1

Validation of Prouvé protocols using the
automatic tool TA4SP *

Yohan Boichut!, Nikolai Kosmatov?, and Laurent Vigneron?3

L LIFC, University of Franche-Comté, boichut@lifc.univ-fcomte.fr
2 LIFC — CASSIS, INRIA Lorraine, kosmatov@loria.fr
3 LORIA - University Nancy 2, vigneron@loria.fr

Abstract. We present a new process permitting to automatically ana-
lyze security protocols, specified in a very powerful language, PROUVE,
describing the roles of the participants as real programs. We have built
a translator from PROUVE specifications to a rule-based language used
as input language by several very efficient protocol analyzers. This has
permitted us to successfully validate confidentiality properties of several
protocols with the TA4SP tool.

Keywords: security protocols, specification, verification, validation.

Introduction

The analysis of security protocols has been intensively studied in the last decade.
Huge progresses have been achieved in several directions:

from Alice-Bob specifications to detailed role-based specifications;

from simple properties to verify, such as secrecy and authentication, to much
more complex ones, such as type confusion, non-repudiation or temporal
formulas;

from manual and semi-automatic tools to automatic ones;

from tools being able to rediscover attacks on a couple of old protocols,
to tools analyzing all the protocols of the Clark-Jacob library and a large
number of Internet security protocols;

from verification techniques dedicated to a couple of toy protocols, to general
techniques applicable to large real-life protocols and properties;

from attack search to properties validation.

Among all the created tools, let us cite [4,11,13,10,7,14,6,2,12, 1].

This paper presents a work done as part of the PROUVE project. We have

connected the PROUVE protocol specification language [9] to the validation tool
TA4sP [3]. The PROUVE protocol specification language is not ”yet another spec-
ification language”; this is one of the most advanced languages, designed for
describing protocols very precisely. It looks more like a programming language
than other specification languages, but still it is accessible to non specialists.

* Supported by the RNTL project 03V360 Prouvé, www.lsv.ens-cachan.fr/prouve/.

2 Y. Boichut, N. Kosmatov, L. Vigneron

TA4SP performs the validation of secrecy properties for an unbounded num-
ber of sessions; its method consists in solving reachability problems. TA4SP is
one of the four back-ends of the AVISPA tool [1]. Its input language is there-
fore an intermediate format (IF) common with the other back-ends. This IF is
a rule-based specification language, describing protocol transitions and agents’
knowledge evolution.

We have succeeded to write a translator that converts a large proportion of
the PROUVE instructions into IF. This connection permits to analyze protocols
with TA4SP without any modification in this tool. Note that the use of the other
three AVISPA back-ends is then for free!

This paper is organized as follows. In Section 2, we present the PROUVE pro-
tocol specification language. In Section 3, we describe the translation of PROUVE
specifications into IF specifications. Section 4 presents TA4SP and some experi-
ments.

2 The Protocol Specification Language Prouvé

The purpose of the PROUVE protocol specification language is to give means
to describe both protocols and the context in which they are used. A protocol
specification in PROUVE can be composed of five main sections:

— signature for declaring the type of non-predefined constants and constructors,
— axioms for defining the semantics of message constructors,

— roles for describing the actions of each participant to the protocol,

— wariables for the declaration of global variables,

— scenario describing the combination of roles to be considered.

The sub-language used to define the actions of each role is oriented on existing
imperative programming languages. Unlike specification languages based on the
simple Alice-Bob notation, PROUVE permits to write unambiguous and very
precise actions. For example, the generation of a new nonce is explicitly written
new (my_monce), while a technical analysis of an Alice-Bob specification is needed
only to understand that a new nonce has to be generated. So, PROUVE users
write specifications describing the exact behavior of each participant, and there
is no need of any complicated compiler for analyzing the specification before
transmitting it to a verification tool.

