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Approximations de réécriture pour le prototypage rapided'analyseurs statiquesRésumé : Cet article dé�nit un nouveau cadre pour le prototypage rapide d'analyseursstatiques basé sur des techniques de réécriture. A partir d'un système de réécriture représen-tant la sémantique opérationnelle du langage de programmation cible et d'un programme àanalyser, nous construisons automatiquement une sur-approximation de l'ensemble des ter-mes atteignables, c-à-d des états de programme atteignables. A l'aide de ces approximations,il est possible de prouver une grande variété de propriétés de sûreté et de sécurité expriméessous la forme d'un problème de (non) atteignabilité. Comparée à l'analyse statique basée surl'interprétation abstraite, une caractéristique intéressante de cette approche est qu'elle estcorrecte par construction. Cette approche permet de prototyper rapidement des analyseursstatiques car pour modi�er le type d'analyse e�ectué, il est su�sant de modifer l'ensemblede règles de réécriture dé�nissant l'approximation. A�n d'illustrer cette méthode de véri�-cation sur un langage de programmation réaliste, nous avons choisi de l'instancier avec lasémantique de la machine virtuelle de Java (JVM) et d'analyser des programmes Java byte-code. Nous montrons comment compiler un programme Java en un système de réécritureéquivalent et nous montrons également comment rapidement spéci�er et implémenter desanalyses de classe simples en dé�nissant des règles d'approximation.Mots-clé : Systèmes de réécriture, Analyse statique, Atteignabilité, Approximation, Java,Bytecode, Automates d'arbres







Rewriting Approximations for Fast Prototyping of Static Analyzers 31 IntroductionThe aim of this paper is to show how to combine rewriting theory with principles fromabstract interpretation in order to obtain a fast and reliable methodology for prototypingstatic analyzers for programs. Rewriting theory and in particular reachability analysis basedon tree automata has proved to be a powerful technique for analyzing particular classes ofsoftware such as cryptographic protocols [11, 7, 12]. In this paper we set up a frameworkthat allows to apply those techniques to a general programming language. Our frameworkconsists of three parts:
• an encoding of the operational semantics of the language as a term rewriting system(TRS for short),
• a translation scheme for transforming programs into rewrite rules,
• and an over-approximation of the set of reachable program states represented by a treeautomaton, based on the tree automata completion algorithm [7].In this paper, we instantiate this framework on a real test case, namely Java. Weencode the Java Virtual Machine (JVM for short) operational semantics and Java bytecodeprograms into TRS and construct over-approximation of JVM states.With regards to rewriting, the main contribution of this paper is to have scaled upa theoretical construction, namely tree automata completion, to the veri�cation of Javabytecode programs. With regards to static analysis, the contribution of this paper is toshow that regular approximations can be used as a foundational mechanism for ensuring, byconstruction, safety of static analyzers. This paper is a �rst step in that direction and showsthat the approach can already be used to achieve standard class analysis on Java bytecodeprograms. Moreover, using approximation rules instead of abstract domains makes analysiseasier to prototype and to tune. This is of great interest, when a standard analysis istoo coarse, since our technique permits to adapt the analysis to the property to prove andpreserve safety.The paper is organized as follows. Section 2 introduces the formal background of therewriting theory. Section 3 shows how to over-approximate the set of reachable terms usingtree automata. Section 4 presents a term rewriting model of the Java semantics. Section 5presents, by the mean of some classical examples, how rewriting approximations can be usedfor a class analysis. Section 6 compares with related works. Section 7 concludes.2 Formal BackgroundComprehensive surveys can be found in [5, 2] for term rewriting systems, in [4, 14] for treeautomata and tree language theory.Let F be a �nite set of symbols, each associated with an arity function, and let X bea countable set of variables. T (F ,X ) denotes the set of terms, and T (F) denotes the setof ground terms (terms without variables). The set of variables of a term t is denotedRR n�5997







4 Y. Boichut, T. Genet, T. Jensen & L. Lerouxby Var(t). A substitution is a function σ from X into T (F ,X ), which can uniquely beextended to an endomorphism of T (F ,X ). A position p for a term t is a word over N. Theempty sequence ǫ denotes the top-most position. The set Pos(t) of positions of a term t isinductively de�ned by:
• Pos(t) = {ǫ} if t ∈ X


• Pos(f(t1, . . . , tn)) = {ǫ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes the termobtained by replacement of the subterm t|p at position p by the term s. A term rewritingsystem R is a set of rewrite rules l → r, where l, r ∈ T (F ,X ), l 6∈ X , and Var(l) ⊇ Var(r).A rewrite rule l → r is left-linear if each variable of l (resp. r) occurs only once in l. ATRS R is left-linear if every rewrite rule l → r of R is left-linear). The TRS R induces arewriting relation→R on terms whose re�exive transitive closure is denoted by →⋆
R. The setof R-descendants of a set of ground terms E is R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →⋆


R t}.Example 1 Let R be the TRS such that R = {f(x) → g(f(x))}. The term f(a) rewrites to
g(f(a)), i.e. f(a) →R g(f(a)). Similarly, g(f(a)) →R g(g(f(a)). We thus have f(a) →R


