
Feasible Trace Reconstruction for

Rewriting Approximations

Yohan Boichut1 and Thomas Genet2

1 LIFC / Université de Franche-Comté 2 IRISA / Université de Rennes 1
16, route de Gray Campus de Beaulieu

F-25030 Besançon cedex F-35042 Rennes Cedex
INRIA/CASSIS LANDE

boichut@lifc.univ-fcomte.fr genet@irisa.fr

Abstract. Term Rewriting Systems are now commonly used as a mod-
eling language for programs or systems. On those rewriting based mod-
els, reachability analysis, i.e. proving or disproving that a given term
is reachable from a set of input terms, provides an efficient verification
technique. For disproving reachability (i.e. proving non reachability of a
term) on non terminating and non confluent rewriting models, Knuth-
Bendix completion and other usual rewriting techniques do not apply.
Using the tree automaton completion technique, it has been shown that
the non reachability of a term t can be shown by computing an over-
approximation of the set of reachable terms and prove that t is not in
the approximation. However, when the term t is in the approximation,
nothing can be said. In this paper, we refine this approach and propose
a method taking advantage of the approximation to compute a rewriting
path to the reachable term when it exists, i.e. produce a counter exam-
ple. The algorithm has been prototyped in the Timbuk tool. We present
some experiments with this prototype showing the interest of such an
approach w.r.t. verification of rewriting models.

1 Introduction

In the rewriting theory, the reachability problem is the following: given
a term rewriting system (TRS) R and two terms s and t, can we de-
cide whether s →∗

R t or not? This problem, which can easily be solved
on strongly terminating TRS (by rewriting s into all its possible re-
duced forms and compare them to t), is undecidable on non terminating
TRS. There exists several syntactic classes of TRSs for which this prob-
lem becomes decidable: some are surveyed in [FGVTT04], more recent
ones are [GV98,TKS00]. In general, the decision procedures for those
classes compute a finite tree automaton recognizing the possibly infi-
nite set of terms reachable from a set E ⊆ T (F) of initial term, by
R, denoted by R∗(E). Then, provided that s ∈ E, those procedures

check whether t ∈ R∗(E) or not. On the other hand, outside of those
decidable classes, one can prove s 6→∗

R t using over-approximations of
R∗(E) [Jac96,Gen98,FGVTT04] and proving that t does not belong to
this approximation.

Recently, reachability analysis turned out to be a very efficient verifica-
tion technique for proving properties on infinite systems modeled by TRS.
Some of the most successful experiments, using proofs of s 6→∗

R t, were
done on cryptographic protocols [Mon99,GK00,OCKS03,GTTVTT03],
[BHK05] where protocols and intruders are described using a TRS R,
E represents the set of initial configurations of the protocol and t a pos-
sible flaw. Then reachability analysis can detect the flaw (if s →∗

R t) or
prove its absence (if ∀s ∈ E : s 6→∗

R t). However, the main drawback of
those techniques based on tree automata, is that if t ∈ R∗(E) then we
have the proof but not the rewriting path (also denoted by trace in the
following). Indeed, from the tree automaton recognizing R∗(E) it is not
possible to reconstruct the rewrite path from a possible s to t (i.e. the
attack leading to a flaw in the context of cryptographic protocols). On
the other hand, when dealing with an over-approximation App ⊇ R∗(E)
if t ∈ App then there is no way to check whether t ∈ R∗(E) (t is really
reachable from s) or if t ∈ App \ R∗(E) (t is an artefact of the approx-
imation). This problem becomes crucial when using approximations to
prove security and safety properties. In that case, producing counter ex-
amples on a faulty specification makes the user more confident with the
tool when it finally claims that the property is proven on a fixed version
of the specification.

This paper tackles those two problems and proposes a solution that
automatically gives the rewrite path when R∗(E) is constructed exactly
and helps to discriminate between terms of R∗(E) and terms of the ap-
proximation when R∗(E) is over-approximated.

This paper is organized as follows. In section 2, we give the basic defini-
tions for TRS and tree automata. In section 3, we recall the tree automata
completion technique. In section 4, we define the trace reconstruction
method we propose. Finally, in section 5, we present some experimenta-
tions done with our prototype implemented within Timbuk [GVTT00] a
tree automata completion tool.

2 Preliminaries

Comprehensive surveys for TRSs and tree automata can be found respec-
tively in [BN98] and in [CDG+02].