The design of the PROUVE protocol specification language has been inspired
by the specification language of the AVISPA tool, HLPSL [5]. The main im-
provements are the possibility to have a global signature section, to explicitly
write equational properties of message constructors and to declare global vari-
ables; scenarios can be much more complex in PROUVE than in HLPSL; and
the actions in roles are described as a sequence of instructions in PROUVE, while
they are described as non-deterministic transitions in HLPSL. Therefore, the
PROUVE language allows to write deterministic fine-grained specifications, able
to handle protocols at an implementation level, and not just as general specifi-
cations.

A simple example of specification is given below.

Validation of PROUVE protocols using TA4SP 3

signature

alice, bob, i: principal;

alice_key, bob_key, intruder_key: pubkey;
end

role Alice (my_name: principal; bob_name: principal;
my_key: pubkey; bob_pubkey: pubkey)

declare
my_nonce, bob_nonce: nonce;

begin
new (my_nonce) ;
send (crypt (asym, bob_pubkey, [my_nonce,my_name])) ;
recv(crypt(asym,my_key, [my_nonce,bob_nonce,bob_name])) ;
send (crypt (asym, bob_pubkey,bob_nonce)) ;

end

role Bob (my_name: principal; alice_name: principal;
my_key: pubkey; alice_pubkey: pubkey)
declare
my_nonce, alice_nonce : nonce;
begin
recv(crypt (asym,my_key, [alice_nonce,alice_name]));
new (my_nonce) ;
send (crypt (asym,alice_pubkey, [alice_nonce,my_nonce,my_name]));
recv(crypt(asym,my_key,my_nonce)) ;
end

scenario
begin
parallel
Alice (alice,bob,alice_key, bob_key)
| Bob (bob,alice,bob_key,alice_key)
| Alice (i,bob,intruder_key,bob_key)
| Bob (i,alice,intruder_key,alice_key)
end
end
end

3 Translation from Prouvé into IF

This section describes the implementation of PROUVE2IF, an automatic trans-
lator from PROUVE protocol specifications into IF, the input language of the
TA4SP tool. We show how we have succeeded to represent most of the structured
instructions of standard imperative languages (such as conditionals, iterations,
matching) into transition rules.

4 Y. Boichut, N. Kosmatov, L. Vigneron

PROUVE type IF type
message message
int nat
bool bool
nonce text

principal agent
symkey symmetric_key
pubkey public_key
privkey inv(public_key)
algo, symalgo —
list —
table —
tuple pair™
association list set of pairs

Fig. 1. Translation of the PROUVE types into IF.

3.1 Types, Constants and Variables

The basic PROUVE types are translated into IF as shown in Fig. 1. Since the
type for a private key does not exist in IF, we translate it as inv(public_key).
The encryption and signature algorithms in IF are omitted.

Concerning structured types, lists and tables are not represented in IF. As-
sociation lists may be represented by sets of pairs. Tuples [a1,ag,...,Gn—1,Gy)
(n > 2) are transformed into right-balanced couples (a1, (ag, ... (ap—1,an)..)),
and each couple is represented using the binary symbol pair. For example, the
PROUVE tuple [x,y,z] is translated into IF as pair(V_x,pair(V_y,V_z)),
where we suppose that x,y,z are translated as V_x,V_y,V_z respectively.

The translation of function types is obtained by direct translating of the func-
tion origin and end types. For example, the PROUVE declaration exp: (pubkey,
nonce) -> pubkey can be translated into IF as exp: public_key * text ->
public_key. In fact, some common functions and constants (such as xor, exp,
true, false) are predefined in the IF prelude file and need not to be defined in
the IF file.

In general, translating of variables (and in some cases constants and func-
tions) may need their renaming. In PROUVE roles, identifiers may be defined in
nested scopes (top-level declarations for all the protocol, input parameters for
each role, internal nested declarations in each role). The same identifier may be
declared several times with different types like in C. In IF, each declaration is
global. This is why the first step of the translating from PROUVE into IF is a
proper renaming of the identifiers already defined somewhere before. We add
suffixes _1, _2,... at the end of the redeclared identifiers in order to distinguish
them from the first declaration.