∗


g(g(f(a))). Let E be the set of terms E = {f(a)}. On this example, we have R∗(E) =
{f(a), g(f(a)), g(g(f(a))), . . .} = {g∗(f(a))}.The veri�cation technique we propose in this paper is based on the computation ofR∗(E).Note that R∗(E) is possibly in�nite (like in the previous example): R may not terminateand/or E may be in�nite. The set R∗(E) is generally not computable [14]. However, it ispossible to over-approximate it [7, 19] using tree automata, i.e. a �nite representation ofin�nite (regular) sets of terms. We next de�ne tree automata.Let Q be an in�nite set of symbols, with arity 0, called states such that Q ∩ F = ∅.
T (F ∪Q) is called the set of con�gurations.De�nition 1 (Transition and normalized transition) A transition is a rewrite rule
c → q, where c is a con�guration i.e. c ∈ T (F ∪Q) and q ∈ Q. A normalized transition isa transition c → q where c = f(q1, . . . , qn), f ∈ F whose arity is n, and q1, . . . , qn ∈ Q.De�nition 2 (Bottom-up non-deterministic �nite tree automaton) A bottom-up non-deterministic �nite tree automaton (tree automaton for short) is a quadruple A = 〈F ,Q,Qf , ∆〉,where Qf ⊆ Q and ∆ is a set of normalized transitions.The rewriting relation on T (F ∪Q) induced by the transitions of A (the set ∆) is denotedby →∆. When ∆ is clear from the context, →∆ will also be denoted by →A.De�nition 3 (Recognized language) The tree language recognized by A in a state q is
L(A, q) = {t ∈ T (F) | t →⋆


A q}. The language recognized by A is L(A) =
⋃


q∈Qf
L(A, q). Atree language is regular if and only if it can be recognized by a tree automaton.


INRIA







Rewriting Approximations for Fast Prototyping of Static Analyzers 5Example 2 Let A be the tree automaton 〈F ,Q,Qf , ∆〉 such that F = {f, g, a}, Q =
{q0, q1}, Qf = {q0} and ∆ = {f(q0) → q0, g(q1) → q0, a → q1}. In ∆ transition-s are normalized. A transition of the form f(g(q1)) → q0 is not normalized. The ter-m g(a) is a term of T (F ∪Q) (and of T (F)) and can be rewritten by ∆ in the follow-ing way: g(a) →∆ g(q1) →∆ q0. Note that L(A, q1) = {a} and L(A) = L(A, q0) =
{g(a), f(g(a)), f(f(g(a))), . . .} = {f⋆(g(a))}.3 Approximations of reachable termsGiven a tree automaton A and a TRS R, the tree automata completion algorithm, proposedin [10, 7], computes a tree automaton Ak


R such that L(Ak
R) = R∗(L(A)) when it is possible(for the classes of TRSs where an exact computation is possible, see [7]) and such that


L(Ak
R) ⊇ R∗(L(A)) otherwise.The tree automata completion works as follows. From A = A0


R completion builds asequence A0
R.A1


R . . .Ak
R of automata such that if s ∈ L(Ai


R) and s →R t then t ∈ L(Ai+1
R ).If we �nd a �xpoint automaton Ak


R such that R∗(L(Ak
R)) = L(Ak


R), then we have L(Ak
R) =


R∗(L(A0
R)) (resp. L(Ak


R) ⊇ R∗(L(A)) if R is not in one class of [7]). To build Ai+1
R


from
Ai


R, we achieve a completion step which consists in �nding critical pairs between →R and
→Ai


R


. To de�ne the notion of critical pair, we extend the de�nition of substitutions to termsof T (F ∪Q). For a substitution σ : X 7→ Q and a rule l → r ∈ R, a critical pair is aninstance lσ of l such that there exists q ∈ Q satisfying lσ →∗
Ai


R


q and lσ →R rσ. Note thatsince R, Ai
R and the set Q of states of Ai


R are �nite, there is only a �nite number of criticalpairs. For every critical pair detected between R and Ai
R such that rσ 6→∗


Ai
R


q, the treeautomaton Ai+1
R is constructed by adding a new transition rσ → q to Ai


R such that Ai+1
Rrecognizes rσ in q, i.e. rσ →


A
i+1


R


q.
∗


lσ


Ai


R


R
rσ


q


∗


A
i+1


RHowever, the transition rσ → q is not necessarily a normalized transition of the form
f(q1, . . . , qn) → q and so it has to be normalized �rst. For example, to normalize a transitionof the form f(g(a), h(q′)) → q, we need to �nd some states q1, q2, q3 and replace the previoustransition by a set of normalized transitions: {a → q1, g(q1) → q2, h(q′) → q3, f(q2, q3) → q}.If q1, q2, q3 are new states, then adding the transition itself or its normalized form doesnot make any di�erence. On the opposite, if we identify q1 with q2, the normalized formbecomes {a → q1, g(q1) → q1, h(q′) → q3, f(q1, q3) → q}. This set of normalized transitionsrepresents the regular set of non-normalized transitions of the form f(g⋆(a), h(q′)) → qwhich contains the transition we want to add but also many others. Hence, this is an over-approximation. We could have made an even more drastic approximation by identifying
q1, q2, q3 with q, for instance.
RR n�5997







6 Y. Boichut, T. Genet, T. Jensen & L. LerouxWhen always using new states to normalize the transitions, completion is as preciseas possible. However, without approximation, completion is likely not to terminate (be-cause of general undecidability results [14]). To enforce termination, and produce an over-approximation, the completion algorithm is parametrized by a set N of approximation rules.When the set N is used during completion to normalize transitions, the obtained tree au-tomata are denoted by A1
N,R, . . . ,Ak


N,R. Each such rule describes a context in which a listof rules can be used to normalize a term. For all s, l1, . . . , ln ∈ T (F ∪Q,X ) and for all
x, x1, . . . , xn ∈ Q ∪ X , the general form for an approximation rule is:


