitivity is Π0
1-hard in TMH, TMT and ST.

Theorem Minimality is Σ0
1-hard in TMT and ST.

Theorem To find if a given complete reversible Turing
machine admits a periodic orbit is Σ1-complete.
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