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Tree Automata for Deteting Attaks onProtools with Algebrai CryptographiPrimitivesBoihut1INRIA-LANDEIRISARennes, FraneHéam2 Kouhnarenko3INRIA-CASSISLIFCBesançon, FraneAbstratThis paper extends a rewriting approximations-based theoretial framework in whih the seurity problem� serey preservation against an ative intruder � may be semi-deided through a reahability veri�ation.In a reent paper, we have shown how to semi-deide whether a seurity protool using algebrai propertiesof ryptographi primitives is safe. In this paper, we investigate the dual - inseurity - problem: we explainhow to semi-deide whether a protool using ryptographi primitive algebrai properties is unsafe. Themain advantage of our work is that the approximation funtions make it possible to automatially verifyseurity protools with an arbitrary number of sessions. Furthermore, our approah is supported by the toolTA4SP suessfully applied for analysing the NSPK-xor protool and the Di�e-Hellman protool.Keywords: Seurity protool, algebrai properties, automati approximation.1 IntrodutionSeurity protools are part of systems for whih the seurity problem is in generalundeidable. Approximations and abstrations represent a well-suited alternative forverifying them in pratie. A lot of investigations have been arried out on this topi[2,12,7,15,17,20,16,19℄.An often enountered di�ulty is about enoding with non-atomi keys. A non-atomi key is a key established in several steps from several data. This topi omes
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Boichut, Heam and Kouchnarenko.lose to the handling of operators with algebrai properties. On a strongly typedmodel (model in whih the struture of a ompound key is learly spei�ed), mostof the developed methods are able to perform a protool analysis. Unfortunately aseure strongly typed model is not a seure model beause of type onfusing attaks.That is why our previous ontribution [4℄ has extended the veri�ation methodin [3℄ in order to verify � without typing � seurity protools bringing into playoperators with algebrai properties. This improvement has made the omputationof sound over-approximations of the intruder knowledge possible. Consequently, thesafety, i.e., the serey preservation on protools using algebrai properties of theexlusive or (xor) operator or the exponential (exp) operator an be establishedautomatially. However, there is a lak of the attak detetion, i.e. of showing thata protool is unsafe.The main ontribution of this paper onsists of showing the feasibility of theautomati unsafety veri�ation for protools when 1) the number of sessions is un-bounded, and 2) the ryptographi primitives use algebrai operators properties.We propose su�ient onditions on term rewriting systems (TRSs for short), underwhih attak detetion on suh protools beomes possible.To illustrate the ontributions, experiments on the detetion of attaks againstprotools with the primitives using xor or exp (xored and exped protools, for short),are reported.Struture of the paper The paper is organised as follows. After giving prelim-inary notions on tree automata and TRSs, we introdue in Setion 2 a substitutiondepending on rules of a TRS, and a notion of ompatibility between suh substitu-tions and �nite tree automata, both suitable for reahability analysis in rewritingwith non left-linear TRSs. In Setion 3, we present the extension of [4℄ dealingwith under-approximations. Finally, before onluding, we give in Setion 4 a briefoverview of related works, and we explain how to apply the obtained new results toanalyse xored or exped protools.2 Bakground and NotationsIn this setion basi notions on �nite tree automata, term rewriting systems andapproximations are realled. The reader is referred to [9℄ for more detail. Moreover,detailled examples are given [5℄.2.1 NotationsGiven the set N of natural integers, N
∗ denotes the �nite strings over N. Let F be a�nite set of symbols with their arities. The set of symbols of F of arity i is denoted

Fi. Let X be a �nite set whose elements are variables. We assume that X ∩ F = ∅.A �nite ordered tree t over a set of labels (F ,X ) is a funtion from a pre�x-losed set
Pos(t) ⊆ N

∗ to F ∪ X . A term t over F ∪ X is a labeled tree whose domain Pos(t)satis�es the following properties: Pos(t) is non-empty and pre�x losed, for eah
p ∈ Pos(t), if t(p) ∈ Fn (with n 6= 0), then {i | p.i ∈ Pos(t)} = {1, . . . , n} and, foreah p ∈ Pos(t), if t(p) ∈ X or t(p) ∈ F0, then {i | p.i ∈ Pos(t)} = ∅. Eah element2