[s → x] → [l1 → x1, . . . , ln → xn]. The expression [s → x] is a pattern to be matched with the new transitions t → q′obtained by completion. The expression [l1 → x1, . . . , ln → xn] is a set of rules usedto normalize t. To normalize a transition of the form t → q′, we match s with t and
x with q′, obtain a substitution σ from the matching and then we normalize t with therewrite system {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore, if ∀i = 1 . . . n : xi ∈ Q or
xi ∈ Var(li) ∪ Var(s) ∪ {x} then x1σ, . . . , xnσ are necessarily states. If a transition cannotbe fully normalized using approximation rules N , normalization is �nished using some newstates.The main property of the tree automata completion algorithm is that, whatever the statelabels used to normalize the new transitions, if completion terminates then it produces anover-approximation of reachable terms [7]. In other words, approximation safety does notdepend on the set of approximation rules used. Since the role of approximation rules isonly to select particular states for normalizing transitions, the safety theorem of [7] can bereformulated in the following way.Theorem 1 Let R be a left-linear TRS, A be tree automaton and N be a set of approxi-mation rules. If completion terminates on Ak


N,R then
L(Ak


N,R) ⊇ R∗(L(A))Here is a simple example illustrating completion and the use of approximation rules whenthe language R∗(E) is not regular.Example 3 Let R = {g(x, y) → g(f(x), f(y))} and let A be the tree automaton such that
Qf = {qf} and ∆ = {a → qa, g(qa, qa) → qf}. Hence L(A) = {g(a, a)} and R∗(E) =
{g(fn(a), fn(a)) | n ≥ 0}. Let N = [g(f(x), f(y)) → z] → [f(x) → q1, f(y) → q1].During the �rst completion step, we �nd a critical pair g(qa, qa) →R g(f(qa), f(qa)) and
q(qa, qa) →∗


A qf . We thus have to add the transition g(f(qa), f(qa)) → qf to A. To normalizethis transition, we match g(f(x), f(y)) with g(f(qa), f(qa)) and match z with qf and obtain
σ = {x 7→ qa, y 7→ qa, z 7→ qf}. Applying σ to [f(x) → q1, f(y) → q1] gives [f(qa) →
q1, f(qa) → q1]. This last system is used to normalize the transition g(f(qa), f(qa)) →
qf into the set {g(q1, q1) → qf , f(qa) → q1} which is added to A to obtain A1


N,R. Thecompletion process continues for another step and ends on A2
N,R whose set of transitionINRIA







Rewriting Approximations for Fast Prototyping of Static Analyzers 7is {a → qa, g(qa, qa) → qf , g(q1, q1) → qf , f(qa) → q1, f(q1) → q1}. We have L(Ak
N,R) =


{g(fn(a), fm(a)) | n, m ≥ 0} which is an over-approximation of R∗(L(A)).The tree automata completion algorithm and the approximation mechanism are imple-mented in the Timbuk [13] tool. Timbuk also provides means to query the approximationautomaton so as to achieve some reachability checks. For instance, on the previous exam-ple, once the �xpoint automaton Ak
N,R has been computed, it is possible to check whethersome terms are recognized or not. This can be done using tree automata intersections [7].However, a more convenient way to do that is to search instances for a pattern t, where


t ∈ T (F ,X ), in the tree automaton. Given t it is possible to check if there exists a sub-stitution σ : X 7→ Q and a state q ∈ Q such that tσ →∗


Ak
N,R


q. If such a solution existsthen it proves that there exists a term s ∈ T (F), a position p ∈ Pos(s) and a substitution
σ′ : X 7→ T (F) such that s[tσ′]p ∈ L(Ak


N,R) ⊇ R∗(L(A)), i.e. that tσ′ occurs as a subtermin the language recognized by L(Ak
N,R). On the other hand, if there is no solution then itproves that no such term is in the over-approximation, hence it is not in R∗(L(A)), i.e. itis not reachable.Example 4 In the patterns we use in this paper, '?x' denotes variables for which a value iswanted and '_' denotes anonymous variables for which no value is needed. Using Timbuk onExample 3, we can automatically construct A2


N,R which can be queried using the followingpatterns. The answer to the pattern g(f(?x), f(f(f(?y)))) is the following set of solutions:Occurence in state qf!solution 1: x <- qa, y <- q1 solution 2: x <- q1, y <- q1solution 3: x <- qa, y <- qa solution 4: x <- q1, y <- qaThis result means that some ground instances of this term exist in the approximation.On the opposite, the pattern g(f(_), g(_,_)) has no solution, meaning that no term con-taining any ground instance of this pattern is reachable, i.e. ∀u, v, w ∈ T (F) : g(a, a) 6→R
∗


g(f(u), g(v, w))4 Formalisation of the Java Bytecode Semantics usingRewriting RulesThis section describes how to model an object oriented bytecode language semantics usingrewriting rules. First, we show how program states are generally described in formal seman-tics of Java. Second, we give an encoding of this semantics using terms. Third, we presentformal semantics of Java bytecode instructions. Forth, we encode the semantics of thoseinstructions in TRS. The �rst and third part are based on Java semantics formalizations ofthe literature [3, 18, 9, 1].
RR n�5997