Besides, all identifiers in PROUVE may begin with either a small or a capital
letter, whereas in IF constants begin with a small letter and variables with a
capital one. Therefore, we also add the prefix V_ for variables and the prefix c_
for constants during the translation.

Validation of PROUVE protocols using TA4SP 5

role R (me: principal)
declare
n: nonce;
X,y: symkey;
begin
new(n);
recv([x,y]);
send([exp(x,n),y,exp(y,n)]);
end

Fig. 2. An example of a role in PROUVE.

step step_R_1(V_me,V_n,V_x,V_y,SID,Dummy_V_n,Forever) :=
state_role_R (V_me,1,Dummy_V_n,V_x,V_y,Forever,SID).
iknows (start)
=[exists V_n]=>
state_role_R (V_me,2,V_n,V_x,V_y,Forever,SID)

step step_R_2 (V_me,V_n,V_x,V_y,SID,Dummy_V_x,Dummy_V_y,Forever) :=
state_role_R (V_me,2,V_n,Dummy_V_x,Dummy_V_y,Forever,SID).
iknows (pair(V_x,V_y))
=>
state_role_R (V_me,3,V_n,V_x,V_y,Forever,SID)

step step_R_3 (V_me,V_n,V_x,V_y,SID,Forever) :=
state_role_R (V_me,3,V_n,V_x,V_y,Forever,SID)
=>
state_role_R (V_me,4,V_n,V_x,V_y,Forever,SID).
iknows (pair(exp(V_x,V_n),pair(V_y,exp(V_y,V_n))))

Fig. 3. Translation of the role of Fig. 2 into IF rules.

3.2 Roles

Each PROUVE role is translated into several IF transition rules which describe
the transitions and state changes of an agent playing this role. To illustrate the
translating of roles, we consider the role of Fig. 2 and its translation into IF
rules given in Fig. 3.

The state of an agent playing a given PROUVE role is defined in IF by a
special predicate created for each role and declared in the signature section of
the IF file. For the role of Fig. 2, the state predicate is:

state_role_R : agent * nat * text * symmetric_key * symmetric_key
* bool * nat -> fact

The parameters of the state predicate for a role are put in the following order:

— the input parameters (defined in the role declaration),

6 Y. Boichut, N. Kosmatov, L. Vigneron

the current state number,

— the local variables of the role,

the boolean flag Forever (explained below), and

— the session number necessary to the verification tools.

In the simplest case, each instruction of a role is translated into an IF rule
(step) that may modify the current state number and the values of local vari-
ables. The first state has the value 1; it is the origin of the first rule. Any
(legitimate) role execution starts in this state. The state value 0 is used to block
the role execution; no transition starts from this state. Each rule starts with a
unique rule header specifying as parameters the list of variables involved in the
rule. We present the translating of the role instructions in more detail in the
following sections.

3.3 Basic Instructions

Fig. 4 shows the translating of the most common instructions. We suppose that
the instruction given in the left column appears in a role R, the state number of
the role before this instruction is A and the translated IF rule has the number n.
The new state number B is usually just the next available number, except some
special cases described below.

PROUVE instruction Translation into an IF rule
send (expr) step step_R_n(...) :=
state_role_R(...,A,...)
=>

state_role_R(...,B,...).
iknows (expr)

new(x) step step_R_n(...) :=
state_role_R(...,A,...,Dummy V_x,...)
=[exists V_x]=>

state_role_R(...,B,...,V_x |
X = expr step step_R_n(...) :=

state_role_R(...,A,...,Dummy_V_x,...)

=>

state_role_R(...,B,...,expr yees)
recv(pattern) step step_R_n(...) :=

state_role_R(...,A,...).
iknows (pattern)

=>
state_role_R(...,B,...)

fail step step_R_n(...) :=
state_role_R(...,A,...)
=>

state_role_R(...,0,...)

Fig. 4. Translating of the basic PROUVE instructions into IF rules.