Let F be a finite set of symbols, each one with an arity and let X
be a countable set of variables. T (F ,X) denotes the set of terms, and
T (F) denotes the set of ground terms (terms without variables). The
set of variables of a term t is denoted by Var(t). A substitution is a
function σ from X into T (F ,X), which can uniquely be extended to an
endomorphism of T (F ,X). A position p for a term t is a word over N.
The empty sequence ε denotes the top-most position. The set Pos(t) of
positions of a term t is inductively defined by:

– Pos(t) = {ε} if t ∈ X
– Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p
denotes the term obtained by replacement of the subterm t|p at position
p by the term s. For any term s ∈ T (F ,X), we denote by PosF (s) the
set of functional positions in s, i.e. {p ∈ Pos(s) | Root(s|p) ∈ F} where
Root(t) denotes the symbol at position ε in t. Similarly, we denote by
Posx(s) the set of positions of variable x ∈ X occuring in s, i.e. the set
{p ∈ Pos(s) | s|p = x}.

A TRS R is a set of rewrite rules l→ r, where l, r ∈ T (F ,X), l 6∈ X ,
and Var(l) ⊇ Var(r). A rewrite rule l → r is left-linear (resp. right-linear)
if each variable of l (resp. r) occurs only once in l (resp. in r). A rule is
linear if it is both left and right-linear. A TRSR is linear (resp. left-linear,
right-linear) if every rewrite rule l → r of R is linear (resp. left-linear,
right-linear). The TRSR induces a rewriting relation→R on terms whose
reflexive transitive closure is denoted by →?

R. The set of R-descendants
of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→?

R t}.
Let Q be an infinite set of symbols, with arity 0, called states such

that Q∩ F = ∅. T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalized transition). A transition
is a rewrite rule c → q, where c is a configuration i.e. c ∈ T (F ∪Q)
and q ∈ Q. A normalized transition is a transition c → q where c =
f(q1, . . . , qn), f ∈ F , Arity(f) = n, and q1, . . . , qn ∈ Q.

An epsilon transition is a transition of the form q → q ′ where q and q′ are
states. Any set of transition ∆ ∪ {q → q ′} can be equivalently replaced
by ∆ ∪ {c→ q′ | c→ q ∈ ∆}.

Definition 2 (Bottom-up non-deterministic finite tree automa-
ton). A bottom-up non-deterministic finite tree automaton (tree automa-
ton for short) is a quadruple A = 〈F ,Q,Qf ,∆〉, where Qf ⊆ Q and ∆ is
a set of normalized transitions.

The rewriting relation on T (F ∪Q) induced by the transitions of A
(the set ∆) is denoted by →∆. When ∆ is clear from the context, →∆

will also be denoted by →A. Similarly, by notation abuse, we will often
note q ∈ A and t→ q ∈ A respectively for q ∈ Q and t→ q ∈ ∆.

Definition 3 (Recognized language). The tree language recognized by
A in a state q is L(A, q) = {t ∈ T (F) | t→?

A q}. The language recognized
by A is L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only
if it can be recognized by a tree automaton. A state q is a dead state if
L(A, q) = ∅.

Example 1. Let A be the tree automaton 〈F ,Q,Qf ,∆〉 such that F =
{f, g, a}, Q = {q0, q1, q2}, Qf = {q0} and ∆ = {f(q0) → q0, g(q1) →
q0, g(q2) → q2, a → q1}. In ∆ transitions are normalized. A transition
of the form f(g(q2)) → q0 is not normalized. The term g(a) is a term
of T (F ∪Q) (and of T (F)) and can be rewritten by ∆ in the following
way: g(a) →∆ g(q1) →∆ q0. Note that L(A, q1) = {a} and L(A, q0) =
{f(g(a)), f(f(g(a))), . . .} = {f ?(g(a))}. Note also that L(A, q2) = ∅ since
no term of T (F) rewrites to q2, hence q2 is a dead state.

3 Tree automata completion

Given a tree automaton A and a TRS R, the tree automata completion
algorithm, proposed in [Gen98,FGVTT04], computes a tree automaton
Ak such that L(Ak) = R∗(L(A)) when it is possible (for the classes of
TRSs covered by this algorithm see [FGVTT04]) and such that L(Ak) ⊇
R∗(L(A)) otherwise.

