Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Tree Automata for Detecting Attacks on
Protocols with Algebraic Cryptographic
Primitives

Boichut!

INRIA-LANDE
IRISA
Rennes, France

Héam? Kouchnarenko?

INRIA-CASSIS
LIFC

Besancgon, France

Abstract

This paper extends a rewriting approximations-based theoretical framework in which the security problem
— secrecy preservation against an active intruder — may be semi-decided through a reachability verification.
In a recent paper, we have shown how to semi-decide whether a security protocol using algebraic properties
of cryptographic primitives is safe. In this paper, we investigate the dual - insecurity - problem: we explain
how to semi-decide whether a protocol using cryptographic primitive algebraic properties is unsafe. The
main advantage of our work is that the approximation functions make it possible to automatically verify
security protocols with an arbitrary number of sessions. Furthermore, our approach is supported by the tool
TA4SP successfully applied for analysing the NSPK-xor protocol and the Diffie-Hellman protocol.

Keywords: Security protocol, algebraic properties, automatic approximation.

1 Introduction

Security protocols are part of systems for which the security problem is in general
undecidable. Approximations and abstractions represent a well-suited alternative for
verifying them in practice. A lot of investigations have been carried out on this topic
[2,12,7,15,17,20,16,19].

An often encountered difficulty is about encoding with non-atomic keys. A non-
atomic key is a key established in several steps from several data. This topic comes

1 Email: boichut@irisa.fr
2 Email: heamp@lifc.univ-fcomte.fr
3 Email: kouchna@lifc.univ-fcomte.fr

©2007 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:boichut@irisa.fr
mailto:heampc@lifc.univ-fcomte.fr
mailto:kouchna@lifc.univ-fcomte.fr

BoicauT, HEAM AND KOUCHNARENKO.

close to the handling of operators with algebraic properties. On a strongly typed
model (model in which the structure of a compound key is clearly specified), most
of the developed methods are able to perform a protocol analysis. Unfortunately a
secure strongly typed model is not a secure model because of type confusing attacks.

That is why our previous contribution [4] has extended the verification method
in [3] in order to verify — without typing — security protocols bringing into play
operators with algebraic properties. This improvement has made the computation
of sound over-approximations of the intruder knowledge possible. Consequently, the
safety, i.e., the secrecy preservation on protocols using algebraic properties of the
exclusive or (xor) operator or the exponential (exp) operator can be established
automatically. However, there is a lack of the attack detection, i.e. of showing that
a protocol is unsafe.

The main contribution of this paper consists of showing the feasibility of the
automatic unsafety verification for protocols when 1) the number of sessions is un-
bounded, and 2) the cryptographic primitives use algebraic operators properties.
We propose sufficient conditions on term rewriting systems (TRSs for short), under
which attack detection on such protocols becomes possible.

To illustrate the contributions, experiments on the detection of attacks against
protocols with the primitives using xor or exp (xored and exped protocols, for short),
are reported.

Structure of the paper The paper is organised as follows. After giving prelim-
inary notions on tree automata and TRSs, we introduce in Section 2 a substitution
depending on rules of a TRS, and a notion of compatibility between such substitu-
tions and finite tree automata, both suitable for reachability analysis in rewriting
with non left-linear TRSs. In Section 3, we present the extension of [4]| dealing
with under-approximations. Finally, before concluding, we give in Section 4 a brief
overview of related works, and we explain how to apply the obtained new results to
analyse xored or exped protocols.

2 Background and Notations

In this section basic notions on finite tree automata, term rewriting systems and
approximations are recalled. The reader is referred to [9] for more detail. Moreover,
detailled examples are given [5].