Validation of PROUVE protocols using TA4SP 7

The PROUVE instruction send(expr) sends the expression to other agents.
It is translated into IF by the special predicate iknows (expr) stating that the
message expr is added to the intruder knowledge. The intruder model used in
IF being that of Dolev-Yao, the intruder has access to all the communication
channels. So giving him a sent message is a short-cut for sending a message to
another agent and intercepting it by the intruder. Thus a normal run of this
message sending is the transfer of the message by the intruder to the official
receiver.

The PROUVE instruction new(x) generates a new value for the variable x
(which can be of type int, nonce or message). It is translated by =[exists
V_x]=>, where V_x is supposed to be the translation of the variable x into IF.
Since the value of the variable has changed along this transition, we use a new
variable name Dummy_V_x to denote the old value.

Similarly, the assignment x := expr of the expression expr to the variable
x changes its value to the new one.

The PROUVE instruction recv(pattern) blocks the execution of the role
until a message that matches the given pattern is received. The constants and
previously affected variables in the pattern are just compared to the values in
the message. The variables that are not yet instantiated are instantiated along
the transition if the matching is successful. Therefore the IF rule translating a
recv instruction should change the values of such variables putting their Dummy _
versions in the state predicate before the transition, like it was done for new and
:=. We use the results of a static analysis of the role to check for each variable
in a pattern whether this variable has already been instantiated.

The PROUVE instruction fail stops the execution of the role. To model this
behavior in IF, we change the state to 0. Since no transition can start from this
state value, the role execution is stopped. The instructions that follow a fail
(and cannot be reached in some other way) are ignored.

3.4 The instruction choice
The PROUVE instruction
choice ily | ils | ...| il end

executes one list of instructions non-deterministically chosen among the given
lists ily, ..., ilg, k > 1. Suppose that A is the state in which the translation of
the previous instructions has finished. We proceed in the following way. Every
instruction list il;, 1 < j < k, is translated independently into a sequence of
IF transition rules starting in some state B; and ending in some state C';. The
non-deterministic choice of the list to execute is modeled by the silent transitions
ABy,...,ABy, whose only effect is passing form the state A to B;. The before
part of these rules is the same.

Fig. 5a) illustrates the translating into IF rules in case C; # 0 forall 1 < j <
k. In this case, in order to finish the translation in the same state, we choose the
state C7 as the last state of the choice instruction and add the silent transitions
0201, ey CkCl.

8 Y. Boichut, N. Kosmatov, L. Vigneron

a) l b) l
Ad Ag
B.® *By ® By B.® *B; ®B;
le le ’le le Zl2 ZlB
. _ec, o __eC Cyo : o
&/2/ k 1 : / 3

Fig. 5. Translating of choice ily | ila | ... | ily end a) for C; #0,1 < j < k; b) for
k=3,C1 =0,C2 #0and C3 #0.

If 4l; finishes in C7 = 0, no transition can follow it. Suppose that we have
C; # 0 for some 1 < j < k. To choose the last state C; of the choice instruction
in this case, we take the smallest ¢ such that C; # 0 and add the silent transitions
C;C;,...,C;C; for all j # i with C; # 0. For example, Fig. 5b) illustrates the
translating into IF rules for £ =3, C; =0, C3 # 0 and C5 # 0.

If C; = 0 for all 1 < j <k, no instruction can start in any C;. The last state
of the choice instruction is 0 independently of the chosen instruction list, and
no transition rule is added after any C;.

3.5 The instruction if then else
The PROUVE instruction
if cond then il; (else ily)7 fi

executes the first list of instructions iy if the condition cond is verified, or the
second one ils (or nothing, if the else part is not provided) if the condition is
not verified.

Suppose that A is the state in which the translation of the previous instruc-
tions has finished. We proceed in the following way. Every instruction list il;,
1 < j < 2, is translated independently into a sequence of IF transition rules
starting in some state B; and ending in some state C;. Fig. 6 illustrates the
translating.