8 Y. Boichut, T. Genet, T. Jensen & L. Leroux4.1 Formalization of Java Program StatesA Java program state contains a current frame, a frame stack, a heap, and a static heap.A frame gives information about the method currently being executed: its name, currentprogram counter, operand stack and local variables. When a method is invoked the currentframe is stored in the frame stack and a new current frame is created. A heap is used tostore objects and arrays, i.e. all the informations that are not local to the execution of amethod. The static heap stores values of static �elds, i.e. values that are shared by allobjects of a same class.Let P be the in�nite set of all the possible Java programs. Given p ∈ P , let C(p) be thecorresponding �nite set of class identi�ers and Cr(p) be C(p) ∪ {array}.A value is either a primitive type or a reference pointing to an object (or an array) inthe heap. In our setting, we only consider integer and boolean primitive types. Let PC(p)be the set of integers from 0 to the higher possible program point in all the methods in p.Let M(p) be the set of method names and Mid(p) be the �nite set of couples (m, c) where
m ∈ M(p), c ∈ C(p) and m is a method de�ned by the class c. This last set is needed todistinguish between methods having the same name but de�ned by di�erent classes. Forsake of simplicity, we do not distinguish between methods having the same name but adi�erent signature but this could easily be done.Following standard Java semantics we de�ne a frame to be a tuple f =< pc, m, s, l >where pc ∈ PC(p), m ∈ Mid(p), s an operand stack, l a �nite map from indexes to values(local variables).An object from a class c is a map from �eld identi�ers to values. The heap is a mapfrom references to objects and arrays. The static heap is a map from static �elds name tovalues.A program state is a tuple s =< f, fs, h, k > where f is a frame, fs is a stack of frames,
h is a heap and k a static heap.4.2 A Program State as a TermNow that we formally de�ned a program state, we need to de�ne the set of symbols (F , seesection 2) needed to express a program state as a term. In the following, the notation foo : istands for foo is a symbol and the arity of foo is i.We �rst need some set of symbols for Cr(p) = C(p) ∪ {array}. This is straightfor-ward, using names of the classes c ∈ C(p) and {array} as symbols with an arity 0. Thecorresponding sets of symbols will be referred as FC(p) and FCr


(p).In our TRS, we encode a reference as loc(c, a) where c ∈ Cr(P ) is the class of the objectbeing referenced and a is an integer. In Java, it is always possible to know dynamically theclass of an object corresponding to a reference (including a special case for arrays). Thisjusti�es that the class name c appears in the encoding of the reference itself.
• To express a primitive type (integer), we use Fprimitive = {succ : 1, pred : 1, zero : 0}.
• To express a reference, we use Freference(p) = {loc : 2, succ : 1, zero : 0} ∪ FCr


(p).INRIA







Rewriting Approximations for Fast Prototyping of Static Analyzers 9
• To express a value, we use Fvalue(p) = Fprimitive ∪ Freference(p).For example, succ(succ(zero)) stands for the integer 2, and loc(foo, succ(zero)) is areference pointing to the object located at the index 1 in the class heap dedicated to theclass foo.Now we need symbols for PC(p), M(p) and Mid(p). Let x be the higher programpoint of the program (p), then FPC(p) = {pp0 : 0, pp1 : 0, ..., ppx : 0}. FM (p) is de�nedthe same straightforward way as FC(p). FMid


(p) = {name : 2} ∪ FM (p) ∪ FC(p). Forexample name(bar, A) stands for the method bar de�ned by the class A. Let l(p) denotesthe maximum of local variables used by the methods of the program package p. Then:
• To express an operand stack, we use Fstack(p) = {stack : 2, nilstack : 0} ∪ Fvalue(p).
• To express local variables, we use FlocalV ars(p) = {locals : l(p), nillocal : 0}∪Fvalue(p).
• To express a frame, we use Fframe(p) = {frame : 4}∪FPC(p)∪FMid(p)∪Fstack(p)∪
FlocalV ars(p).For example, stack(succ(succ(zero)), stack(loc(foo, succ(zero)), nilstack)) stands for thestack having two elements, the integer 2 at the top and a reference to an object of class fooat the bottom. locals(loc(foo, succ(zero)), succ(succ(zero)), nilstack) stands for local vari-ables where the �rst contains a reference and the second the integer 2. The last one isn'tinitialized yet (nillocal).A possible frame thus would be:


frame(name(bar, A), pp4, stack(succ(zero), nilstack), locals(loc(bar, zero), nillocal))The program counter points to the 4th instruction of the method bar de�ned by the class
A. The current operand stack just have the integer 1 on the top. The �rst local variable issome reference and the other is not initialized.Now we need symbols to represent the objects. The alphabet Fobjects(p) contains thesame symbols as FC(p), where the arity of each symbol is the corresponding number ofnon-static �elds. Let nc be the number of classes.We chose to divide the heap into nc class heaps plus one for the arrays. A class heapis a list of objects of the same class. In a reference loc(c, a), a is the index of the object inthe list representing the heap of class c. An array is encoded using a list and indexes in asimilar way.


• To express a heap, we use Fheap(p) = {heaps : (nc + 1), heap : 2} ∪ Fstack(p) ∪
Fobjects(p).


• To express a state, we use Fstate(p) = {state : 4} ∪ Fframe(p) ∪ Fheap(p).A possible heap would be:
heaps(


heap(succ(zero), stack(objectA, nilstack)),
heap(succ(zero), stack(objectB(zero), nilstack)),
nilstack)


)RR n�5997







10 Y. Boichut, T. Genet, T. Jensen & L. Leroux
(pop)


(m, pc, x :: s, l)


(m, pc + 1, s, l)


(add)
(m, pc, b :: a :: s, l)


(m, pc + 1, (a + b) :: s, l)


(storei)
(m, pc, x :: s, l)


(m, pc + 1, s, x →i l)Figure 1: example of bytecodes operating at the frame level
(getF ieldname)


((m, pc, ref :: s, l), fs, h, k), f = getf(name, ref, h, k)


(m, pc + 1, f :: s, l)
(invokeV irtualname)


