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1 Introduction

In [1], we have described a technique for computing non-regular approximations
using synchronized tree languages. This technique can handle the reachability
problem of [2]. These synchronized tree languages [4, 3] are recognized using CS-
programs [5], i.e. a particular class of Horn clauses. From an initial CS-program
Prog and a left-linear term rewrite system (TRS) R, another CS-program Prog′

is computed in such a way that its language represents an over-approximation of
the set of terms (called descendants) reachable by rewriting using R, from the
terms of the language of Prog. This algorithm is called completion. However,
the assumptions of the result showing that all the descendants are obtained,
i.e. Theorem 14 in [1], are not correct. Actually, preserving should be replaced
by non-copying (a variable cannot occur several times in the head of a clause).
However, the non-copying nature of a CS-program is not preserved by comple-
tion as soon as the given TRS is not right-linear. Consequently, the final result
presented in [1] holds for completely linear TRS, and not for just left-linear TRS.

In this paper, we propose a correction of [1], assuming that the initial CS-
program is non-copying, and the TRS is completely linear (see Section 3).

2 Preliminaries

Consider two disjoint sets, Σ a finite ranked alphabet and Var a set of vari-
ables. Each symbol f ∈ Σ has a unique arity, denoted by ar(f). The notions of
first-order term, position and substitution are defined as usual. Given two sub-
stitutions σ and σ′, σ ◦ σ′ denotes the substitution such that for any variable
x, σ ◦ σ′(x) = σ(σ′(x)). TΣ denotes the set of ground terms (without variables)
over Σ. For a term t, Var(t) is the set of variables of t, Pos(t) is the set of
positions of t. For p ∈ Pos(t), t(p) is the symbol of Σ ∪ Var occurring at po-
sition p in t, and t|p is the subterm of t at position p. The term t is linear if
each variable of t occurs only once in t. The term t[t′]p is obtained from t by
replacing the subterm at position p by t′. PosVar(t) = {p ∈ Pos(t) | t(p) ∈ Var},
PosNonVar(t) = {p ∈ Pos(t) | t(p) 6∈ Var}.

A rewrite rule is an oriented pair of terms, written l→ r. We always assume
that l is not a variable, and Var(r) ⊆ Var(l). A rewrite system R is a finite
set of rewrite rules. lhs stands for left-hand-side, rhs for right-hand-side. The
rewrite relation →R is defined as follows: t →R t′ if there exist a position p ∈
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PosNonVar(t), a rule l → r ∈ R, and a substitution θ s.t. t|p = θ(l) and t′ =
t[θ(r)]p. →∗R denotes the reflexive-transitive closure of→R. t′ is a descendant of
t if t→∗R t′. If E is a set of ground terms, R∗(E) denotes the set of descendants
of elements of E. The rewrite rule l → r is left (resp. right) linear if l (resp. r)
is linear. R is left (resp. right) linear if all its rewrite rules are left (resp. right)
linear. R is linear if R is both left and right linear.

2.1 CS-Program

In the following, we consider the framework of pure logic programming, and the
class of synchronized tree-tuple languages defined by CS-clauses [5, 6]. Given a set
Pred of predicate symbols; atoms, goals, bodies and Horn-clauses are defined as
usual. Note that both goals and bodies are sequences of atoms. We will use letters
G or B for sequences of atoms, and A for atoms. Given a goal G = A1, . . . , Ak
and positive integers i, j, we define G|i = Ai and G|i.j = (Ai)|j = tj where
Ai = P (t1, . . . , tn).

Definition 1. Let B be a sequence of atoms. B is flat if for each atom P (t1, . . . ,
tn) of B, all terms t1, . . . , tn are variables. B is linear if each variable occurring
in B (possibly at sub-term position) occurs only once in B. Note that the empty
sequence of atoms (denoted by ∅) is flat and linear.
A CS-clause1 is a Horn-clause H ← B s.t. B is flat and linear. A CS-program
Prog is a logic program composed of CS-clauses. Pred(Prog) denotes the set of
predicate symbols of Prog. Given a predicate symbol P of arity n, the tree-(tuple)
language generated by P is L(P ) = {t ∈ (TΣ)n | P (t) ∈ Mod(Prog)}, where
TΣ is the set of ground terms over the signature Σ and Mod(Prog) is the least
Herbrand model of Prog. L(P ) is called Synchronized language.