The tree automata completion works as follows. From A = A0 com-
pletion builds a sequence A0.A1 . . .Ak of automata such that if s ∈ L(Ai)
and s →R t then t ∈ L(Ai+1). If we find a fixpoint automaton Ak

such that R∗(L(Ak)) = L(Ak), then we have L(Ak) = R∗(L(A0)) (or
L(Ak) ⊇ R

∗(L(A)) if R is not in one class of [FGVTT04]). To build
Ai+1 from Ai, we achieve a completion step which consists in finding crit-
ical pairs between →R and →Ai

. For a substitution σ : X 7→ Q and a
rule l→ r ∈ R, a critical pair is an instance lσ of l such that there exists
q ∈ Q satisfying lσ →∗

Ai
q and lσ →R rσ. For every critical pair detected

between R and Ai such that rσ 6→∗
Ai

q, Ai+1 is constructed by adding
a new transition rσ → q to Ai such that Ai+1 recognizes rσ in q, i.e.
rσ →Ai+1

q.

lσ

Ai

R
rσ

q

∗

Ai+1

∗

However, the transition rσ → q is not necessarily a normalized transition
of the form f(q1, . . . , qn) → q and so it has to be normalized first. For
example, to normalize a transition of the form f(g(a), h(q ′))→ q, we need
to find some states q1, q2, q3 and replace the previous transition by a set
of normalized transitions: {a→ q1, g(q1)→ q2, h(q′)→ q3, f(q2, q3)→ q}.

Assume that q1, q2, q3 are new states, then adding the transition it-
self or its normalized form does not make any difference. Now, assume
that q1 = q2, the normalized form becomes {a → q1, g(q1) → q1, h(q′) →
q3, f(q1, q3)→ q}. This set of normalized transitions represents the regu-
lar set of non normalized transitions of the form f(g?(a), h(q′))→ q which
contains the transition we want to add but also many others. Hence, this
is an over-approximation. We could have made an even more drastic ap-
proximation by identifying q1, q2, q3 with q, for instance.

For every transition, there exists an equivalent set of normalized tran-
sitions. Normalization consists in decomposing a transition s → q, into
a set Norm(s → q) of normalized transitions. The method consists in
abstracting subterms s′ of s s.t. s′ 6∈ Q by states of Q.

Definition 4 (Abstraction function). Let F be a set of symbols, and
Q a set of states. An abstraction function α maps every normalized con-
figuration into a state:

α : {f(q1, . . . , qn) | f ∈ Fn and q1, . . . qn ∈ Q} 7→ Q

Definition 5 (Abstraction state). Let F be a set of symbols, and Q a
set of states. For a given abstraction function α and for all configuration
t ∈ T (F ∪Q) the abstraction state of t, denoted by topα(t), is defined by:

1. if t ∈ Q, then topα(t) = t,

2. if t = f(t1, . . . , tn) then topα(t) = α(f(topα(t1), . . . , topα(tn))).

Definition 6 (Normalization function). Let F be a set of symbols,
Q a set of states, ∆ a set of normalized transitions, s → q a transition
s.t. s ∈ T (F ∪Q) and q ∈ Q, and α an abstraction function. The set
Normα(s→ q) of normalized transitions is inductively defined by:

1. if s = q, then Normα(s→ q) = ∅, and

2. if s ∈ Q and s 6= q, then Normα(s→ q) = {c→ q | c→ s ∈ ∆}, and

3. if s = f(t1, . . . , tn), then Normα(s→ q) =

{f(topα(t1), . . . , topα(tn))→ q} ∪
⋃n

i=1
Normα(ti → topα(ti)).

Example 2. Let α an abstraction function such that: α = {g(q1, q0) 7→
q, b 7→ q1, a 7→ q2)}. Consequently, topα = {q0 7→ q0, b 7→ q1, a 7→
q2, g(b, q0) 7→ q}. The transition f(a, g(b, q0)) → q can be normalized
using Normα in the following way :

Normα(f(a, g(b, q0))→ q) = {f(topα(a), topα(g(b, q0)))→ q}
∪Normα(a→ q2) ∪Normα(g(b, q0)→ q)

By applying Definition 6 on Normα(a → q2) and Normα(g(b, q0) → q),
we obtain that Normα(f(a, g(b, q0)) → q) = {f(q2, q) → q, a → q2, b →
q1, g(q1, q0)→ q}.

With different abstraction function, on the same transition, one can
obtain different normalizations. Hence, the precision of the fixpoint au-
tomaton Ak depends on the abstraction α.

Definition 7 (Automaton completion). Let Ai = 〈F ,Qi,Qf ,∆i〉 be
a tree automaton, R a TRS and α an abstraction function. The one step
completed automaton Ai+1 is a tree automaton 〈F ,Qi+1,Qf ,∆i+1〉 such
that:

∆i+1 = ∆i ∪
⋃

l→r∈R, q∈Q, σ:X 7→Q, lσ→∗

∆i
q

Normα(rσ → q)

Qi+1 = {q | c→ q ∈ ∆i+1}

4 Reconstruction Method

To make the reading of this paper easier, we give once for all the notations
used in the remainder of this paper:

– R is a left-linear TRS;

– α is a given abstraction function (following Definition 4);

– A0,A1, . . . ,Ak is a finite sequence of automata obtained by the com-
pletion algorithm presented in Definition 7 for a given abstraction
function α;

– Ak is a fixpoint automaton obtained from A0,R and α;

– ∆i is the set of transitions of the automaton Ai;

– Qf is the set of final states of automata A0,A1, . . . ,Ak.