((m, pc, ref :: s, l), fs, h, k), c = class(ref, h, k), m′ = lookup(name, c)


((m′, 0, [], storeparams(ref :: s, m′)), (m, pc + 1, popparams(ref :: s, m′), l) :: fs, h, k)Figure 2: example of bytecodes operating at the state level4.3 Java Bytecode SemanticsIn this section we will show some representative examples of the Java Bytecode Semantics.Figure 1 presents some rules of the semantics operating at the frame level. Consideringthe frame (pc, m, s, l), pc denotes the current program point, m the current method identi�er,
s the current stack and l the current array of local variables.The semantics of the �rst two instructions is straightforward, the storei instruction isused to store the value at the top of the current stack in the ith register, where x →i ldenotes the new resulting array of local variables.Figure 2 presents some rules of the semantics operating at the state level. For a state
((m, pc, s, l), fs, h, k), the symbols pc, m, s and l denote the current frame components, fsthe current stack of awaiting frames, h the current heap and k the current static heap.The getF ieldname instruction push on the stack the value stored in the �eld name of theobject whose reference is at the top of the stack. The internal function getf(name, ref, h, k)is used to access this value in the corresponding heap.


invokeV irtualname is used to invoke a method in a dynamic way. This method is chosenfrom its name and the class of the reference at the top of the stack. The internal function
class(ref, h, k) is used to get the reference's class c and lookup(name, c) to get the methodidenti�er m′ corresponding to this name and this class. We also need two more internalfunctions to manage the parameters of the method (pushed on the stack before invoking):
storeparams(ref :: s, m′) to build an array of local variables from values on the top of theoperand stack and popparams(ref :: s, m′) to remove from the current operand stack the
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Rewriting Approximations for Fast Prototyping of Static Analyzers 111 frame(name(foo, A), pp2, s, l) → xframe(pop, name(foo, A), pp2, s, l)2 xframe(pop, m, pc, stack(x, s), l) → frame(m, next(pc), s, l)3 next(pp2) → pp3Figure 3: pop instruction by rewriting rulesparameters used by m′. With those tools, it is possible to build a new frame pointing at the�rst program point of m′ and to push the current frame on the frame stack.4.4 Java Bytecode Semantics using Rewriting RulesIn this section we analyse in more detail how to encode an operational semantics of a pro-gramming language into rewriting rules in a way that makes the resulting system amenableto approximation by the techniques described in this paper. The �rst constraint is that theterm rewriting system has to be left-linear (See Theorem 1). Another problem is that onestep in an operational semantics involves one visible step and many intermediate ones mod-eling internal functions (such as getf , getParams, ...). However, these intermediate stepsshould not appear in the �nal result and must thus be easy to �lter out. To this end, weintroduce a notion of intermediate frames (named xframe). We now show how to expressthe examples of the Java Bytecode Semantics in section 4.3 by means of rewriting rules.In the following, symbols m, c, pc, s, l, fs, h, k, x, y, a, b, adr, l0, l1, l2, size, h, h0,
h1, ha are variables.For a given program point pc in a given method m, we build an xframe term very similarto the original frame term but with the current instruction explicitly stated. The xframesare used to compute intermediate steps. Then it is possible to write generic rewriting rules forthe instructions of the semantics. If an instruction requires several internal rewriting steps,we will only rewrite the corresponding xframe term until the execution of the instructionends.We take the example of a pop instruction at the second program point in a method Aof a class foo (Figure 3). Rule 1 builds a xframe term by explicitly adding the currentinstruction to the frame term. Rule 2 describes pop's semantics. Rule 3 is trivial and allowsto get to next program point.Our goal is to build the set of reachable program state as precisely as we can. Withregards to this aspect, using two di�erent symbols presents two advantages. First, a frameterm always represents a �real� program state, thus making easier to browse the result ofour analysis. Second, since we ensure that all internal steps are enclosed in xframe terms,
frame terms do not contain partially evaluated terms, thus avoiding non-determinism ofrewriting. To illustrate this, Figure 4 presents a wrong way to represent add instruction'ssemantics. The main problem in this one comes from rule 2, where the computation of xaddis carried out in the next frame term. It produces a lot of frame terms for a single programpoint and thus creates a lot of possible rewriting branches.
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12 Y. Boichut, T. Genet, T. Jensen & L. Leroux1 frame(name(foo, A), pp2, s, l) → xframe(add, name(foo, A), pp2, s, l)2 xframe(add, m, pc, stack(b, stack(a, s)), l) → frame(m, next(pc), stack(xadd(a, b), s), l)3 xadd(succ(a), succ(b)) → xadd(a, succ(succ(b)))4 xadd(succ(a), pred(b)) → xadd(a, b)5 xadd(pred(a), pred(b)) → xadd(a, pred(pred(b)))6 xadd(pred(a), succ(b)) → xadd(a, b)7 xadd(zero, b) → b8 xadd(a, zero) → a9 next(pp2) → pp3Figure 4: add instruction by rewriting rules, �rst way1 frame(name(foo, A), pp2, s, l) → xframe(add, name(foo, A), pp2, s, l)2 xframe(add, m, pc, stack(
succ(b), stack(a, s)), l)