2.1 Notations

Given the set N of natural integers, N* denotes the finite strings over N. Let F be a
finite set of symbols with their arities. The set of symbols of F of arity ¢ is denoted
F;. Let X be a finite set whose elements are variables. We assume that X N JF = (.
A finite ordered tree ¢ over a set of labels (F, X) is a function from a prefix-closed set
Pos(t) C N* to FUX. A term ¢ over F U X is a labeled tree whose domain Pos(t)
satisfies the following properties: Pos(t) is non-empty and prefix closed, for each
p € Pos(t), if t(p) € F,, (with n # 0), then {i | p.i € Pos(t)} = {1,...,n} and, for
each p € Pos(t), if t(p) € X or t(p) € Fo, then {i | p.i € Pos(t)} = 0. Each element

2

BoicauT, HEAM AND KOUCHNARENKO.

of Pos(t) is called a position of ¢. For each subset K of X UF and each term t we
denote by Posi(t) the subset of positions p’s of ¢ such that t(p) € K. Each position p
of t such that t(p) € F, is called a functional position. The set of terms over (F, X)
is denoted 7 (F,X). A ground term is a term ¢ such that Pos(t) = Posg(t) (i.e.
such that Posx(t) = 0)). The set of ground terms is denoted 7 (F). A subterm ¢,
of t € T(F,X) at position p is defined by: Pos(t,) = {i | p.i € Pos(t)} and, For all
J € Pos(t), t)p(j) = t(p.j). We denote by t[s], the term obtained by replacing in
the subterm ¢, by s.

For all sets A and B, we denote by (A, B) the set of functions from A to B. If
o € ¥(X,B), then for each term t € 7(F,X), we denote by to the term obtained
from ¢ by replacing for each = € X', the variable x by o(z). A term rewriting system
R over 7 (F,X) is a finite set of pairs ({,r) from 7 (F,X) x T (F, X), denoted [—r,
such that the set of variables occurring in r is included in the set of variables of [. A
TRS is left-linear if for each rule [—r, every variable occurs at most once in [. For
each ground term ¢, we denote by R(t) the set of ground terms ¢ such that there
exist a rule [— r of R, a function p € X(X,7(F)) and a position p of ¢ satisfying
tjp = lp and t' = t[rulp. The relation {(t,t) |t € R(t)} is classically denoted —r.
If t—xt’ for t,t' € T(F), then t is a rewriting predecessor of t' and t' is rewriting
successor of t. For each set of ground terms B we denote by R*(B) the set of ground
terms related to an element of B modulo the reflexive-transitive closure of —x.

A tree automaton A is a tuple (Q,A, F'), where Q is the set of states, A the
set of transitions, and F' the set of final states. Transitions are rewriting rules of
the form f(q1,...,qx)—q, where f € F; and the ¢;’s are in Q. A term t € T(F)
is accepted or recognised by A if there exists ¢ € F' such that t—} ¢ (we also write
t—*q). The set of terms accepted by A is denoted £(A). For each state ¢ € Q, we
write L£(A, q) for the tree language £((Q,A,{q})). A tree automaton is finite if its
set of transitions is finite.

In [4], a new kind of substitution has been introduced. We recall this definition
below. Notice that the domain of these substitutions is not the set of variables
anymore, but a set of positions. Thus, given a variable, this allows a symbolic
representation of its values.

Definition 2.1 Let R be a term rewriting system, Q a set of states and | — r € R.
An (I — r)-substitution is a function from Posy (1) into Q.

We then adapt this kind of substitution to the rewriting framework in the fol-
lowing way. Let [—r € R and o be an (I — r)-substitution. We denote by lo the
term of 7 (F, Q) such that Pos(lo) = Pos(l), and for each p € Pos(l), if p € Posx ()
then lo(p) = o(p), otherwise lo(p) = I(p). Similarly, we denote by ro the term of
T(F,Q) defined by: Pos(ro) = Pos(r) and, for each p € Pos(r), if p ¢ Posx(r)
then ro(p) = r(p) and ro(p) = o(p) otherwise, where p = min Pos,. (I) (posi-
tions are lexicographically ordered). For a given tree automaton, a particular class
of (I — r)-substitutions can be drawn.

Definition 2.2 Let A be a finite tree automaton. We say that an (I — r)-
3

BoicauT, HEAM AND KOUCHNARENKO.

substitution o is A-compatible if for each x € Var(l),

N LA o) 0.

pG'POS{z} (l)

Finally, the last notion we introduce is the definition of an approximation func-
tion.

Definition 2.3 Let A be a finite tree automaton. An approximation function (for
A) is a function associating with each tuple (I — r,0,q), where | - r € R, o is an
A-compatible (I — r)-substitution and ¢ a state of A, a mapping from Pos(r) to Q.

This notion is very useful for reachability analysis in rewriting with non left-linear
TRSs as shown in the following section.