The difficulty of the translating for this instruction is the fact that the direct
translating of the condition cond from PROUVE into IF may be impossible. In-
deed, a condition in PROUVE can be any well-typed expression of boolean type,
in particular, any composition of disjunctions (denoted in PROUVE by | |), con-
junctions (&%), negations (not), different (in)equalities (=,<,>,=<,>=,!=), other
predicates and functions. An IF transition rule can only express a conjunction
of conditions each of which is an equality (denoted in IF by equal), a less or
equal inequality (leq) or their negations (not).

To be able to translate an if instruction for any condition cond, we need the
following preparatory steps:

Validation of PROUVE protocols using TA4SP 9

V1 U1
*5; *5;
il ilo il ilo
e o :
C® °C

Fig. 6. Translating of if cond then il; else il fi a) for Cy # 0 and Cs # 0; b) for
C1=0and Cz #0.

step step_R_...(...) :=
state_role_R(...,A ,...) & equal(V_x, 0)
=> state_role_R(...,B1,...)

step step_R_...(...) :=
state_role_R(...,A ,...) & not(equal(V_x, 0)) & leq(V_y, 10)
=> state_role_R(...,B1,...)

step step_R_...(...) :=
state_role_R(...,A ,...) & equal(c_g(V_x, V_y, V_z), true))
=> state_role_R(...,B1,...)

Fig. 7. Example of transition rules from A to Bj.

— To rewrite the inequalities <,>,>=,!= of cond in terms of =,=< and logical
operations. For example, x >= y is replaced by not(x =< y) || (x = y).

— To construct the DNF (disjunctive normal form) of the condition cond, that
is a formula u; || ... || up, where the u; are conjunctions of literals.

— To construct the DNF of not (cond) , that is a formula vy || ... || v,,, where
the v; are conjunctions of literals.

For every 1 < j < n we add an IF transition rule AB; guarded by wu;.
Similarly, if the else part is provided, for every 1 < i < m we add a rule ABy
guarded by v;. Since every u;, v; is a conjunction of literals, it can be translated
into one IF transition rule. A literal L that is not one of =,=< or their negation,
is translated into equal(L,true). For example, Fig. 7 shows the rules from A
to By obtained for the instruction:

if (x=0) || (not(x=0) && (y=<10)) || g(x, y, z) then...

10 Y. Boichut, N. Kosmatov, L. Vigneron

where we suppose that the PROUVE identifiers x, y, z, g are translated into IF
by V_x, V_y, V_z, c_g respectively.

The last state of the translation is chosen as explained before for the choice
instruction and illustrated in Fig. 6. For example, if C; # 0 and Cy # 0, we take
C as the last state of the if instruction and add the silent transition CoC} (see
Fig. 6a)).

3.6 Scenario

The scenario section of a protocol in PROUVE describes how the role instances are
instantiated. For the moment, we translate only the basic scenario instructions:

— R(...) for a simple call of the role R (with the given parameters),

— parallel R1(...) | ...| Rn(...) end for the parallel executing of sev-
eral roles,

— forever R(...) end for an infinite sequential loop.

The translating of these instructions is realized as follows. For one or several
parallel role calls, we put the corresponding IF state predicates into the initial
state in the inits section of the IF file. Each IF role is instantiated with the
parameters given in the scenario. The Forever flag is set to false.

To model an infinite sequential loop for a role R, we put the corresponding IF
state predicate into the initial state with the parameters (given in the scenario)
and the Forever flag set to true. This flag is used as follows. Suppose that
A # 0 is the last state in the translation of the role R. We add an additional
rule for the role R that redirects it from the last state A into its initial state 1 if
Forever is true:

step step_R_...(...) :=
state_role_R(...,A,...,true,SID)
=> state_role_R(...,1,...,true,SID)

Any role execution may reach this last rule (if not blocked before) for any
initial value of the Forever flag because all other rules do not provide (and do
not change) the value of the variable Forever. This rule can be applied if and
only if the role was started with the Forever flag set to true.