→ xframe(xadd(a, b), m, pc, s, l)3 xframe(result(x), m, pc, s, l) → frame(m, next(pc), stack(x, s), l)4 xadd(succ(a), succ(b)) → xadd(a, succ(succ(b)))5 xadd(succ(a), pred(b)) → xadd(a, b)6 xadd(pred(a), pred(b)) → xadd(a, pred(pred(b)))7 xadd(pred(a), succ(b)) → xadd(a, b)8 xadd(zero, b) → result(b)9 xadd(a, zero) → result(a)10 next(pp2) → pp3Figure 5: add instruction by rewriting rules, second wayFigure 5 presents a more deterministic way to do it. Once the frame term is rewrittento a xframe term (rule 1), the next step (rule 2) use a rewriting sub-system xadd (rules4 to 9). It works the same as previous example, but this time we use a new constructor(result) to store the result of the addition. Then rule 3 puts it on the top of the stack. Thisway we switch from xframe to frame context when the internal computation of the 'add'instruction ends, thus making sure we do not produce useless frame terms.So far, all the rewriting rules are generic, i.e. do not depend on the bytecode program.Let us now give some rules depending on the program p itself. The storei instruction is agood example. Since the way we handle local variables depends on l(p) (maximal number oflocal variables in p, see section 4.2) it will vary from a program to another. In our example,we assume that l(p) = 3, see Figure 6. Note that we introduce as many ground terms(local0 : 0, local1 : 0 and local2 : 0) and variables (l0, l1 and l2) as l(p).
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Rewriting Approximations for Fast Prototyping of Static Analyzers 131 frame(name(foo, A), pp2, s, l) → xframe(store(local0), pp2, name(foo, A), s, l)2 xframe(store(local0), pc, m,


stack(x, s), locals(l0, l1, l2))
→ frame(next(pc), m, s, locals(x, l1, l2))3 xframe(store(local1), pc, m,


stack(x, s), locals(l0, l1, l2))
→ frame(next(pc), m, s, locals(l0, x, l2))4 xframe(store(local2), pc, m,


stack(x, s), locals(l0, l1, l2))
→ frame(next(pc), m, s, locals(l0, l1, x))5 next(pp2) → pp3Figure 6: storei instruction by rewriting rules1 frame(name(foo, A), pp2, s, l) → xframe(invokeV irtual(set),


name(foo, A), pp2, s, l)2 state(xframe(invokeV irtual(set),
m, pc, stack(loc(A, adr),
stack(x, s)), l), fs, h, k)


→ state(frame(name(set, A), pp0, s,


locals(loc(A, adr), x, nillocal)),
stack(storedframe(m, pc, s, l), fs), h, k)3 state(xframe(invokeV irtual(set),


m, pc, stack(loc(B, adr),
stack(x, s)), l), fs, h, k)


→ state(frame(name(set, A), pp0, s,


locals(loc(B, adr), x, nillocal)),
stack(storedframe(m, pc, s, l), fs), h, k)4 state(xframe(invokeV irtual(reset),


m, pc, stack(loc(B, adr),
s), l), fs, h, k)


→ state(frame(name(reset, B), pp0, s,


locals(loc(B, adr), nillocal, nillocal)),
stack(storedframe(m, pc, s, l), fs), h, k)5 next(pp2) → pp3Figure 7: invokeV irtualname instruction by rewriting rulesThe invokevirtualname instruction raises another problem. This time we need to compilesome information about methods and class hierarchy into the rules. Basically, we need toknow what is the precise method to invoke, given a class identi�er and a method name. Letus consider two classes, A and B, B extending A. Let set be a method implemented in theclass A (and thus available from B) with one parameter and reset a method implementedin the class B (and thus unavailable from A) with no parameter. Figure 7 presents theresulting rules for this simple example. The choice we made about heap representation isbene�cial here, since the class of the object on the top of the stack is directly available in thereference itself. Here we can take advantage of this and avoid to encode the lookup functionby rewriting.The last instruction we present here, getF ield, loads the value of a �eld of an objectstored in the heap. We use a sub rewriting system to extract the object, we are looking for,from the corresponding heap. We consider a small example of a class A with no �elds and aclass B with a �eld field0. In our setting, the heap is made of 3 di�erent heaps here. The
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14 Y. Boichut, T. Genet, T. Jensen & L. Leroux1 frame(name(foo, A), pp2, s, l) → xframe(getF ield(f), name(foo, 1), pp2, s, l)2 state(xframe(getF ield(field0),
m, pc, stack(loc(B, adr), s), l),
fs, heaps(h0, heap(size, h1), ha), k)


→ state(xframe(xGetF ield(B, field0, h1,


size, adr), m, , pc, s, l), fs,


heaps(h0, heap(size, h1), ha), k)3 xframe(xGetF ield(B, field0
, stackB(objectB(x), h1),
succ(zero), zero), m, pc, s, l)


→ frame(m, next(pc), stack(x, s), l)4 xGetF ield(B, field0, h1,


succ(size), succ(adr))
→ xGetF ield(B, field0, h1, size, adr)5 xGetF ield(B, field0, stackB(x, h1),


succ(succ(size)), zero)
→ xGetF ield(B, field0, h1, succ(size), zero)6 next(pp2) → pp3Figure 8: getF ield instruction by rewriting rules�rst one is for class A, the second for class B and the last one for arrays (See Figure 8).Rule 2 extracts from the general heap the one corresponding to class A. Rules 4 and 5 locatethe object corresponding to the address. Rules 3 put the value of the �eld we were lookingfor, on the stack.Note that, modeling the semantics and the program by rewriting rules is not enoughto build an analysis. We also need stubs for native libraries used by the program. As anexample, we implement one for some of the methods from the javaioInputStream class.We model interactions of a Java program state with its environment using a term of theform IO(s, i, o) where s is the state, i is the input stream and o the output stream.5 Class Analysis using Rewriting TheoryIn most program analysis, it is often necessary to know the control �ow graph. For Java,as for all object-oriented languages, the control �ow depends on the data �ow. When amethod is invoked, to know which one is executed, the class of the involved object is needed.For instance, on the Java program of Figure 9, x.foo() calls this.bar(). To know whichversion of the bar is called, it is necessary to know the class of this and thus the classof x in x.foo() call. The method actually invoked is determined dynamically during theprogram run. Class analysis aims at statically determining the class of objects stored in�elds and local variables, and allows to build a more precise control �ow graph valid for allpossible executions. Note that in this very example, exceptions around System.in.read()are required by the Java compiler. However, at present, we do not take them into accountin the control �ow.There are di�erent standard class analysis, from simple and fast to precise and expensive.We consider k-CFA analysis [17]. For those analysis, primitive types are abstracted by thename of their type and references are abstracted by the class of the objects they points to.INRIA