The following definition describes syntactic properties over CS-clauses.

Definition 2. A CS-clause P (t1, . . . , tn)← B is :

– empty if ∀i ∈ {1, . . . , n}, ti is a variable.
– normalized if ∀i ∈ {1, . . . , n}, ti is a variable or contains only one occurrence

of function-symbol.
– preserving if Var(P (t1, . . . , tn)) ⊆ Var(B).
– non-copying if P (t1, . . . , tn) is linear.

A CS-program is normalized, preserving, non-copying if all its clauses are.

Example 1. The CS-clause P (x, y, z)← Q(x, y, z) is empty, normalized, preserv-
ing, and non-copying (x, y, z are variables).
The CS-clause P (f(x), y, g(x, z)) ← Q1(x), Q2(y, z) is normalized, preserving,
and copying. P (f(g(x)), y)← Q(x) is not normalized and not preserving.

Given a CS-program, we focus on two kinds of derivations.

1 In former papers, synchronized tree-tuple languages were defined thanks to sorts of
grammars, called constraint systems. Thus ”CS” stands for Constraint System.
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Definition 3. Given a logic program Prog and a sequence of atoms G,

– G derives into G′ by a resolution step if there exist a clause2 H ← B in Prog
and an atom A ∈ G such that A and H are unifiable by the most general
unifier σ (then σ(A) = σ(H)) and G′ = σ(G)[σ(A) ← σ(B)]. It is written
G;σ G

′.
– G rewrites into G′ if there exist a clause H ← B in Prog, an atom A ∈ G,

and a substitution σ, such that A = σ(H) (A is not instantiated by σ) and
G′ = G[A← σ(B)]. It is written G→σ G

′.

Sometimes, we will write G ;[H←B,σ] G
′ or G →[H←B,σ] G

′ to indicate the
clause used by the step.

Example 2. Let Prog = {P (x1, g(x2))← P ′(x1, x2). P (f(x1), x2)← P ′′(x1, x2).},
and consider G = P (f(x), y). Thus, P (f(x), y) ;σ1 P ′(f(x), x2) with σ1 =
[x1/f(x), y/g(x2)] and P (f(x), y)→σ2 P

′′(x, y) with σ2 = [x1/x, x2/y].

Note that for any atom A, if A → B then A ; B. If in addition Prog is
preserving, then Var(A) ⊆ Var(B). On the other hand, A;σ B implies σ(A)→
B. Consequently, if A is ground, A; B implies A→ B.

We consider the transitive closure ;+ and the reflexive-transitive closure ;∗

of ;.
For both derivations, given a logic program Prog and three sequences of

atoms G1, G2 and G3 :

– if G1 ;σ1 G2 and G2 ;σ2 G3 then one has G1 ;∗σ2◦σ1
G3;

– if G1 →σ1 G2 and G2 →σ2 G3 then one has G1 →∗σ2◦σ1
G3.

In the remainder of the paper, given a set of CS-clauses Prog and two se-
quences of atoms G1 and G2, G1 ;∗Prog G2 (resp. G1 →∗Prog G2) also denotes
that G2 can be derived (resp. rewritten) from G1 using clauses of Prog.

It is well known that resolution is complete.

Theorem 1. Let A be a ground atom. A ∈Mod(Prog) iff A;∗Prog ∅.

2.2 Computing descendants

We just give the main ideas using an example. See [1] for a formal description.

Example 3. Let R = {f(x) → g(h(x))} and let I = {f(a)} generated by the
CS-program Prog = {P (f(x))← Q(x). Q(a)←}.
Note that R∗(I) = {f(a), g(h(a))}.