2.2 Reachability Analysis in Rewriting with non Left-linear TRSs

This section recalls the approximation-based framework we have been developing,
and explains our objectives from a formal point of view.

Given a tree automaton A and a TRS R (for several classes of automata and
TRSs), the tree automata completion [15,14] algorithm computes a tree automaton
Ay, such that L£(Ag) = R*(L(A)) when it is possible (for the classes of TRSs covered
by this algorithm see [14]), and such that £(Ax) O R*(L(.A)) otherwise.

The tree automata completion works as follows. From A = Ay completion builds
a sequence Ag, A1, ..., A of automata such that if s € £(A;) and s—xt then t €
L(A;41). If there is a fix-point automaton A such that R*(L(Ag)) = L(Ag), then
one has L(Ay) = R*(L(Ap)) (or L(Ag) 2 R*(L(.A)) if R is not in one class of [14]).
In particular, for non left-linear TRSs, the completion is not sound. Indeed, if the
completion converges towards a fix-point automaton Ay, L£(Ag) is not necessarily
either R*(L(.A)) or a super set of R*(L(A)).

In [4], the completion procedure has been improved so that the method is sound
for non left-linear TRSs. This technique is introduced below. As mentioned previ-
ously, the completion builds a sequence Ay, Aq, ..., Ar of tree automata such that
the set of terms reachable in one step of rewriting from £(A;) are in £(A;11). To
build A;41 from A;, we achieve a completion step which consists of finding critical
pairs between —x and — 4,. Formally, for an approximation function v, a rule
[—r € R and an A;-compatible (I — r)-substitution o, a critical pair is an instance
lo of I such that there exists ¢ € Q satisfying lo—7 ¢ and ro /=7 q. For every
critical pair, such that lo—7 g and ro /=% g, detected between R and A;, A;11 is

built by adding new transitions to A;, so that it recognizes ro in g, i.e. 70— 4, ,q.
lo———> ro

I
Al /
x /
/7
/A'l
q <-- o

Before giving a definition of a completion step (Def. 2.5), we introduce a normalisa-
tion step described in Definition 2.4. Note that the transition roc—q is not necessarily

4

BoicauT, HEAM AND KOUCHNARENKO.

a transition of the form f(qi,...,¢,)—¢" and so has to be normalized first. For ex-
ample, to normalize a transition of the form f(g(a), h(q¢’))—q, we need to find some
states q1, g2, q3 and replace the previous transition by a set of normalized transitions:
{a—aq1,9(q1)—q2, h(q")—qs, f(q2,q3)—q}. The states used in a normalization step
do not grow on trees and it is of the approximation function v concern to deliver
them at each completion step. Formally,

Definition 2.4 Let A = (Qp, A, Fp) be a finite tree automaton, v be an approxima-
tion function for A, [— r be a rule of R, o be an A-compatible (I — r)-substitution,
and ¢ be a state of A. We denote by Norm, (I — r,0,q) the following set of transi-
tions, called normalization of (I — r,0,q):

{f(ar,-- - ar)—=q |p € Posz(r), r(p) = f,
ql = q if p = € otherwise q/ =51 —r,0,q9)(p)
g =l = r,0,q)(pi) if p.i ¢ Posx(r),
¢ = o(min{p € Posx(l) | I(p)) = r(p.i)})otherwise}

The min is computed for the lexical order.

Notice that the set {p' € Posx(l) | [(p') = r(p.i)} used in the above definition
is not empty. Indeed, in a TRS, variables occurring in the right-hand side must, by
definition, occur in the left-hand side too.

Definition 2.5 Let R be a TRS. Let Ay = (Qo, Ao, Fy) be a finite tree automaton
and 7 an approximation function for Ay. The automaton C,(Ag) = (Q1, A1, F) is
defined by:
Ay =AgU UNormV(l —71,0,q)

where the union involves all rules [— r € R, all states ¢ € Qp, all Ap-compatible
(I — r)-substitutions o such that lo—% q and ro /=% ¢, F1 = Fy and Q; =
Qp U Qy, where Qy denotes the set of states occurring in left/right-hand sides of
transitions of Aj.

Following theorem was proved in [4].

