ICAT 2003 W ‘(‘
December 3-5, Tokyo, JAPAN

VIRTUAL REALITY SOCIETY OF JAPAN

Distributed multigrid algorithms for interactive
scientific simulations on clusters

Ronan Gaugne, Sylvain Jubertie, Sophie Robert

Laboratoire d’Informatique Fondamentale d’Orléans
Université d'Orléans, BatIlIA Rue Léonard de Vinci, BP6759, 45067 Orléans Cedex
ronan.gaugne@lifo.univ-orleans.fr, sylvain.jubertie@iut.univ-orleans.fr,
sophie.robert@lifo.univ-orleans.fr

Abstract

In many scientific domains, researchers can really benefit
from implementing simulations in a Virtual Reality (VR)
development in increasing the interactions and therefore
the comprehension of physical phenomena. To comfort
this direction, two problems need to be resolved: the cost
of the VR platform and the coupling between the
simulation and the visualization. Our project is to
propose an original VR environment based on software
tools allowing to replace advantageously a
supercomputer by PCs cluster and which rests on the
ability of simulation parallelization in respect of the
coupling with the visualization.

Key words: Virtual reality, real-time simulation,
distributed multigrid algorithm, cluster platform,
interaction.

1. Introduction

In the world of supercomputers, the cluster architectures
built with PCs and a powerful network offer competitive
performances for scientific applications. Compared to the
dedicated supercomputers like Cray machines, these
architectures have the great advantages to be both
scalable and modular in addition to the high
performance-price ratio. The virtual reality domain
applied to the scientific modeling induces some strong
constraints on performances to improve the rendering of
interactive physical phenomenon while delivering real-
time simulations. While the quality of low cost graphic
cards increased, some recent software developments such
as NetJuggler [2], SoftGenLock [1] or WireGL [7],
dedicated to the automatic parallelization rendering
computations, allow researchers to efficiently develop
VR applications on CAVE or WorkBench environments
for instance. Consequently, the cluster architectures
become a relevant choice to implement VR real-time
applications.

In many scientific domains, researchers can really benefit
from implementing simulations in a VR development.
Such applications make it possible to increase the
interactions and therefore the comprehension of physical

phenomena. But this domain still remains poorly
exploited because existing platforms are designed either
for simulation or visualization. The goal of our project is
to provide scalable implementations which take
advantage of large PC’s clusters capabilities. Our
approach allows the coupling of simulation and
visualization parts to provide real-time implementations.

In order to experiment our work on a representative
scientific modeling, we choose to simulate the fluid
motion. Indeed, the mechanics of fluids is a relevant
domain which can clearly take advantages of simulation
in a VR environment. Furthermore, this kind of
application requires realistic graphical rendering and can
profit of interactions such as obstacles additions and on
the fly parameters modifications.

The following section is dedicated to the description of
our VR platform based on the dual VRJuggler and
NetJuggler associated to the SoftGenLock tool. We
describe how these open tools allow us to exploit all the
capabilities of a cluster in replacement of dedicated
supercomputers. The section 3 gives a detailed
description of our fluid motion based on the multigrid
method. Finally before the conclusion, the section 4
describes the fluid motion implementation on our VR
platform to illustrate its richness.

2. VR platform
SoftGenLock

from NetJuggler and

The development of VR applications is not an easy task
due to the complexity of the components like the
displays, the devices or the computer center. We describe
here a set of tools whose combination constitutes a
powerful and easy to use VR development environment
working on a PCs cluster.

The open source library VRJuggler [5] offers an
environment for VR application development which
eases the management of all the components of a VR
platform such as the displays and the input or output
devices. The VRJuggler library is composed of a kernel
which pilots the application, some managers for each
part of the system and a set of configuration files. From

This work is partially supported by the RNTL project GeoBench

these components, users can develop VR applications
where proxies make possible to completely abstract the
physical devices. The set of configuration files describes
these devices whose data is processed and restored by the
input manager to the VRJuggler application via these
proxies. A rich graphical interface ensures the
application description in terms of displays, input or
output devices and dynamic application reconfiguration.
Finally, the integration of graphics API as OpenGL or
performer, offers to VRlJuggler users a good
development environment which is exploited for CAVE
or Workbench platforms piloted by supercomputers.

In order to replace the supercomputers by PCs cluster we
have to solve two major problems.