4 Verification using tadsp

The TA4SP tool, whose method is detailed in [3], is one of the four official tools
of the AVISPA tool-set [1]. The originality of this tool is to verify secrecy prop-
erties for an unbounded number of sessions. The problem of secrecy verification
is handled as a problem of reachability of terms. Theoretically speaking, the pro-
tocol and some of the intruder’s abilities are specified as a set of rewriting rules
denoted by R. The initial knowledge and some other abilities of the intruder
as well as instances of sessions are represented by the language £(Ag) of a tree

Validation of PROUVE protocols using TA4SP 11

IF Specification

<
TA4SP N)

IF2TIF

tree automaton -—|— secret terms
+ approxim:ation function

[TIMBUK]

"%

SAFE / FLAWED / DON'T KNOW

Fig. 8. The TA4SP tool

automaton Ap. As in [8], the approach consists in computing the set of reachable
terms from £(Ap) using R. This set represents the terms known by the intruder.

In general, the reachability problem is undecidable. The usual approach is to
compute an over-approximation of the set of accessible terms. Thus, if a term
does not belong to the over-approximation then this term is not accessible by
rewriting from £(Ap) using R. In the framework of security protocols, a secrecy
property is satisfied if all secret terms are not in the over-approximation. On the
other hand, a property is not satisfied if at least one secret term belongs to an
under-approximation.

Our contribution in [3] consists in applying the fully-automatic verification
process described in [8], in particular for generating approximation functions.
Specifying a protocol by rewriting rules and a tree automaton remains a tedious
task and, moreover, is not well-adapted to a non-expert user.

The structure of the TA4SP tool is shown in Fig. 8. The TA4SP tool is made
up of:

— IF2TIF, a translator from IF to a specification well-adapted to TIMBUK+, and

— TIMBUK+%, a collection of tools for achieving proofs of reachability over term
rewriting systems and for manipulating tree automata. This tool has been
initially developed by Thomas Genet (IRISA — INRIA Rennes, France) and
improved to handle our approximation functions.

TA4SP admits three possible outcomes for a protocol under verification:

* Timbuk is available at http://www.irisa.fr/lande/genet /timbuk/.

12 Y. Boichut, N. Kosmatov, L. Vigneron

Protocol Diagnostic
NSPKL SECURE
NSPK INCONCLUSIVE
Needham Schroeder Symmetric Key SECURE
Denning-Sacco shared key SECURE
Yahalom SECURE
TMN INCONCLUSIVE
Andrew Secure RPC SECURE
Wide Mouthed Frog SECURE
Kaochow v1 SECURE

Fig. 9. Verification results obtained by TA4SP.

— The protocol is flawed. This is detected if an under-approximation of the
set of reachable terms contains a secret term. TA4SP tries to compute a
sufficiently large under-approximation containing at least one of the secret
terms.

— The protocol is secure. This is detected if the over-approximation contains
no secret term.

— No conclusion can be drawn. This happens if the over-approximation con-
tains a secret term while no under-approximation containing this term can
be found.

In the examples of this paper, we restrict TA4SP to over-approximation compu-
tations.

As shown in Fig. 8, the TA4SP input is an IF specification. So, the translating
of a PROUVE protocol into IF allows to verify it with TA4SP. Since the security
properties are not yet handled by PROUVE2IF, the generated IF specification
needs to be updated by hand in order to complete the initial state with the
initial intruder’s knowledge and to add the secrecy properties to check.

In Fig. 9, some results obtained with TA4SP are listed. Concerning the pro-
tocols NSPK and TMN, the conclusion INCONCLUSIVE is explained by the fact that
both protocols are well-known to be flawed.

Notice that the protocols of Fig. 9 are taken from the security protocols
open repository (SPORE?®). The protocols analyzed for this paper do not use
all the expressiveness of the PROUVE protocol specification language. However,
their specification is much more detailed than when using the standard Alice-Bob
notation; this guarantees that there is no possible ambiguity in the interpretation
of the specification. Validating secrecy properties for such protocols is already an
excellent result, and we plan to open TA4SP’s horizon to more complicated data
structures, algebraic operators, conditional rewriting rules and authentication
properties, for considering more complicated and more fine-grained protocols.