Theorem 2.6 Let (A,,) and (v,) be respectively a sequence of finite tree automata
and a sequence of approzrimation functions such that for each integer n, v, is an
approzimation function for A, and Api1 = Cy, (Ay). If there exists a positive integer
N, such that for every n > N, A, = Ay, then R*(L(Ao)) C L(AN).

From a verification point of view, this technique is very helpful. Indeed, for a
system Y whose transition relation is A, one specifies the initial configuration of
3 by a tree language E, and A by a TRS R. With a well-suited approximation
function ~, an over-approximation of reachable configurations of 3, denoted E;Yz, can
be computed. Finally, a set of bad configurations, denoted Ep,q, can be encoded with
a tree language and if E;’z N Epqg is empty, then no bad configuration is reachable.

In particular, in [4], we have used this technique for verifying security protocols
bringing into play the xor operator (@). Note that the nilpotence property of @ is
specified with a non left-linear rule, i.e., z & x—0. The tree languages specify the

5

BoicauT, HEAM AND KOUCHNARENKO.

intruder knowledge and the configurations of the network. The TRS specifies the
protocol and the intruder abilities for decoding, coding, depairing messages. Thus,
if a secret term ¢t does not belong to an over-approximation of the knowledge that
the intruder might have, then t is actually secret.

3 Under-Approximations for non Left-linear TRSs

The over-approximation results in [4] do not provide a way to prove that a particular
term is reachable: the method is not complete. This section adapts the means and
extends the results in [4] to under-approximations computations. In the security
protocol framework, computing under-approximations allows an under-estimation of
the intruder knowledge, and thus secrecy flaws detection. Indeed, if a secret datum
is in the intruder knowledge under-estimation, then the intruder actually knows this
secret. The main idea (and problem) behind the under-approximations is that one
wants the languages of computed tree automata to be in the set of terms reachable
by rewriting . Having some conditions on the TRS makes it possible to control the
completion, and proving that a term is actually reachable is then possible.

We define here v to be an injective approximation function from R x (N* —
Q) x N* x Q into Q. Theorem 3.2 shows that with such an approximation function,
an under-approximation of the set of reachable terms is possible. Before, Lemma 3.1
presents an intermediary result useful for proving Theorem 3.2: this result reveals
some features of terms recognised by C,(.A) for which there exists a rewriting prede-
cessor recognised by A. In the following, we introduce the notation NLV(t) which
for a term ¢ of 7(F,X), denotes the set of non-linear variables of ¢, i.e., the set of
variables occurring at least twice within .

Lemma 3.1 Let R be a right-linear TRS for which NLV (I) N Var(r) = 0 for all
l—r € R. Let A be the current tree automaton and C,(A) be the tree automaton
obtained after one completion step with R and ~y. If there exist a ground term t over
F, a state q of A and a function T from Pos(t) to Q such that t € L(Cy(A),q), t &
L(A,q) and T satisfies the following conditions: (i) T(e) = q; (ii) for all p € Pos(t),
t), € L(C4(A),7(p)) and, (iii) for all p € Pos(t) \ {e}, if T(p) is a state of A, then
t), € L(A,7(p)). Then there exists to € T (F) such that to € L(A,q) and to—rt.

The proof of Lemma 3.1 is in [5]. The following result shows that each term of the
language C,(Ap) is reachable by rewriting from 4y and using R.

Theorem 3.2 Let Ay = (Qo, Ao, Fy) be a finite tree automaton. Let R be a right-
linear TRS. Given the approzimation function v defined at the beginning of Section
3, if for all l—=r € R, Var(r) "N NLV (1) = 0 then L£(Cy(Ap)) € R*(L(Ap)).

The proof of Theorem 3.1 can be found in [5]. Let C,(Yn) (Ap) be the tree automaton
obtained after n completion steps performed from Ay by using the TRS R and the
approximation function 7. Finally, Proposition 3.3 shows that the approximation
function v provides a sound under-approximation of reachable terms (see [5]).

Proposition 3.3 If R is right-linear and for all l-r € R, NLV(l) N Var(r) = 0
6

BoicauT, HEAM AND KOUCHNARENKO.

then for all n < 0, £(CY(4p)) € R*(L(Ap)), L (Ag)) € £(C" T (Ay)) and
Unso L€ (Ao)) = R*(L(Ao)).