To simulate the rewrite step f(a) → g(h(a)), we consider the rewrite-rule’s
left-hand side f(x). We can see that P (f(x)) →Prog Q(x) and P (f(x)) →R

P (g(h(x))). Then the clause P (g(h(x))) ← Q(x) is called critical pair3. This

2 We assume that the clause and G have distinct variables.
3 In former work, a critical pair was a pair. Here it is a clause since we use logic

programs.
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critical pair is not convergent (in Prog) because ¬(P (g(h(x))) →∗Prog Q(x)).
To get the descendants, the critical pairs should be convergent. Let Prog′ =
Prog ∪ {P (g(h(x)))← Q(x)}. Now the critical pair is convergent in Prog′, and
note that the predicate P of Prog′ generates R∗(I).

For technical reasons4, we consider only normalized CS-programs, and Prog′

is not normalized. The critical pair can be normalized using a new predicate
symbol, and replaced by normalized clauses P (g(y))← Q1(y). Q1(h(x))← Q(x).
This is the role of Function norm in the completion algorithm below.

In general, adding a critical pair (after normalizing it) into the CS-program
may create new critical pairs, and the completion process may not terminate.
To force termination, two bounds predicate-limit and arity-limit are fixed. If
predicate-limit is reached, Function norm should re-use existing predicates in-
stead of creating new ones. If a new predicate symbol is created whose arity5 is
greater than arity-limit, then this predicate has to be cut by Function norm into
several predicates whose arities do not exceed arity-limit. On the other hand,
for a fixed6 CS-program, the number of critical pairs may be infinite. Function
removeCycles modifies some clauses so that the number of critical pairs is finite.

Definition 4 (comp as in [1]). Let arity-limit and predicate-limit be positive
integers. Let R be a left-linear rewrite system, and Prog be a finite, normalized
and preserving CS-program. The completion process is defined by:
Function compR(Prog)

Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

The following results show that an over-approximation of the descendants is
computed.

Theorem 2 ([1]). Let Prog be a normalized and preserving CS-program and
R be a left-linear rewrite system.
If all critical pairs are convergent, then Mod(Prog) is closed under rewriting by
R, i.e. (A ∈Mod(Prog) ∧A→∗R A′) =⇒ A′ ∈Mod(Prog).

Theorem 3 ([1]). Let R be a left-linear TRS and Prog be a normalized pre-
serving CS-program. Function comp always terminates, and all critical pairs are
convergent in compR(Prog). Moreover, R∗(Mod(Prog)) ⊆Mod(compR(Prog)).

3 Fixing [1]

The hypotheses mentioned in Definition 4 and Theorems 2 and 3 are not sufficient
to ensure the computation of an over-approximation.

4 Critical pairs are computed only at root positions.
5 The number of arguments.
6 i.e. without adding new clauses in the CS-program.
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Indeed, let us describe two counter-examples that are strongly connected.

Example 4. Let Prog = {P (f(x), f(x)) ← Q(x). Q(a) ← . Q(b) ← .} and
R = {a → b}. Prog is preserving and normalized as required in Theorem 2. R
is ground and consequently, left-linear. There is only one critical pair Q(b)← . ,
which is convergent. P (f(a), f(a)) ∈Mod(Prog) and P (f(a), f(a))→R P (f(b),
f(a)). However P (f(b), f(a)) 6∈Mod(Prog).

The copying nature of Prog is problematic in Example 4 in the sense that
it prevents the predicate symbol P from having two different terms right under.
Another problem is that a non-right-linear rewrite rule (but left-linear) may
generate a copying critical pair, i.e. copying CS-clauses. Consequently, even if the
starting program is not copying, it may become copying during the completion
algorithm. Example 5 illustrates this problem.

Example 5. Prog = {P (f(x)) ← Q(x). Q(a) ← .} and R = {f(x) → g(x, x)}.
There is one critical pair P (g(x, x))← Q(x), which is copying. Thus compR(Prog)
is copying.

Actually, the hypotheses of Definition 4 have to be stronger i.e. the TRS
must be linear in order to prevent the introduction of copying clauses by the
completion process, and the starting program must be non-copying. On the
other hand, the preserving assumption is not needed anymore.