® These protocols are available at http://www.lsv.ens-cachan.fr/spore/.

Validation of PROUVE protocols using TA4SP 13

5 Conclusion and Future Work

We have described a new process for validating security protocols. It is based on
an extremely powerful specification language, PROUVE [9], extending the possi-
bilities of existing languages, such as HLPSL [5], for considering implementation-
level specifications of real-life protocols. We have built a translator for trans-
forming such specifications into IF, the rule-based language used as input by all
the back-ends of the AVISPA tool [1]. Among these back-ends, we have used
TA4sP [3] for validating confidentiality properties on several protocols.

This work illustrates the power of rule-based languages, able to represent
most of the intructions of imperative programming languages. This connection
beetween PROUVE and IF permits also to use for free the three other attack
search engines of AVISPA.

We have succeeded to validate secrecy properties of several protocols. The
extension of the translator PROUVE2IF to handle all the language PROUVE will
permit to consider much more complex protocols, but also much more complex
scenarios.

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, J. Mantovani, S. Médersheim, D. von Oheimb, M. Rusi-
nowitch, J. Santos Santiago, M. Turuani, L. Vigano, and L. Vigneron. The AVISPA
Tool for the automated validation of internet security protocols and applications.
In K. Etessami and S. Rajamani, editors, 17th International Conference on Com-
puter Aided Verification, CAV’2005, volume 3576 of Lecture Notes in Computer
Science, pages 281-285, Edinburgh, Scotland, 2005. Springer.

2. A. Armando, D. Basin, M. Bouallagui, Y. Chevalier, L. Compagna, S. Modersheim,
M. Rusinowitch, M. Turuani, L. Vigano, and L. Vigneron. The AVISS Security
Protocol Analysis Tool. In Proceedings of CAV’02, LNCS 2404, pages 349-354.
Springer, 2002.

3. Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Verification of Security
Protocols Using Approximations. Research Report RR-5727, INRIA-Lorraine -
CASSIS Project, October 2005.

4. M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Trans-
actions on Computer Systems, 8(1):18-36, 1990.

5. Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani,
S. Modersheim, and L. Vigneron. A high level protocol specification language
for industrial security-sensitive protocols. In Proceedings of Workshop on Specifi-
cation and Automated Processing of Security Requirements (SAPS), volume 180,
Linz, Austria, September 2004. Oesterreichische Computer Gesellschaft (Austrian
Computer Society).

6. G. Denker and J. Millen. CAPSL integrated protocol environment. In DARPA
Information Survivability Conference (DISCEX 2000), pages 207-221. IEEE Com-
puter Society, 2000.

7. B. Donovan, P. Norris, and G. Lowe. Analyzing a Library of Security Protocols
using Casper and FDR. In Proceedings of the Workshop on Formal Methods and
Security Protocols, 1999.

14

10.

11.

12.

13.

14.

Y. Boichut, N. Kosmatov, L. Vigneron

. T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In Proc.

17th CADE Conf., Pittsburgh (Pen., USA), volume 1831 of LNAI Springer, 2000.
S. Kremer, Y. Lakhnech, and R. Treinen. The PROUVE manual: specifications,
semantics, and logics. Technical Report 7, Projet RNTL PROUVE, December
2005.

G. Lowe. Casper: a Compiler for the Analysis of Security Protocols. Journal of
Computer Security, 6(1):53-84, 1998.

C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic Pro-
gramming, 26(2):113-131, 1996.

J. Millen and G. Denker. MuCAPSL. In DISCEX III, DARPA Information Surviv-
ability Conference and Ezxposition, pages 238-249. IEEE Computer Society, 2003.
L. C. Paulson. The Inductive Approach to Verifying Cryptographic Protocols.
Journal of Computer Security, 6(1):85-128, 1998.

D. Song. Athena: A new efficient automatic checker for security protocol analysis.
In Proceedings of the 12th IEEE Computer Security Foundations Workshop (CSFW
’99), pages 192-202. IEEE Computer Society Press, 1999.