We suppose that for all i = 0, . . . , k: ∆i are a sets of normalized
transitions. In particular all ∆i do not contain epsilon transitions (see
Definition 1).

Definition 8 (∆−Unifier). Let ∆ be a set of transitions, t1 ∈ T (F ,X),
and t2 ∈ T (F ∪Q). A substitution σ : X 7→ T (F ∪Q) is a ∆-unifier of
t1 and t2 if and only if

1. t1σ →
∗
∆ t2, and

2. for all x ∈ Var(t1):

– if Posx(t1) ∩ PosF (t2) 6= ∅ then σ(x) = t2|p′ for some p′ ∈
Posx(t1) ∩ PosF (t2).

– otherwise, σ(x) = q where q ∈ Q.

We denote by ⇑∆(t1, t2) the set of ∆−unifiers of t1 and t2.

The example below illustrates that, in general, for two terms t1 and t2
there exist several ∆-unifiers. The example also illustrates the case when
t1 is not linear. After the example, in Lemma 1, we show that for two
terms t1 and t2 the set ⇑∆(t1, t2) is finite.

Example 3. Let t1 = f(g(x), h(y, y)), t2 = f(q1, h(g(a), g(q2))) and a
set of transitions ∆ containing at least the following transitions a →
q2, g(q) → q1, g(q1) → q1 and g(q2) → q1. The following two substi-
tutions σ1 = {x 7→ q, y 7→ g(a)} and σ2 = {x 7→ g(q1), y 7→ g(a)}
are ∆-unifiers of t1 and t2, but σ3 = {x 7→ q1, y 7→ g(q2)} is not since
g(q2) 6→

∗
∆ g(a) and thus t1σ3 6→

∗
∆ t2.

Lemma 1. For all ∆, t1 and t2, the set ⇑∆(t1, t2) is finite.

Proof. Given a term t ∈ T (F ∪Q), let us denote by Sub(t) the set of all
subterms of t, i.e. Sub(t) = {t|p | p ∈ Pos(t)}. By definition of ⇑∆(t1, t2),
any substitution σ of this set maps a variable either to a state or to a
subterm of t1. Hence ⇑∆(t1, t2) ⊂ (Var(t1) 7→ (Q∪Sub(t1)). Since Var(t1),
Q and Sub(t1) are finite then so is (Var(t1) 7→ (Q ∪ Sub(t1)) and thus
⇑∆(t1, t2) is finite.

During the completion algorithm presented in Definition 7, critical
pairs are detected. The role of Occurency of a critical pair (OCCP) is to
store the information on every critical pair found during completion (the
applied rule, the substitution, the position) so as to infer information on
feasible traces afterwards.

Definition 9 (Occurency of a Critical Pair(OCCP)). Let Ak be a
fixpoint tree automaton obtained from A0 using the completion algorithm
of Definition 7 such that Ak = Ak+1 and k ≥ 0. An OCCP is a triple
〈l → r, ρ, q〉 where:

– l→ r is a rewriting rule of R;
– ρ a substitution of variables in Var(l) by states in Q;
– q ∈ Q;
– lρ→∗

∆k
q

Let OCCPk be the set of all OCCP built on Ak.

Our method of trace reconstruction is based on data back-tracking on
the automaton Ak = 〈F ,Qk ,Qf ,∆k〉 obtained by the completion of an
automaton A0 = 〈F ,Q0,Qf ,∆0〉 by a TRS R.

From Ak, OCCPk and a term t ∈ L(Ak), we need to find t′ ∈ L(Ak)
a predecessor of t i.e. such that t′ →R t. Then we search for a predecessor
of t′ and so on until reaching a term t0 ∈ L(A0). Before defining formally
the set of predecessors of a term t from Ak and OCCPk, we define a
particular substitution constructor.

Definition 10. σ
⊔

ρ = σ ∪ {x 7→ t | x 6∈ dom(σ) ∧ x 7→ t ∈ ρ}

Example 4. Let σ1, σ2 : X 7→ T (F ∪Q) be two substitutions such that:

– σ1 = {x→ a, y → q1} and
– σ2 = {x→ q2, y → q3, z → b}.

Thus, σ1

⊔
σ2 = {x 7→ a, y 7→ q1, z 7→ b} and σ2

⊔
σ1 = {x 7→ q2, y 7→

q3, z 7→ b} = σ2.