Rewriting Approximations for Fast Prototyping of Static Analyzers 15class A{ o1= new A();int y; o2= new B();void foo(){this.bar();} try{void bar(){y=1;} x=System.in.read();} }class B extends A{ catch (java.io.IOException e)void bar(){y=2;} { x = 0;}} while (x != 0){class Test{ execute(o1);public void execute(A x){ execute(o2);x.foo(); try{} x=System.in.read(); }public void main(String[] argv){ catch (java.io.IOException e)A o1; { x = 0;}}B o2; }int x; }Figure 9: Java Program ExampleIn 0-CFA analysis, each method is analyzed only once and, thus, merges the parameters ofthe di�erent calls to this method. k-CFA is able to distinguish between di�erent calls to thesame method by taking into account up to k frames on the top of the frame stack.Starting from a term rewriting system R modeling the semantics of Java program, atree automaton A recognizing a set of initial Java program states, we aim at computing anautomaton Ak
N,R over approximating R∗(L(A)). We developed a prototype which produces


R and A from a Java .class �le. For the �le Test.class, generated by the compilation ofthe Java program of Figure 9, R is composed of 275 rewrite rules. The analysis itself is per-formed using Timbuk [13]. Successively, this section details a 0-CFA, a 1-CFA and an evenmore precise analysis achieved using the same TRS R and automaton A, but using di�erentsets of approximation rules. On this program, the set of reachable program states is in�-nite (and thus approximations are necessary) because the instruction x=System.in.read(),reading values in the input stream, is embedded in an unbounded loop. As long as the valuestored in the variable x is di�erent from 0, the computation goes on. Moreover, since wewant to analyse this program for any possible stream of integers, in the automaton A theinput stream is unbounded.5.1 0-CFA AnalysisFor a 0-CFA analysis, all integers are abstracted by their type, i.e. they are de�ned by thefollowing transitions in A: zero → qint, succ(qint) → qint and pred(qint) → qint. The inputstream is also speci�ed by A as being an in�nite stack of integer. This can be done thanksto the following transitions: nilstackin → qin and stackin(qint, qin) → qin. Approximationrules for integers, stream and references are de�ned in the following way: [x → y] →
[zero → qint, succ(qint) → qint, pred(qint) → qint, nilstackin → qin, stackin(qint, qin) →
qin, loc(A, α) → qrefA, loc(B, β) → qrefB] where x, y, α and β are variables. The patternRR n�5997
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Figure 10: Principle of approximation rules for a 0-CFA analysis
[x → y] matches any new transition to normalize and the rules loc(A, x) → qrefA and
loc(B, y) → qrefB merge all references to an object of the class A and an object of the class
B into the states qrefA and qrefB, respectively.The approximation rules for frames and states are built according to the principle illus-trated in Figure 10. Independently of the current state of the execution in which the methodm of the class c is invoked, the frames representing two di�erent calls to m are merged. Theset of approximation rules N is completed by giving such an approximation rule for eachmethod of each class. Using N , we can automatically obtain a �xpoint automaton A145


N,Rover-approximating the set of all reachable Java program states. The result of the 0-CFAclass analysis can be obtained, for each program location (a program point in a method in aclass), by asking for the possible classes for each object in the stack or in the local variables.For instance, to obtain the set of possible classes ?c for the object passed as parameter tothe method execute, i.e. the possible classes for the second local variable at program point
pp0 of execute, one can use the following pattern:


frame(name(execute, T est), pp0,_, locals(_, loc(?c,_), ...))The result obtained for this pattern is that there exists two possible values for ?c: qA and
qB which are the states recognizing respectively the classes A and B. This is coherent with 0-CFA which is not able to discriminate between the two possible calls to the execute method.Note that, for analysing unbounded recursive calls, the regular nature of approximationsallows to �nitely abstract the in�nite frame stacks. This is however not detailed in thispaper.5.2 1-CFA AnalysisFor 1-CFA, we need to re�ne the set of approximation rules into N ′. In N ′ the ruleson integers, input stream and references are similar to the ones used for 0-CFA. In N ′,INRIA
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Figure 11: Principle of approximation rules for a 1-CFA analysisapproximation rules for states and frames are designed according to the principle illustratedin Figure 11. Contrary to Figure 10, the frames for the method m of the class c are mergedif the corresponding method calls have been done from the same program point (in the samemethod m′ of the class c′). For example, there are two approximation rules for the method
execute of the class Test: one applying when execute is invoked from the program point
pp18 of the method main, and one applying when it is done from the program point pp21 ofthis same method. Applying the same principle for all the methods, we obtain a completeset of approximation rules N ′. Using N ′, completion terminates on A140


N ′,R. The followingpatterns:
state(frame(name(execute, T est), pp0,_, locals(_, loc(?c,_), ...)), stack(storeframe(_, pp18, ...),_)...)