- The management of the devices distributed on the
different nodes of the cluster,

- The video signal synchronization due to the distribution
of visualization computing on the cluster.

A response to the first point has been provided by a
recent open source called NetJuggler that allows to
extend VRJuggler on clusters [3]. Exploiting the
decomposition of VRJuggler in a kernel and some
managers, NetJuggler consists in additional managers to
control the distribution of the displays or the devices on
different nodes of the cluster. This control is totally
transparent to VRlJuggler and so to the user. The
principle of NetJuggler is to replicate a VRJuggler
session on all the nodes of the cluster. Since some of
these nodes support effectively the devices, NetJuggler
ensures the broadcast of their data. Each VRJuggler
session reacts as if the device was local. The MPI API is
used to express communications between the different
sessions and NetJuggler replaces the proxy by the
management of a client server proxy for each device. In
order to define the server and the clients, we need to add
to the VRJuggler configuration files the node name of the
host for each input and output. From this information and
the definition of the cluster, NetJuggler is able to
construct and manage the network implied by the
distribution of the devices on the cluster.

For the second problem induced by VR platforms based
on clusters, three level of synchronization can be
identified: DatalLock, SwapLock and GenLock. The first
one that deals with the data coherency is naturally solved
by NetJuggler as all the sessions process the same
rendering computations. The SwapLock that concerns
the buffer swap is also treated by NetJuggler by using an
additional common synchronization barrier before the
buffer swap. In case of active stereo, a frame level
synchronization called GenLock needs a particular
attention. The solution we choose to integrate in our VR
platform is an open source software called SoftGenLock
for linux platform. Independently of the graphical cards,
this software detailed in [2] relies on a real time linux

kernel so that each graphic node computes a precise time
delay between its video signal and the master one. Then
the graphical node can locally decide to adapt its signal
generation speed. The synchronization is not an exact
one but is obtained by control and regular modification.

The gathering of all these tools, as described in Fig.1,
provides a performing VR environment for PCs cluster
which has been successfully experimented by the BRGM
research center' [8] on a WorkBench VR platform used
to visualize geological simulations such as consequences
of flood.

| SoftGenLock |
\ I
\(Ethernet network (
NetJuggler
VA v N N ™
VRJuggler | VRJuggler | VRJuggler | VRJuggler | VRJuggler

Fig. 1 Our VR platform

3. Fluid motion from the multigrid approach

In [9], Jos Stam proposes an interactive simulation of
fluid motion which is based on the resolution of Navier-
Stokes equations. Stam aims at offering a simple realistic
rendering of the fluid motion. We are interested in
adapting his approach to get closer to physical
phenomena. In regard to these objectives, the multigrid
algorithm allows to build an interesting Navier-Stokes
equations solver. The section gives a brief description of
the fluid modeling and of the multigrid concept.

3.1. The fluid motion equations

Our fluid motion is expressed as a velocity field # and a
density field p from the below Navier-Stokes equations
using the Helmholtz-Hodge decomposition as explained
in [9]. The term v designs the viscosity rate, x the
diffusion rate and f; S respectively the density and the
velocity added by a user.

" http://www.brgm. fr

a—’o:—uV,o+KV2,o+S

ot
Eq 1 Density equation

N PV + W+ f)

ot
Eq 2 Velocity equation

Then fluid flows are produced by the density moves
through the velocity field.

To model the fluid motion, we use a finite representation
of the fluid with a couple (p, «) for each point of a grid of
interest. The equations (1) and (2) need then to be solved
on this finite model at each time step Az. Their right part
admits three terms which are separately solved as each
one represents a particular effect on the fluid. For the
density equation, the first term called advection
expresses that the density follows the velocity field, the
second one that the density diffuses at a certain rate, and
the last one that the density is increased by external
sources. Concerning the right part of the velocity
equation, we find the analogue steps of advection where
a velocity vector evolves in regards to its neighbours,
viscous diffusion and additional force. The operator P
called projection is an additional step for the velocity due
to the Helmholtz-Hodge decomposition and the mass
conservation of fluids.

Without getting into a detailed description of the
mathematical modelling, we need to precise an important
feature of the Navier-Stokes equations solver which
concerns the diffusion and the projection steps. Indeed,
these steps need a discretization of the V2 operator and
lead to a linear system. The corresponding solver which
is very time consuming is the heart of the fluid algorithm.
The Stam choice is a Gauss-Seidel relaxation that is
sufficient to get a convincing rendering. However, a poor
convergence speed of this algorithm compels to reduce
the simulation quality. To get closer to physical
phenomena, the multigrid method appears to be a good
candidate to meet the constraints of real-time, scalability.