Definition 11 (Pred). Let cp = 〈l→ r, ρ, q〉 be an OCCP such that cp ∈
OCCPk. The set of predecessors of t ∈ T (F ∪Q) w.r.t. cp at position p ∈
Pos(t) is defined by Pred(t, cp, p) = {t[lσ

⊔
ρ]p | σ ∈ ⇑∆k

(r, t|p) and rσ →∗
∆k

rρ}.

Example 5. Let ∆ be a set of transitions containing the transitions g(q2)→
q3, a → q2, g(q1) → q1, g(q4) → q1 and l → r = f(x, y) → f(g(x), h(y, y))
be a rewriting rule. Let cp = 〈l → r, q, ρ〉 be an OCCP where ρ =
{x 7→ q1, y 7→ q3} and t = f(q1, h(g(a), g(q2))) be a term over T (F ∪Q).
For the position ε and the term t, Pred(t, cp, ε) = {f(q1, g(a))}. Indeed,
the only ∆−unifier σ ∈ ⇑∆(r, t) respecting the condition rσ →∗

∆ rρ is
σ = {x 7→ g(q1), y 7→ g(a)}. Consequently, by applying the substitution
σ

⊔
ρ on l, we obtain f(g(q1), g(a)).

Thus, by iterating this process on the terms obtained at each step, we
are able to build some sequences of terms as shown in Definition 12.

Definition 12 (Sequence). Let t0, . . . , tn ∈ T (F ∪Q) and q ∈ Q such
that ∀i = 1 . . . n : ti →

∗
∆k

q. Let cp1, . . . , cpn ∈ OCCPk and p1, . . . , pn ∈
N
∗ such that ∀i = 1 . . . n : cpi = 〈li → ri, ρi, qi〉. If ∀i = 1 . . . n : ti−1 ∈

Pred(ti, cpi, pi) then

tn
cpn,pn
← tn−1 . . .

cp1,p1
← t0.

is a sequence from tn to t0.

The following theorem relates sequences to rewriting paths. Roughly,
if a sequence starts from t and ends up on a term t0 ∈ L(A0) then
there exist a rewriting path from t0 to t. Note that if t0 6∈ T (F) (but
t0 ∈ T (F ∪Q)) then there exists a term t′0 ∈ T (F) and t′0 ∈ L(A0) such
that t′0 →A0

t0 and t′0 →
∗
R t.

Theorem 1 (Correctness). Given t ∈ L(Ak) and a final state qf ∈ Qf

such that t →∗
∆k

qf , if there exists a sequence tn
cpn,pn
← tn−1 . . .

cp1,p1
← t0

such that t = tn, ∀i = 0 . . . n : ti →
∗
∆ qf and t0 →

∗
∆0

qf then there exists
a term

s ∈ L(A0), s→∗
∆0

t0 and s→∗
R t.

Moreover, there exists a rewrite path (or trace)

sn
rln,pn
→ sn−1 . . . s1

rl0,p0
→ t

where rli = li → ri is the rule of the OCCP cpi, sn = s, and si−1 =
si[riµi]pi

and lµi = si|pi
.

Proof (Sketch). The proof can be done by induction on the length of the
sequence. See [BG06] for more details.

Not only to be correct, our method is also complete in the sense that
if there exists a rewriting path between two terms then our method finds
at least one path. However, because of Definition 8, only minimal paths
are constructed. Thus, between two terms s and t it is not possible to
find all the possible traces but only minimal ones.

Theorem 2 (Completeness).
Let t, u ∈ L(Ak). If u →∗

R t then there exists t0, . . . , tn−1 ∈ L(Ak),

cp1, . . . , cpn ∈ OCCPk, p1, . . . pn ∈ N
∗ and a sequence t

cpn,pn
← tn−1 . . .

cp1,p1
←

t0 such that u→∗
∆ t0.

Proof (Sketch). The proof is done by induction of the length of the rewrite
derivation u→∗

R t. See [BG06] for details.

Thus, thanks to Theorem 2 and Theorem 1, we can define an algo-
rithm that builds a valid sequence. For constructing a valid sequence, we
start from a term t, construct the finite set of predecessors of t for all
positions of t and all the computed OCCPs. Then, we repeat non deter-
ministically the same operation on all the predecessors of t until finding
a term t0 →

∗
∆0

qf where qf is a final state of A0. Of course, since we
are dealing with infinite models, it is not always possible to conclude be-
cause trace reconstruction may diverge if it starts from a term that is not
reachable.