Boichut, Heam and Kouchnarenko.of Pos(t) is alled a position of t. For eah subset K of X ∪ F and eah term t wedenote by PosK(t) the subset of positions p's of t suh that t(p) ∈ K. Eah position pof t suh that t(p) ∈ F , is alled a funtional position. The set of terms over (F ,X )is denoted T (F ,X ). A ground term is a term t suh that Pos(t) = PosF (t) (i.e.suh that PosX (t) = ∅). The set of ground terms is denoted T (F). A subterm t|pof t ∈ T (F ,X ) at position p is de�ned by: Pos(t|p) = {i | p.i ∈ Pos(t)} and, For all
j ∈ Pos(t|p), t|p(j) = t(p.j). We denote by t[s]p the term obtained by replaing in tthe subterm t|p by s.For all sets A and B, we denote by Σ(A,B) the set of funtions from A to B. If
σ ∈ Σ(X , B), then for eah term t ∈ T (F ,X ), we denote by tσ the term obtainedfrom t by replaing for eah x ∈ X , the variable x by σ(x). A term rewriting system
R over T (F ,X ) is a �nite set of pairs (l, r) from T (F ,X )× T (F ,X ), denoted l→r,suh that the set of variables ourring in r is inluded in the set of variables of l. ATRS is left-linear if for eah rule l→r, every variable ours at most one in l. Foreah ground term t, we denote by R(t) the set of ground terms t

′ suh that thereexist a rule l → r of R, a funtion µ ∈ Σ(X ,T (F)) and a position p of t satisfying
t|p = lµ and t

′
= t[rµ]p. The relation {(t, t

′
) | t

′
∈ R(t)} is lassially denoted →R.If t→Rt′ for t, t′ ∈ T (F), then t is a rewriting predeessor of t′ and t′ is rewritingsuessor of t. For eah set of ground terms B we denote by R∗(B) the set of groundterms related to an element of B modulo the re�exive-transitive losure of →R.A tree automaton A is a tuple (Q,∆, F ), where Q is the set of states, ∆ theset of transitions, and F the set of �nal states. Transitions are rewriting rules ofthe form f(q1, . . . , qk)→q, where f ∈ Fk and the qi's are in Q. A term t ∈ T (F)is aepted or reognised by A if there exists q ∈ F suh that t→∗

∆q (we also write
t→∗

Aq). The set of terms aepted by A is denoted L(A). For eah state q ∈ Q, wewrite L(A, q) for the tree language L((Q,∆, {q})). A tree automaton is �nite if itsset of transitions is �nite.In [4℄, a new kind of substitution has been introdued. We reall this de�nitionbelow. Notie that the domain of these substitutions is not the set of variablesanymore, but a set of positions. Thus, given a variable, this allows a symbolirepresentation of its values.De�nition 2.1 Let R be a term rewriting system, Q a set of states and l → r ∈ R.An (l → r)-substitution is a funtion from PosX (l) into Q.We then adapt this kind of substitution to the rewriting framework in the fol-lowing way. Let l→r ∈ R and σ be an (l → r)-substitution. We denote by lσ theterm of T (F ,Q) suh that Pos(lσ) = Pos(l), and for eah p ∈ Pos(l), if p ∈ PosX (l)then lσ(p) = σ(p), otherwise lσ(p) = l(p). Similarly, we denote by rσ the term of
T (F ,Q) de�ned by: Pos(rσ) = Pos(r) and, for eah p ∈ Pos(r), if p /∈ PosX (r)then rσ(p) = r(p) and rσ(p) = σ(p

′
) otherwise, where p

′
= minPosr(p)(l) (posi-tions are lexiographially ordered). For a given tree automaton, a partiular lassof (l → r)-substitutions an be drawn.De�nition 2.2 Let A be a �nite tree automaton. We say that an (l → r)-3



Boichut, Heam and Kouchnarenko.substitution σ is A-ompatible if for eah x ∈ Var(l),
⋂

p∈Pos{x}(l)