3.2. The multigrid method

The multigrid algorithm is a general concept to solve a
differential equation starting from the discretization in a
linear system [6]. Let a grid of size nxn be the finite
representation of the fluid, the linear system is then of the
form Ax=b where A4 represents a n’xn? float matrix
usually very sparse. If M denotes an elementary iterative
method to solve the linear system from an initial solution
such as the Gauss-Seidel relaxation, then the multigrid
algorithm consists in the following steps:

1. Use M to approximate a first solution x; for x,

2. Estimate the error and solve an intermediary linear
system,

3. Use M to re-compute a new solution x; for x,
which can also be iterative.

The multigrid originality comes from the step 2 process
that leads to solve an equation of the form Ae=b-Ax;,
where x; is the approximated solution found in step 1 and
e represents the error factor between the approximated
solution and the exact one. As the process is iterative, the
multigrid method allows to safely decrease the step 2
complexity. Two operators, a restriction operator and a
prolongation operator, relate the nxn grid called the fine
grid to a coarse one of size n/2xn/2 as described in
Fig.2. The step 2 linear system of the detailed algorithm
described in Fig.3 is then 16 times less complex.

7

s

j AT

P L)
\

Fig. 2 : A two levels multigrid algorithm

a. Find x; such that Ax;=b from an initial vector
(random one for the first iteration)

b. Apply the restriction operator to x;, 4 and b
resulting respectively fo x’, A’ and b’

c. Find e’ such that 4’e’=b"-4"'x’
d. Apply the prolongation operator to e’ resulting to e

e. Find x, such as Ax,=b from x '+e as initial vector
for this new iteration step.

Fig. 3 : Multigrid algorithm

This algorithm can be recursive in solving the step 2 by a
new two levels multigrid method. It can be useful in
order to decrease the global complexity when the initial
grid is strongly fine.

Where the Stam Gauss-Seidel solver needs 20 iterations
to converge, the multigrid algorithm reaches an
equivalent level of accuracy with 5, 7 and 8 iterations
respectively for the steps 1, 2 and 3, always with a
Gauss-Seidel as elementary solver M. A gain of 20% is
then obtained in term of complexity thanks to the use of
the coarse grid in the step 2.

4. Fluid motion in a VR application

4.1. Parallelizing simulation in our VR environment

In section 2 the NetJuggler environment has been
described as a good solution for using PCs cluster in the
place of supercomputers. However, the cluster power
seems to be under used as the rendering session is
replicated on all the nodes. In many cases this is
sufficient to deliver efficient VR applications. But it is
not the case in scientific domains where the simulation
part is really greedy in computations. NetJuggler uses the
MPI API as communication library and therefore offers
an easy way to integrate parallelized simulation in the
VRJuggler rendering loop. As described in [4], the
simulation can be any parallelized program using the
MPI API or any MPI based tool. The program is then a
SPMD one where all the additional communications are
transparent to the NetJuggler API. The only constraint
for the programmer is to deliver the simulation results to
all the nodes of the cluster without altering the
NetJuggler process.

When the simulation follows a data parallel model
without the node identifier in the program or when a
library as PETSc is used to take in charge the parallelism
and above all the data flow, NetJuggler ensures the
scalability and portability of the application from
configuration files. A large number of scientific
simulations can be developed in respect of these
assumptions. In these cases, the user can really benefit
from the NetJuggler management. On the other side, for
advanced user it is possible to control completely its
parallel simulation by specifying directly in the program
the role of each simulation node. This approach has the
great advantage to enable a precise management of data
flow in order to reinforce the adequacy of the simulation
with the visualization constraints. Nevertheless, one can
notice that in both cases even nodes which are not
attached to a screen do perform graphical operations.

We chose the advanced approach to design our fluid
motion with more control parallelisms to experiment the
optimizations that a strong link between the visualization
and the simulation can offer.

4.2. Fluid motion implementation

The fluid motion in a VR application is a representative
example of requirements in terms of efficient simulation
and interactivities with visualization. As described in
section 3, we chose to model the fluid motion from
Navier-Stokes equations which lead to an algorithm
whose main step is the repetitive solving of different
linear systems for the diffusion and projection steps. In
order to reach a real-time simulation we parallelize our
solver by decomposing the fluid domain on the different
cluster nodes. The most significant part of this
parallelization is the multigrid algorithm because it could
generate a great number of communications.