5 Experimental Results

Timbuk[GVTT01,GVTT00] was used to prototype the method presented
in Section 4. Timbuk is a collection of tools for achieving proofs of reach-
ability over TRS and for manipulating tree automata (bottom-up non-
deterministic finite tree automata).

In particular, Timbuk implements the tree automata completion al-
gorithm presented in Section 3. To reconstruct a trace, the process is the
following: Let A0, R, α and t be respectively a tree automaton, a TRS, an
abstraction function and a term to find. Timbuk performs the completion
of A0 by R using the abstraction function α.

If the term t is not recognized by the completed tree automaton,
then t is not reachable. Otherwise, either it is reachable or it is in the
over-approximation part. To discriminate between the two solutions, we
can use trace reconstruction. First, the set of OCCP is computed. Then,
given t and a natural N , we search the tree of possible sequences for a
predecessor of t in L(A0), breadth-first and up to a depth N . Our system
returns the first found trace which is one of the minimal traces.

Three different results can be obtained:

1. t0 →R . . .→R t: a trace is found and returned;
2. Term of the approximation: No trace can be provided because t

is in the approximation part. This can be shown when the tree of
predecessors of t is of depth M such that M ≤ N and no term of the
tree belongs to the initial set, i.e. L(A0).

3. Cannot conclude: The tree of predecessors of t has been explored up
to a depth N (and depth of the tree is not bounded by N) without
finding a term of the initial set.

Note that in practice, we also use a generalization of this: patterns of
forbidden terms, tp ∈ T (F ,X), instead of a single term t. In those cases,
the trace reconstruction process is very similar: we look for substitutions
σ : X 7→ Q such that tpσ is recognized by the over-approximation. Then,
we can start reconstruction from tpσ. If such a σ exists then we know
that there exists at least one substitution ρ : X 7→ T (F) such that tpρ

is recognized by the over-approximation (no dead states). Then we can
start reconstruction from tpρ.

Now, let us present some experimentations on the verification of a
simple two processes counting system. The following TRS describes the
behavior of two processes each one equipped with an input list and a
FIFO. Each process receives a list of symbols ’+’ and ’−’ to count, as an
input. One of the processes, say P+, is counting the ’+’ symbols and the
other one, say P− is counting the ’−’ symbols. When P+ receives a ’+’,
it counts it and when it receives a ’−’, it adds the symbol to P−’s FIFO.
The behavior of P− is symmetric. When a process’ input list and FIFO
is empty then it stops and gives the value of its counter.

Here is a possible rewrite specification of this system, given in the Tim-
buk language, where S(, , ,) represents a configuration with a process
P+, a process P−, P+’s FIFO and P−’s FIFO. The term Proc(,) rep-
resents a process with an input list and a counter, add(,) implements
adding of an element in a FIFO, and cons, nil, s, o are the usual con-
structors for lists and natural numbers.

Ops

S:4 Proc:2 Stop:1 cons:2 nil:0 plus:0 minus:0 s:1 o:0 end:0 add:2

Vars x y z u c m n

TRS R1

add(x, nil) -> cons(x, nil)

add(x, cons(y, z)) -> cons(y, add(x, z))

S(Proc(cons(plus, y), c), z, m, n) -> S(Proc(y, s(c)), z, m, n)

S(Proc(cons(minus, y), c), u, m, n) -> S(Proc(y, c), u, m, add(minus, n))

S(x, Proc(cons(minus, y), c), m, n) -> S(x, Proc(y, s(c)), m, n)

S(x, Proc(cons(plus, y), c), m, n) -> S(x, Proc(y, c), add(plus, m), n)

S(Proc(x, c), z, cons(plus,m), n) -> S(Proc(x, s(c)), z, m, n)

S(x, Proc(z, c), m, cons(minus,n)) -> S(x, Proc(z, s(c)), m ,n)

S(Proc(nil, c), z, nil, n) -> S(Stop(c), z, nil, n)

S(x, Proc(nil, c), m, nil) -> S(x, Stop(c), m, nil)

On this specification, we aim at proving that, for any input lists, there
is no possible deadlock. In this example, a deadlock is a configuration
where a process has stopped but there are still symbols to count in its
FIFO, i.e. terms of the form (pattern tp): S(Stop(x), z, cons(plus,

u), c). The set of initial configurations of the system is described by the

following tree automaton, where each process has a counter initialized to
0 and has an unbounded input list (with both ’+’ and ’−’) and with at
least one symbol.