At this point, we have developed theoretical frameworks which lead either to
over-approximations of the set of reachable terms in general, or to its under-
approximations under additional conditions on TRSs. The obtained results allow
us to apply the approximation-based methods to system verification as presented in
the next section.

4 Experiments and Related Works

With the extension brought for the under-approximations computation, we are now
able to detect whether a protocol using algebraic properties of cryptographic primi-
tives is flawed or not. Actually, while the protocol is flawed in the rewriting model
for any number of sessions, in general, it turns out to be a real attack against the
protocol when an attack concerns a long term secret between two honnest agents.
We consider a long term secret such as a secret which is never revealed, even in
future sessions. In this section, we present some experimental results obtained on
two protocols, well-known to be flawed, which are NSPK-xor and the key establish-
ment & la Diffie-Helmann protocol. The technique presented in this paper has been
implemented in the tool TA4SP.

4.1 TA4SP for Attack Detection

This section details two protocols, well-known to be flawed, which are NSPK-xor
and the key establishment & la Diffie-Helmann protocol in its simplest form. The
notations used are the following: X -> Y: Z specifies that X sends the message Z to
Y, X.Y is the concatenation of data X and Y, and {X}y (or {X}_Y) is the encoding of
the message X by the message Y. Moreover, data Na, Nb, ni(Na) and ni(Nb) with i
being an integer, are fresh random numbers, also called a nonces. Finally, the last
concept to know concerns the keys, which can be public, private or symmetric. To
a public key Pka is associated a private key Prka. A message encoded by one can
be decoded by the other: {{M}pxatprka = {{M}prxatrka = M. A symmetric key K can
decode a message encoded by itself: {{M}x}x = M.

The NSPK-xor Protocol is composed of three steps so that each participant
can authenticate the other. First, the agent A sends the message {Na.A}k, to the
agent B. Second, B sends {Nb.Na & B}k, to A. Finally, A sends {Nb}xk, to B
as a confirmation. Using TA4SP, we obtain in 71.03 seconds that the protocol does
not preserve the secrecy of the data Nb against an intruder. Thanks to the AVISPA
toolset, one can use one of three other tools (in this case CL-AtSe [21]) for exhibiting
the following attack trace.

i -> (a,8): start
(a,6) -> i: {n9(Na).al}_ki

i -> (a,3): start
(a,3) -> i: {ni(Na).al}_kb

S w N =

. i -> (b,4): A{xor(i,xor(b,n9(Na))).a}_kb
. (b,4) -> i: {nb5(Nb).xor(i,n9(Na))}_ka

oo

BoicauT, HEAM AND KOUCHNARENKO.

7.1 -> (a,6): {n5(Nb).xor(i,n9(Na))}_ka
8. (a,6) -> i: {n5(Nb)}_ki

At steps 1. and 2. of the attack, the agent a initiates a session with the in-
truder by sending the message {n9(Na).a}_ki to the intruder where n9(Na) is a
nonce generated by a and ki is the public key of the intruder. At steps 3. and
4., the agent a initiates a session with the agent b. The intruder composes at step
5. the message xor(i,xor(b,n9(Na))).a and sends it to b after having encoded
it with the public key of the agent b. The agent b deduces at step 6. that this
message comes from the agent a thanks to the identity occurring in the received
message. Moreover, b considers the message xor(i,xor(b,n9(Na)))’ as the nonce gen-
erated by a. Consequently, b performs the second step of the protocol. At step
6. of the attack trace, b composes n5(Nb) .xor (b,xor(i,xor(b,n9(Na)))) which
is equivalent to n5(Nb) .xor (i,n9(Na)) after considering the algebraic properties of
@ (xor operator). Then, he sends it to a after having encoded it with the public
key of a. The agent b declares also the nonce n5(Nb) as a secret shared between
himself and the agent a. But, according to the point of view of the agent a, the
message {n5(Nb) .xor(i,n9(Na))}_ka should come from i (the intruder) because
n5(Nb) identifies the agent i for a. According to his deduction, the agent a sends
{n5(Nb) }_ki to the intruder. Finally, the latter can deduce n5(Nb) which is a secret
supposed to be shared between b and a.