To avoid this disadvantage we use the Gauss-Seidel as
elementary M method and modify the linear system
resolution in order to restrict the communications to
border exchanges as described in Fig.4. The multigrid
steps become the followings:

1. Perform Gauss-Seidel relaxation on the local fine grid
2. Exchange borders with neighbour nodes

3. Restrict the error to the local coarse grid

4. Perform Gauss-Seidel relaxation on this coarse grid

5. Execute the prolongation of the result

6. Perform Gauss-Seidel relaxation on the fine grid

7. Exchange borders for the next step.

The parallelization of the sequential multigrid algorithm
would have consisted of exchanging the borders between
each iteration of the step 1, 4 and 6. But this version
delivers analogue simulation accuracy and convergence
speed while ensuring scalabity and low cost
communications.

& ication between neighb)

P

[Local domain borders

Fig 4 : Border communications

We have implemented our VR application based on the
fluid motion on a cluster of eight Intel BI XEON DP
2.6GHz nodes. These nodes are equipped with Nvidia
GeForce FX5900 with 128Mo RAM and are connected
to a Giga Ethernet network. As described in Tab.1 the
application runs on two or four graphical nodes where
the simulation is distributed on all the cluster nodes as
this part is the most expensive. Two fluid sources for a
160x160 grid are simulated with a mixer materialized by
a little triangle which is controlled by a wireless joypad
as input device. The joypad is also used to move the
scene to the user suitability.

Usually, in case of high cost simulations, we need more
computation than rendering nodes to ensure the real-time
constraint of VR application. Then the NetJuggler choice
to replicate the rendering computation on all the nodes
may become a handicap to performances. In this sense,
we present three series of benchmarks to illustrate the
advantages of our approach with regard to the cluster
technology. In the first serie, we simply use NetJuggler
as a SPMD platform, i.e. all instances are performing
both simulation and rendering computations. In this
serie, only two processes are really displaying on a
screen. In the two last series, we have distinguished
processes which are doing graphical computations from
those which are computing simulation steps thanks to

some tricks with MPI rank inside NetJuggler. The only
difference between the two last series is the number of
displaying nodes.

For example, this wiliness allows to win above 30% in
frames rate when the number of simulation nodes is at
least eight as illustrated by the two first series.
Furthermore, our implementation leads to a 23 frames
rate on six simulations nodes as in [4] but with a grid size
56% larger. Finally, we successfully model a 225x225
grid with this 23 frames rate on 16 simulations nodes and
two graphical ones.

45

40
35
30
25
20 A I

59

10 A

frame rate

5

0

n
IS

6 8 10 12 14 16
number of nodes

—— frame rate, rendering on all nodes, 2 visualization nodes

—= frame rate, rendering nodes and pre-rendering nodes are
separated, 2 visualization nodes
frame rate, rendering nodes and pre-rendering nodes are
separated, 4 visualization nodes

number | All separation separation
of rendering rendering/pr | rendering/pre-
nodes | nodes, e-rendering, |rendering, 4
2 visualization
2 . .
. . visualization | nodes
visualization
nodes
nodes
2 7,3 13,1 16,3
4 12,4 18,5 17,8
6 17,5 22,1 22,6
8 21,3 27,0 25,3
10 24,6 32,4 27,9
12 27,7 36,8 29,1
14 30,2 38,2 31,5
16 31,1 42,8 32,1

Tab. 1 the frames per second with respect to the number
of simulation nodes for a 160x160 grid.

These results show that as the scientific domains can
draw advantages to develop in Virtual Reality
environment, it becomes necessary to perfect the
development tools in order to manage sophisticated

simulations. A first way consists in reinforcing the link
between simulation and visualization to reach new
optimizations.

4.3. Visualization and simulation optimizations

In the scientific computations domain, numerous libraries
of parallel implementations (ScalLapack or PETSc for
instance) are available in order to easily develop efficient
simulations. For example, in [4] the fluid motion is based
on a PETSc solver in the place of our multigrid method.
This approach is proved efficient in term of development
facilities in the NetJuggler environment and in term of
frames per second performances. We extended this work
with our own multigrid implementation in order to
reinforce the simulation control on the data-flow. This
evolution allows us to precisely test the gain induced by
interactions between the visualization and the simulation
parts.