L(A, σ(p)) 6= ∅.Finally, the last notion we introdue is the de�nition of an approximation fun-tion.De�nition 2.3 Let A be a �nite tree automaton. An approximation funtion (for
A) is a funtion assoiating with eah tuple (l → r, σ, q), where l → r ∈ R, σ is an
A-ompatible (l → r)-substitution and q a state of A, a mapping from Pos(r) to Q.This notion is very useful for reahability analysis in rewriting with non left-linearTRSs as shown in the following setion.2.2 Reahability Analysis in Rewriting with non Left-linear TRSsThis setion realls the approximation-based framework we have been developing,and explains our objetives from a formal point of view.Given a tree automaton A and a TRS R (for several lasses of automata andTRSs), the tree automata ompletion [15,14℄ algorithm omputes a tree automaton
Ak suh that L(Ak) = R∗(L(A)) when it is possible (for the lasses of TRSs overedby this algorithm see [14℄), and suh that L(Ak) ⊇ R∗(L(A)) otherwise.The tree automata ompletion works as follows. From A = A0 ompletion buildsa sequene A0,A1, . . . ,Ak of automata suh that if s ∈ L(Ai) and s→Rt then t ∈
L(Ai+1). If there is a �x-point automaton Ak suh that R∗(L(Ak)) = L(Ak), thenone has L(Ak) = R∗(L(A0)) (or L(Ak) ⊇ R∗(L(A)) if R is not in one lass of [14℄).In partiular, for non left-linear TRSs, the ompletion is not sound. Indeed, if theompletion onverges towards a �x-point automaton Ak, L(Ak) is not neessarilyeither R∗(L(A)) or a super set of R∗(L(A)).In [4℄, the ompletion proedure has been improved so that the method is soundfor non left-linear TRSs. This tehnique is introdued below. As mentioned previ-ously, the ompletion builds a sequene A0,A1, . . . ,Ak of tree automata suh thatthe set of terms reahable in one step of rewriting from L(Ai) are in L(Ai+1). Tobuild Ai+1 from Ai, we ahieve a ompletion step whih onsists of �nding ritialpairs between →R and →Ai

. Formally, for an approximation funtion γ, a rule
l→r ∈ R and an Ai-ompatible (l → r)-substitution σ, a ritial pair is an instane
lσ of l suh that there exists q ∈ Q satisfying lσ→∗

Ai
q and rσ 6 →∗

Ai
q. For everyritial pair, suh that lσ→∗

Ai
q and rσ 6 →∗

Ai
q, deteted between R and Ai, Ai+1 isbuilt by adding new transitions to Ai, so that it reognizes rσ in q, i.e. rσ→Ai+1

q.
lσ

Ai

R
rσ

q

∗

Ai+1

∗Before giving a de�nition of a ompletion step (Def. 2.5), we introdue a normalisa-tion step desribed in De�nition 2.4. Note that the transition rσ→q is not neessarily4



Boichut, Heam and Kouchnarenko.a transition of the form f(q1, . . . , qn)→q′ and so has to be normalized �rst. For ex-ample, to normalize a transition of the form f(g(a), h(q′))→q, we need to �nd somestates q1, q2, q3 and replae the previous transition by a set of normalized transitions:
{a→q1, g(q1)→q2, h(q′)→q3, f(q2, q3)→q}. The states used in a normalization stepdo not grow on trees and it is of the approximation funtion γ onern to deliverthem at eah ompletion step. Formally,De�nition 2.4 Let A = (Q0,∆, F0) be a �nite tree automaton, γ be an approxima-tion funtion for A, l → r be a rule of R, σ be an A-ompatible (l → r)-substitution,and q be a state of A. We denote by Normγ(l → r, σ, q) the following set of transi-tions, alled normalization of (l → r, σ, q):

{f(q1, . . . , qk)→q
′
|p ∈ PosF (r), r(p) = f,

q
′
= q if p = ε otherwise q

′
= γ(l → r, σ, q)(p)

qi = γ(l → r, σ, q)(p.i) if p.i /∈ PosX (r),

qi = σ(min{p
′
∈ PosX (l) | l(p

′
) = r(p.i)})otherwise}The min is omputed for the lexial order.Notie that the set {p

′
∈ PosX (l) | l(p

′
) = r(p.i)} used in the above de�nitionis not empty. Indeed, in a TRS, variables ourring in the right-hand side must, byde�nition, our in the left-hand side too.De�nition 2.5 Let R be a TRS. Let A0 = (Q0,∆0, F0) be a �nite tree automatonand γ an approximation funtion for A0. The automaton Cγ(A0) = (Q1,∆1, F1) isde�ned by:

∆1 = ∆0 ∪
⋃

Normγ(l → r, σ, q)where the union involves all rules l → r ∈ R, all states q ∈ Q0, all A0-ompatible
(l → r)-substitutions σ suh that lσ→∗