The Diffie-Helmann Protocol is a key establishment protocol between two
agents A and B. The simplest version of this protocol is composed of three steps.
At step 1, A generates the nonce Na and computes exp(G, Na) (standing for GV¢)
where G is a number known by every agents. Thus A sends the message exp(G, Na)
to the agent B. At step 2, the agent B generates also a number Nb and computes
on the one hand exp(G, Nb) and on the other hand K = exp(X, Nb) where X is
the message received i.e. exp(G, Na). The former is sent to A and the latter stands
for the symmetric key shared between A and B. As soon as B receives the message
exp(G, Nb) from A, (s)he then computes exp(exp(G, Nb), Na) and thus considers it
as the symmetric key shared with A. Indeed, according to the algebraic properties
of the exponentiation, K = exp(exp(G, Na), Nb) = exp(exp(G, Nb), Na). Finally,
the message {secret}r is sent by A to B in which secret is a datum initially known
uniquely by A and B. Using TA4SP this protocol has been shown as being flawed in
24.73 seconds. For this protocol, a MIM (Man in the Middle) attack is known and
is detailed below with the attack trace outputted with the AVISPA tool-set.

. i -> (a,3): start
. (a,3) -> i: exp(g,n1(Na))

1> (b,4): g
. (b,4) -> i: exp(g,n5(lb))
. (a,3) -> i: %secab}_(exp(g,nl(Na)))

.1 -> (b,4): {secab}_(exp(g,n5(lib)))

1
2
3
4
5. i -> (a,3):
6
7
8. (b,4) -> i: ()

Roughly, the intruder establishes two keys: exp(exp(g,ni(Na)),g) with a at
steps 2 and 5 and exp(exp(g,n5(Nb)),g) with b at steps 3 and 4. At step 6,

8

BoicauT, HEAM AND KOUCHNARENKO.

the agent a sends the secret data to b with the key unfortunately shared with the
intruder. The intruder then extracts the secret data and forwards it to b with the
other key. Finally, b is persuaded that this message comes from a.

4.2 Related Work

In [18] it has been shown that using equational tree automata under associativity
and/or commutativity is relevant for security problems of cryptographic protocols
with an equational property. For protocols modeled by associative-commutative
TRSs, the authors announce the possibility for the analysis to be done automatically
thanks to the tool ACTAS manipulating associative-commutative tree automata and
using approximation algorithms. However, the engine has still room to be modified
and optimised to support an automated verification.

In [11], the authors study the IBM 4758 CCA (Common Cryptographic Architec-
ture) API which has been shown as flawed in [6]. In response to this flaw, IBM then
has proposed three recommendations designed to prevent it. The formalisation of
these recommendations leads Cortier et al. to draw up a particular class of security
protocols using the operator @& for which the secrecy problem is decidable with an
unbounded number of sessions. They have then shown that any one of the three
recommendations is sufficient to secure the API against a Dolev-Yao intruder [13].

In the recent survey [10], the authors give an overview of the existing methods
in formal approaches to analyse cryptographic protocols. In the same work, a list
of some relevant algebraic properties of cryptographic operators is established, and
for each of them, the authors provide examples of protocols or attacks using these
properties. This survey lists two drawbacks with the recent results aiming at the
analysis of protocols with algebraic properties. First, in most of the papers a par-
ticular decision procedure is proposed for a particular property. Second, the authors
emphasise the fact that the results remain theoretical, and very few implementations
automatically verify protocols with algebraic properties.

5 Conclusion

The main purpose of this paper is to show that the symbolic approximation-based
approach we have been developing is well-adapted for detecting attacks on proto-
cols using algebraic properties while considering an unbounded number of sessions.
Indeed, the automatically generated symbolic under-approximation function enables
us 1) an automated normalisation of transitions, and 2) an automated completion
procedure within the set of reachable terms.

With this extension our approximation-based framework proposes verification
methods using either over-approximations of the set of reachable terms in general, or
its under-approximations under additional conditions on TRSs. The contributions
of the paper have been integrated into the push-button tool TA4SP [1] successfully
applied for analysing the NSPK-xor protocol and the Diffie-Hellman protocol. Let
us remark that TA4SP is used for protocols specified in the standard High Level
Protocol Specification Language (HLPSL) [8]. This language is known to be suitable
for industrial users.

BoicauT, HEAM AND KOUCHNARENKO.