Definition 5 (New comp). Let arity-limit and predicate-limit be positive in-
tegers. Let R be a linear rewrite system, and Prog be a finite, normalized and
non-copying CS-program. The completion process is defined by:
Function compR(Prog)

Prog = removeCycles(Prog)
while there exists a non-convergent critical pair H ← B in Prog do

Prog = removeCycles(Prog ∪ normProg(H ← B))
end while
return Prog

Thus, a new version of Theorem 2 is given below:

Theorem 4. Let R be a left-linear7 rewrite system and Prog be a normalized
non-copying CS-program.
If all critical pairs are convergent, then Mod(Prog) is closed under rewriting by
R, i.e. (A ∈Mod(Prog) ∧A→∗R A′) =⇒ A′ ∈Mod(Prog).

Proof. Let A ∈Mod(Prog) s.t. A→l→r A
′. Then A|i = C[σ(l)] for some i ∈ IN

and A′ = A[i← C[σ(r)].
Since resolution is complete, A;∗ ∅. Since Prog is normalized, resolution con-
sumes symbols in C one by one, thus G0 =A ;∗ Gk ;∗ ∅ and there exists

7 From a theoretical point of view, left-linearity is sufficient when every critical pair
is convergent. However, to make every critical pair convergent by completion, full
linearity is necessary (see Theorem 5).
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an atom A′′ = P (t1, . . . , tn) in Gk and j s.t. tj = σ(l) and the top symbol of
tj is consumed (or tj disappears) during the step Gk ; Gk+1. Since Prog is
non-copying, tj = σ(l) admits only one antecedent in A.

Consider new variables x1, . . . , xn s.t. {x1, . . . , xn} ∩ V ar(l) = ∅, and let us
define the substitution σ′ by ∀i, σ′(xi) = ti and ∀x ∈ V ar(l), σ′(x) = σ(x).
Then σ′(P (x1, . . . , xj−1, l, xj+1, . . . , xn)) = A′′, and according to resolution (or
narrowing) properties P (x1, . . . , l, . . . , xn) ;∗θ ∅ and θ ≤ σ′.

This derivation can be decomposed into : P (x1, . . . , l, . . . , xn) ;∗θ1 G
′ ;θ2

G;∗θ3 ∅ where θ = θ3◦θ2◦θ1, and s.t.G′ is not flat andG is flat8. P (x1, . . . , l, . . . , xn) ;∗θ1 G
′ ;θ2 G

can be commuted into P (x1, . . . , l, . . . , xn) ;∗γ1 B′ ;γ2 B ;∗γ3 G s.t. B is
flat, B′ is not flat, and within P (x1, . . . , l, . . . , xn) ;∗γ1 B′ ;γ2 B resolution
is applied only on non-flat atoms, and we have γ3 ◦ γ2 ◦ γ1 = θ2 ◦ θ1. Then
γ2 ◦ γ1(P (x1, . . . , r, . . . , xn)) ← B is a critical pair. By hypothesis, it is conver-
gent, then γ2 ◦ γ1(P (x1, . . . , r, . . . , xn))→∗ B. Note that γ3(B)→∗ G and recall
that θ3◦γ3◦γ2◦γ1 = θ3◦θ2◦θ1 = θ. Then θ(P (x1, . . . , r, . . . , xn))→∗ θ3(G)→∗ ∅,
and since θ ≤ σ′ we get P (t1, . . . , σ(r), . . . , tn) = σ′(P (x1, . . . , r, . . . , xn))→∗ ∅.
Recall that σ(l) has only one antecedent in A. Therefore A′ ;∗ Gk[A′′ ←
P (t1, . . . , σ(r), . . . , tn)] ;∗ ∅, hence A′ ∈Mod(Prog).

By trivial induction, the proof can be extended to the case of several rewrite
steps.

Consequently, one can update Theorem 3 as follows:

Theorem 5. Let R be a linear rewrite system and Prog be a normalized non-
copying CS-program. Function comp always terminates, and all critical pairs are
convergent in compR(Prog). Moreover, R∗(Mod(Prog)) ⊆Mod(compR(Prog)).
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