state(frame(name(execute, T est), pp0,_, locals(_, loc(?c,_), ...)), stack(storeframe(_, pp21, ...),_)...)gives a more precise result than 0-CFA, since each pattern as only one solution for ?c:
qA for the �rst and qB for the second. Note that using a similar pattern to query A145


N,R, the0-CFA automaton, gives qA and qB as solution for ?c for both program points.5.3 Getting more precise when necessaryAssume that we want to show that, after the execution of the previous program, �eld y hasalways a value 1 for objects of class A and 2 for objects of class B. This cannot be done by1-CFA nor by any k-CFA since, in those analysis, integers are abstracted by their type. Oneof the advantage of our technique is its ability to easily make approximation more preciseby retrieving some approximation rules.We can now re�ne the approximation of the naturals by distinguishing between 0, 1, 2and 3 or more. This can be done using the following transitions: 0 → q0, succ(q0) → q1,RR n�5997







18 Y. Boichut, T. Genet, T. Jensen & L. Leroux
succ(q1) → q2, succ(q2) → qint and succ(qint) → qint. For specifying the negative integers,the following transitions are used: pred(q0) → qnegint and pred(qnegint) → qnegint. Theinput stream representation is also modi�ed by the following transitions: nilstackin → qin,
stackin(qnegint, qin) → qin, stackin(qint, qin) → qin and stackin(qj , qin) → qin with j =
0, . . . , 2.In fact, no other approximation is needed to ensure termination of the completion. Onthe �xpoint automaton, we are then able to show that, when the Java program terminates,there is only two possible con�gurations of the heap. Either the heap contains an object ofclass A and an object of class B whose �elds are both initialized to 0, or it contains an objectof class A whose �eld has the value 1 and an object of class B whose �eld has the value 2.These veri�cations have been performed using a pattern matching with all the frames whose
pp value is the the last control point of the program.This result is not surprising. The �rst result is possible when there is zero iteration of theloop (x is set to 0 before the instruction while (x != 0){). The second result is obtainedfor 1 or more iterations. Nevertheless, this kind of result was impossible to obtain with thetwo previous analysis presented in Section 5.1 and 5.2.6 Related worksTerm rewriting systems have been used to de�ne and prototype semantics for a long time.However, this subject has recently raised up for a veri�cation purpose. In [6, 16], rewriting isalso used as operational semantics for Java. However, the veri�cation done on the obtainedrewriting system is closer to �nite model-checking or to simulation, since it can only deal with�nite state programs. Moreover, no abstraction mechanism is proposed. On the opposite,in [15], abstractions on reachability analysis are de�ned but they seem to be too restrictive todeal with programming language semantics. Instead of tree automata, Meseguer, Palominoand Martí-Oliet use equations to de�ne approximated equivalence classes. More precisely,they use terminating and con�uent term rewriting systems normalizing every term of a classto its representative. In order to guarantee safety of approximations, approximation andspeci�cation rules must satisfy strong syntactic constraints. Roughly, approximation TRSand speci�cation TRS have to commute. Such property seems hard to prove on a TRSencoding the Java semantics.Takai [19] also proposed a theoretical version of approximated reachability analysis overterm rewriting systems, without the left-linearity restriction we have. This work also com-bines equations and tree automata. However, again, syntactic restrictions imposed on theequations are strong and would prevent us from constructing the kind of approximation weuse on Java bytecode.Compared to classical static classes analysis (like in [17]), depending of the approxima-tion rules we need to ensure termination of our algorithm, we can get the several rangesof precision of k-CFA. Starting from an automatically generated approximation, it is alsopossible to adapt approximation rules so as to get a more precise abstraction and provespeci�c properties on a program. INRIA







Rewriting Approximations for Fast Prototyping of Static Analyzers 197 ConclusionWe have de�ned a technique for producing a TRS R modeling the operational semantics ofa given Java program p. In this setting, given a set of inputs E the set R∗(E) representsthe set of program states reachable by p on inputs E, i.e. the collecting semantics of p.The set of reachable states is not exactly computable in general so we use approximationsto force the computation of R∗(E) to terminate. The advantage of this approximationtechnique is that its safety is guaranteed by the underlying theory and does not have to beproved for each proposed abstraction.Approximation rules de�ning usual analysis, such as k-CFA analysis, can clearly beautomatically produced from the program source. We are currently experimenting someother analysis where the regular nature of the approximation could be bene�cial. Firstto come to mind are shape analysis and race detection in multi-threaded programs. Inaddition, we expect to have the same precision as symbolic evaluation techniques, like in [8],with cautious approximation generation.References[1] I. Attali and a Denis. A formal executable semantics for java, 1990.[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,1998.[3] P. Bertelsen. Semantics of Java Byte Code. Technical report, 1997.[4] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-son, and M. Tommasi. Tree automata techniques and applications.http://www.grappa.univ-lille3.fr/tata/, 2002.[5] N. Dershowitz and J.-P. Jouannaud. Handbook of Theoretical Computer Science, vol-ume B, chapter 6: Rewrite Systems, pages 244�320. Elsevier Science Publishers B. V.(North-Holland), 1990. Also as: Research report 478, LRI.[6] A. Farzan, C. Chen, J. Meseguer, and G. Rosu. Formal analysis of java programs injavafan. In CAV, volume 3114 of Lecture Notes in Computer Science, pages 501�505.Springer, 2004.[7] G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over TermRewriting Systems. JAR, 33 (3-4):341�383, 2004.[8] Thomas Jensen Frédéric Besson and David Pichardie. Proof-Carrying Code from Certi-�ed Abstract Interpretation and Fixpoint Compression. Theoretical Computer Science,2006.
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