Automaton A1

States q0 qinit qzero qnil qlist qsymb

Final States q0

Transitions

cons(qsymb, qnil) ->qlist minus -> qsymb nil -> qnil

Proc(qlist, qzero) -> qinit plus -> qsymb o -> qzero

S(qinit, qinit, qnil, qnil) -> q0 cons(qsymb, qlist) -> qlist

Let α1 be the (constant) abstraction function normalizing every con-
figuration into a single state q, i.e. α1 : T (F ∪Q) 7→ {q} and let α2 be
the abstraction function normalizing every configuration into a new state.
Roughly, α1 and α2 are respectively the worst and the better abstraction
functions. Using completion, α1 (resp. α2) produces the most approxi-
mated (resp. precise) automaton. By running Timbuk on the previous
specification, with α1, we can obtain within a few seconds a tree automa-
ton over-approximating R1∗(L(A1)). However, we cannot prove that the
system is deadlock free. Indeed, when looking for patterns S(Stop(x),

z, cons(plus, u), c) in the over-approximation, some solutions are
found, i.e. there exists substitutions σ : X 7→ T (F) such that S(Stop(x),
z, cons(plus, u), c)σ is recognized by the tree automaton. Without
trace reconstruction, there was no mean to figure out if it was a real
problem or an approximation artefact. Now, using trace reconstruction,
we can find automatically a counter-example, i.e. the smallest rewriting
path between a particular term of the infinite language L(A1) and a term
matching S(Stop(x), z, cons(plus, u), c). The rewriting path ob-
tained by our prototype is given using the following syntax: s -[| applied
rule, position]-> s′ . . .

Statistics:

- Number of nodes visited: 23921

- Computation Time: 11.39 seconds

- Trace(s):

S(Proc(cons(plus,nil),o),Proc(cons(plus,nil),o),nil,nil)

-[|S(Proc(cons(plus,y),c),z,m,n) -> S(Proc(y,s(c)),z,m,n),epsilon|]->

S(Proc(nil,s(o)),Proc(cons(plus,nil),o),nil,nil)

-[|S(Proc(nil,c),z,nil,n) -> S(Stop(c),z,nil,n),epsilon|]->

S(Stop(s(o)),Proc(cons(plus,nil),o),nil,nil)

-[|S(x,Proc(cons(plus,y),c),m,n) ->

S(x,Proc(y,c),add(plus,m),n),epsilon|]->

S(Stop(s(o)),Proc(nil,o),add(plus,nil),nil)

-[|add(x,nil) -> cons(x,nil),epsilon.3|]->

S(Stop(s(o)),Proc(nil,o),cons(plus,nil),nil)

Thanks to trace reconstruction, our system has found the two neces-
sary conditions for the problem to occur:

– the P− process has to have at least one ’+’ symbol in its input list
(initial term), and

– the P+ process needs to count all the symbols of its list and terminates
before the P− process starts to store ’+’ symbols in the P+ FIFO
(rewriting sequence)

then P+ is stopped with a non-empty FIFO. Note that, using α2 instead of
α1, completion does not terminate but after a finite number of completion
steps, a similar trace can be found by visiting fewer nodes (113 nodes in
2.86 seconds) thanks to a more precise approximation.

The problem found here can be fixed by adding an additional symbol:
’end’ which has to be added by process P+ to P− FIFO when P+ has
reached the end of its list, and symmetrically for P−. Then, a process
can stop if and only if it has reached the end of its list and if it has read
the ’end’ symbol in its FIFO. On the corrected TRS, it is possible to
compute an over-approximation of all reachable terms with Timbuk. In
the obtained approximation, no dead-lock situation occurs, proving the
property [BG06].

In some other experiments, we used approximations and trace re-
construction, to find attacks in rewrite specifications of cryptographic
protocols [BG06]. On those examples with more complex search trees,
the obtained results show that computing first an over-approximation
of reachable terms and then searching for a particular reachable term
provides a very efficient alternative to usual breath-first search in the
rewriting tree. In particular, in [BG06] we give an example where trace
reconstruction succeeds and Maude [CDE+01] exhausts memory.

6 Conclusion

In this paper, we have presented a trace reconstruction method for over-
approximations of sets of reachable terms. The proposed algorithm takes
advantage of the completion-based approximation construction to prune
the search space in the set of all possible traces. Completeness of the
approach ensures that if a trace exists then it can be obtained by trace
reconstruction, whatever the approximation may be. However, since we
are dealing with infinite models, it is not always possible to conclude
because trace reconstruction may diverge if it starts from a term that is
not reachable.