A0
q and rσ 6 →∗

A0
q, F1 = F0 and Q1 =

Q0 ∪ Q2, where Q2 denotes the set of states ourring in left/right-hand sides oftransitions of ∆1.Following theorem was proved in [4℄.Theorem 2.6 Let (An) and (γn) be respetively a sequene of �nite tree automataand a sequene of approximation funtions suh that for eah integer n, γn is anapproximation funtion for An and An+1 = Cγn(An). If there exists a positive integer
N , suh that for every n ≥ N , An = AN , then R∗(L(A0)) ⊆ L(AN ).From a veri�ation point of view, this tehnique is very helpful. Indeed, for asystem Σ whose transition relation is ∆, one spei�es the initial on�guration of
Σ by a tree language E, and ∆ by a TRS R. With a well-suited approximationfuntion γ, an over-approximation of reahable on�gurations of Σ, denoted Eγ

R, anbe omputed. Finally, a set of bad on�gurations, denoted EBad, an be enoded witha tree language and if Eγ
R ∩ EBad is empty, then no bad on�guration is reahable.In partiular, in [4℄, we have used this tehnique for verifying seurity protoolsbringing into play the xor operator (⊕). Note that the nilpotene property of ⊕ isspei�ed with a non left-linear rule, i.e., x ⊕ x→0. The tree languages speify the5



Boichut, Heam and Kouchnarenko.intruder knowledge and the on�gurations of the network. The TRS spei�es theprotool and the intruder abilities for deoding, oding, depairing messages. Thus,if a seret term t does not belong to an over-approximation of the knowledge thatthe intruder might have, then t is atually seret.3 Under-Approximations for non Left-linear TRSsThe over-approximation results in [4℄ do not provide a way to prove that a partiularterm is reahable: the method is not omplete. This setion adapts the means andextends the results in [4℄ to under-approximations omputations. In the seurityprotool framework, omputing under-approximations allows an under-estimation ofthe intruder knowledge, and thus serey �aws detetion. Indeed, if a seret datumis in the intruder knowledge under-estimation, then the intruder atually knows thisseret. The main idea (and problem) behind the under-approximations is that onewants the languages of omputed tree automata to be in the set of terms reahableby rewriting . Having some onditions on the TRS makes it possible to ontrol theompletion, and proving that a term is atually reahable is then possible.We de�ne here γ to be an injetive approximation funtion from R × (N∗ 7→
Q)×N

∗ ×Q into Q. Theorem 3.2 shows that with suh an approximation funtion,an under-approximation of the set of reahable terms is possible. Before, Lemma 3.1presents an intermediary result useful for proving Theorem 3.2: this result revealssome features of terms reognised by Cγ(A) for whih there exists a rewriting prede-essor reognised by A. In the following, we introdue the notation NLV (t) whihfor a term t of T (F ,X ), denotes the set of non-linear variables of t, i.e., the set ofvariables ourring at least twie within t.Lemma 3.1 Let R be a right-linear TRS for whih NLV (l) ∩ Var(r) = ∅ for all
l→r ∈ R. Let A be the urrent tree automaton and Cγ(A) be the tree automatonobtained after one ompletion step with R and γ. If there exist a ground term t over
F , a state q of A and a funtion τ from Pos(t) to Q suh that t ∈ L(Cγ(A), q), t 6∈
L(A, q) and τ satis�es the following onditions: (i) τ(ε) = q; (ii) for all p ∈ Pos(t),
t|p ∈ L(Cγ(A), τ(p)) and, (iii) for all p ∈ Pos(t) \ {ε}, if τ(p) is a state of A, then
t|p ∈ L(A, τ(p)). Then there exists t0 ∈ T (F) suh that t0 ∈ L(A, q) and t0→Rt.The proof of Lemma 3.1 is in [5℄. The following result shows that eah term of thelanguage Cγ(A0) is reahable by rewriting from A0 and using R.Theorem 3.2 Let A0 = (Q0,∆0, F0) be a �nite tree automaton. Let R be a right-linear TRS. Given the approximation funtion γ de�ned at the beginning of Setion3, if for all l→r ∈ R, Var(r) ∩ NLV (l) = ∅ then L(Cγ(A0)) ⊆ R∗(L(A0)).The proof of Theorem 3.1 an be found in [5℄. Let C(n)