Future development concerns implementation optimisation. We intend to investi-
gate further algebraic properties that can be handled in practice. In this direction, we
project to develop a theoretical framework in order to compute under-approximations
without the right-linearity condition required Theorem 3.2. This may for example
provide an approximation-based approach for detecting attacks on security protocols
with cryptographic primitives using the homomorphism property [10].

References

[1] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma,
P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Md&dersheim, D. von Oheimb, M. Rusinowitch,
J. Santos Santiago, M. Turuani, L. Vigano, and L. Vigneron. The AVISPA Tool for the automated
validation of internet security protocols and applications. In CAV 2005, Proceedings, volume 3576 of
Lecture Notes in Computer Science, pages 281-285. Springer, 2005.

[2] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In CSFW 2001, pages
82-96. IEEE Computer Society Press, 2001.

[3] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Automatic Verification of Security Protocols Using
Approximations. Research Report RR-5727, INRIA-Lorraine - CASSIS Project, October 2005.

[4] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Handling algebraic properties in automatic analysis of
security protocols. In ICTAC-06, volume 4281 of Lecture Notes in Computer Science, pages 153-167.
Springer Berlin/Heidelberg, 2006.

[5] Y. Boichut, P.-C. Héam, and O. Kouchnarenko. Tree automata for detecting attacks on protocols with
algebraic cryptographic primitives. Available at http://www.irisa.fr/lande/boichut/publications/, 2007.

[6] M. Bond. Attacks on cryptoprocessor transaction sets. In CHES 2001, Proceedings, Lecture Notes on
Computer Science, pages 220-234. Springer Verlag, 2001.

[7] L. Bozga, Y. Lakhnech, and M. Perin. Pattern-based abstraction for verifying secrecy in protocols. In
TACAS 2003, volume 2619 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[8] Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, J. Mantovani, S. Mddersheim, and
L. Vigneron. A high level protocol specification language for industrial security-sensitive protocols.
In SAPS 2004, 2004.

[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
automata techniques and applications, 2002.

[10] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in cryptographic
protocols. Journal of Computer Security, 14:1-43, 2006.

[11] V. Cortier, G. Keighren, and G. Steel. Automatic analysis of the security of xor-based key management
schemes. In TACAS 2007, 2007. To be published in Lecture Notes on Computer Science.

[12] V. Cortier, J. K. Millen, and H. Ruefi. Proving secrecy is easy enough. In 14th IEEE Computer Security
Foundations Workshop, CSFW 2001, Proceedings, pages 97-110. IEEE, June 2001.

[13] D. Dolev and A. Yao. On the Security of Public-Key Protocols. IEEE Transactions on Information
Theory, 2(29), 1983.

[14] G. Feuillade, T. Genet, and V. VietTriemTong. Reachability analysis over term rewriting systems.
Journal of Automated Reasonning, 33 (3-4), 2004.

[15] Th. Genet and F. Klay. Rewriting for Cryptographic Protocol Verification. In CADE 2000, Proceedings,
volume 1831 of Lecture Notes in Computer Science, pages 271-290. Springer-Verlag, 2000.

[16] C. Meadows. The NRL protocol analyser: An overview. Journal of Logic Programming, 1994.

[17] D. Monniaux. Abstracting cryptographic protocols with tree automata. In SAS 1999, volume 1694 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[18] H. Ohsaki and T. Takai. Actas: A system design for associative and commutative tree automata theory.
In RULE’2004, volume 124, Aachen, Germany, June 2004.

[19] L. C. Paulson. The inductive approach to verifying cryptographic protocols. Journal of Computer
Security, 6(1):85-128, 1998.

[20] D. Song. Athena: A new efficient automatic checker for security protocol analysis. In CSFW 1999,
Proceedings, pages 192-202. IEEE Computer Society Press, 1999.

[21] M. Turuani. The cl-atse protocol analyser. In RTA 2006, volume 4098 of Lecture Notes in Computer
Science, pages 277-286. Springer-Verlag, 2006.

10

	Introduction
	Background and Notations
	Notations
	Reachability Analysis in Rewriting with non Left-linear TRSs

	Under-Approximations for non Left-linear TRSs
	Experiments and Related Works
	TA4SP for Attack Detection
	Related Work

	Conclusion
	References