With regards to other works in the domain, the first main interest of
our technique is that it can find reachable terms on infinite sets (regular
tree languages) of initial input terms. As shown on the counting processes
example, trace reconstruction permits to find the exact rewriting path to
a reachable term from an infinite set of possible input terms. When (1)
the set of initial terms is infinite and (2) the term rewriting system is not
confluent not terminating, this problem can hardly be tackled by usual
rewriting tools such as Elan[BKK+98] or Maude[CDE+01] as well as by
completion based tools like Waldmeister[GHLS03]. However, in order to
compare with some existing tools, we also achieved some experiments on
finite sets of initial terms in the case of cryptographic protocols [BG06]. It
comes up that, for reachability analysis and in some particular cases, our
prototype can compete with a cutting edge rewrite engine like Maude.

Furthermore, when every problem is corrected in the rewrite speci-
fication, the usual tree automata completion algorithm is able to prove
that problem/attack/deadlock are not reachable, hence cannot happen
in the system, by over-approximating the set of reachable terms. This
is to be used in the TA4SP tool (based on Timbuk) which is part of
the AVISPA [ABB+05] protocol verification tool so as to discriminate
between reachable terms (real attacks) and terms of the approximation.

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuel-
lar, P. Hankes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani,
S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santos Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the
automated validation of internet security protocols and applications. In
CAV’2005, volume 3576 of LNCS, pages 281–285, Edinburgh, Scotland,
2005. Springer.

[BG06] Y. Boichut and Th. Genet. Trace reconstruction. Research Re-
port RR2006-02, LIFC - Laboratoire d’Informatique de l’Université
de Franche Comtéand IRISA / Université de Rennes, 2006.
http://lifc.univ-fcomte.fr/publis/papers/Year/2006.html.

[BHK05] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Verification
of Security Protocols Using Approximations. Research Report RR-5727,
INRIA-Lorraine - CASSIS Project, October 2005.

[BKK+98] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeis-
sen. An overview of elan. In Proc. 2nd WRLA, ENTCS, Pont-à-mousson
(France), 1998. Elsevier.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[CDE+01] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and José F. Quesada. Maude: Specifica-

tion and programming in rewriting logic. Theoretical Computer Science,
2001.

[CDG+02] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata/, 2002.

[FGVTT04] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis
over Term Rewriting Systems. JAR, 33 (3-4):341–383, 2004.

[Gen98] T. Genet. Decidable approximations of sets of descendants and sets of
normal forms. In Proc. 9th RTA Conf., Tsukuba (Japan), volume 1379
of LNCS, pages 151–165. Springer-Verlag, 1998.

[GHLS03] J.-M. Gaillourdet, Th. Hillenbrand, B. Löchner, and H. Spies. The new
Waldmeister loop at work. In F. Baader, editor, Proc. CADE’2003,
volume 2741 of LNAI, pages 317–321. Springer-Verlag, 2003.

[GK00] T. Genet and F. Klay. Rewriting for Cryptographic Protocol Verifica-
tion. In In Proc. CADE’2000, volume 1831 of LNAI. Springer-Verlag,
2000.

[GTTVTT03] T. Genet, Y.-M. Tang-Talpin, and V. Viet Triem Tong. Verification of
Copy Protection Cryptographic Protocol using Approximations of Term
Rewriting Systems. In In Proc. of WITS’2003, 2003.

[GV98] P. Gyenizse and S. Vágvölgyi. Linear Generalized Semi-Monadic Rewrite
Systems Effectively Preserve Recognizability. TCS, 194(1-2):87–122,
1998.

[GVTT00] T. Genet and V. Viet Triem Tong. Timbuk 2.0 – a Tree
Automata Library. IRISA / Université de Rennes 1, 2000.
http://www.irisa.fr/lande/genet/timbuk/.

[GVTT01] T. Genet and Valérie Viet Triem Tong. Reachability Analysis of Term
Rewriting Systems with timbuk. In Proc. 8th LPAR Conf., Havana
(Cuba), volume 2250 of LNAI, pages 691–702. Springer-Verlag, 2001.

[Jac96] F. Jacquemard. Decidable approximations of term rewriting systems.
In H. Ganzinger, editor, Proc. 7th RTA Conf., New Brunswick (New
Jersey, USA), pages 362–376. Springer-Verlag, 1996.

[Mon99] D. Monniaux. Abstracting Cryptographic Protocols with Tree Au-
tomata. In Proc. 6th SAS, Venezia (Italy), 1999.

[OCKS03] F. Oehl, G. Cécé, O. Kouchnarenko, and D. Sinclair. Automatic Approx-
imation for the Verification of Cryptographic Protocols. In In Proceed-
ings of FASE’03, volume 2629 of LNCS, pages 34–48. Springer-Verlag,
2003.

[TKS00] T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term
rewriting systems effectively preserve recognizability. In Proc. 11th RTA
Conf., Norwich (UK), volume 1833 of LNCS. Springer-Verlag, 2000.