Our example consists in differentiating two grids
discretization of the fluid finite representation from the
simulation computation and the visualization. As the
simulation can use an increasingly fine grid to optimize
its accuracy, the rendering step conserves always the
same discretization of the grid of interest. A new
operation is defined which approximates the fluid solver
results with a pertinent average of the density on a
coarser rendering grid. This allows to reduce the
communications to the rendering nodes. The simulation
is always accurate but the rendering is simplified to a
sufficient level for the user interpretation. So the
communications are reduced while ensuring the
rendering quality.

All the performances given in the tab.l are a direct
consequence of this optimization where the visualization
uses an 80x80 grid to draw the fluid whereas the
simulation solves the fluid motion on a 160x160 grid. In
this configuration, the communications have been
decreased by a factor of four.

This optimization is easy to design because of the control
parallelism that we explicitly introduce in the NetJuggler
platform. We can now plan to develop many
interactivities with the user to reinforce the physical
phenomena interpretation. This can be done with a return
from the user to modify on-the-fly some visualization
parameters or simulation parameters. The user has the
possibility to specify an area of interest by a zoom and a
new grid size at the same time for the fluid solver or the
visualization to improve its simulation quality and its
interpretation.

5. Conclusion

We experimented a fluid motion as a VR application on
an original VR environment using cluster technology and
some software tools as NetJuggler. To be in adequacy
with the scientific domain, the NetJuggler platform has

been used with the integration of a parallel program
based on control parallelism. Furthermore, to optimize
the frames rate, we realized an explicit separation of the
rendering and the simulation nodes.

The performances of the fluid motion using multigrid
solver demonstrated the great advantage to this
development approach. But it has two drawbacks: the
separation of rendering and simulation nodes comes from
a trick in NetJuggler and the control parallelism has to be
entirely managed by an advanced programmer. We need
an extension of NetJuggler in order to provide a
development environment which can ease the
implementation of such sophisticate simulations. This
new platform would help any user to build such
applications by proposing a structured environment to
express the control parallelism and the interaction
between the different simulation and visualization
components.

If we have illustrated the gain of an ad-hoc coupling
between the simulation and the visualization, a second
important aspect which has to be developed consists in
offering a very rich interaction with the user. Therefore
the interpretation of the physical phenomena is improved
and the simulation and the visualization can be directly
influenced by a return information.

In this sense the multigrid algorithm offers a lot of
possibilities to take into account solvers of different
complexities according to the fluid turbulences. The M
elementary method, the iteration numbers of these
different M elementary methods in the multigrid
algorithm or the deepness level in the error estimation
are parameters which can be modified by a return
information of the user. The fluid motion application we
studied here could really benefit from the integration of
these improvements in the proposed NetJuggler
extension.

References

1. C. Elliot, G. Schechter, R. Yeung, and S. Abi-Ezzi:
“TBAG: A High Level Framework for Interactive,
Animated 3D Graphics Applications,” proceedings of
ACM SIGGRAPH 94, pp.421-434 (1994).

2. J. Allard, V. Gouranton, G.Lamarque, E. Melin, and
B. Raffin “SoftGenLock: Active stereo and Genlock
for PC cluster,” IPT/EGVE'03 Workshop (2003).

3. J. Allard, V. Gouranton, L. Lecointre, E. Melin, and
B. Raffin “NetJuggler Running VRJuggler with
Multiple Displays on a commodity component
cluster,” IEEE VR (2002).

4. J. Allard, V. Gouranton, E. Melin, and B. Raffin
“Parallelizing Pre-Rendering Computations on a
NetJuggler PC Cluster,” Immersive Projection
Technology Symposium, Orlando (2002).

5.

6.

7.

8.

9.

A. Bierhaum, C. Just, P. Hartling, A. Baker, and C.
Cruz-Neira “VRJuggler: A virtual platform for virtual
reality application development,” IEEE VR (2001).

W. Hackbusch, “Multigrid methods and
Applications”, Springer, Berlin, (1985).

G. Humphreys, and P. Hanrahan “A distributed
graphics system for large tiled displays,” [EEE
Visualization'99 (1999).

S. Madougou, and J. Vairon, “Fast deployment of a
commodity VR cluster”, VR-Cluster'03 Review (2003).

J. Stam “Real-time fluid dynamics for games,”
Proceedings of the game developer conference (2003).