γ (A0) be the tree automatonobtained after n ompletion steps performed from A0 by using the TRS R and theapproximation funtion γ. Finally, Proposition 3.3 shows that the approximationfuntion γ provides a sound under-approximation of reahable terms (see [5℄).Proposition 3.3 If R is right-linear and for all l→r ∈ R, NLV (l) ∩ Var(r) = ∅6



Boichut, Heam and Kouchnarenko.then for all n ≤ 0, L(C
(n)
γ (A0)) ⊆ R∗(L(A0)), L(C

(n)
γ (A0)) ⊆ L(C

(n+1)
γ (A0)) and⋃

n≥0 L(C
(n)
γ (A0)) = R∗(L(A0)).At this point, we have developed theoretial frameworks whih lead either toover-approximations of the set of reahable terms in general, or to its under-approximations under additional onditions on TRSs. The obtained results allowus to apply the approximation-based methods to system veri�ation as presented inthe next setion.4 Experiments and Related WorksWith the extension brought for the under-approximations omputation, we are nowable to detet whether a protool using algebrai properties of ryptographi primi-tives is �awed or not. Atually, while the protool is �awed in the rewriting modelfor any number of sessions, in general, it turns out to be a real attak against theprotool when an attak onerns a long term seret between two honnest agents.We onsider a long term seret suh as a seret whih is never revealed, even infuture sessions. In this setion, we present some experimental results obtained ontwo protools, well-known to be �awed, whih are NSPK-xor and the key establish-ment à la Di�e-Helmann protool. The tehnique presented in this paper has beenimplemented in the tool TA4SP.4.1 TA4SP for Attak DetetionThis setion details two protools, well-known to be �awed, whih are NSPK-xorand the key establishment à la Di�e-Helmann protool in its simplest form. Thenotations used are the following: X -> Y: Z spei�es that X sends the message Z toY, X.Y is the onatenation of data X and Y, and {X}Y (or {X}_Y) is the enoding ofthe message X by the message Y. Moreover, data Na, Nb, ni(Na) and ni(Nb) with ibeing an integer, are fresh random numbers, also alled a nones. Finally, the lastonept to know onerns the keys, whih an be publi, private or symmetri. Toa publi key Pka is assoiated a private key Prka. A message enoded by one anbe deoded by the other: {{M}Pka}Prka = {{M}Prka}Pka = M. A symmetri key K andeode a message enoded by itself: {{M}K}K = M.The NSPK-xor Protool is omposed of three steps so that eah partiipantan authentiate the other. First, the agent A sends the message {Na.A}KB

to theagent B. Seond, B sends {Nb.Na ⊕ B}KA
to A. Finally, A sends {Nb}KB

to Bas a on�rmation. Using TA4SP, we obtain in 71.03 seonds that the protool doesnot preserve the serey of the data Nb against an intruder. Thanks to the AVISPAtoolset, one an use one of three other tools (in this ase CL-AtSe [21℄) for exhibitingthe following attak trae.1. i -> (a,6): start2. (a,6) -> i: {n9(Na).a}_ki3. i -> (a,3): start4. (a,3) -> i: {n1(Na).a}_kb5. i -> (b,4): {xor(i,xor(b,n9(Na))).a}_kb6. (b,4) -> i: {n5(Nb).xor(i,n9(Na))}_ka 7



Boichut, Heam and Kouchnarenko.7. i -> (a,6): {n5(Nb).xor(i,n9(Na))}_ka8. (a,6) -> i: {n5(Nb)}_kiAt steps 1. and 2. of the attak, the agent a initiates a session with the in-truder by sending the message {n9(Na).a}_ki to the intruder where n9(Na) is anone generated by a and ki is the publi key of the intruder. At steps 3. and4., the agent a initiates a session with the agent b. The intruder omposes at step5. the message xor(i,xor(b,n9(Na))).a and sends it to b after having enodedit with the publi key of the agent b. The agent b dedues at step 6. that thismessage omes from the agent a thanks to the identity ourring in the reeivedmessage. Moreover, b onsiders the message xor(i,xor(b,n9(Na)))' as the none gen-erated by a. Consequently, b performs the seond step of the protool. At step6. of the attak trae, b omposes n5(Nb).xor(b,xor(i,xor(b,n9(Na)))) whihis equivalent to n5(Nb).xor(i,n9(Na)) after onsidering the algebrai properties of
⊕ (xor operator). Then, he sends it to a after having enoded it with the publikey of a. The agent b delares also the none n5(Nb) as a seret shared betweenhimself and the agent a. But, aording to the point of view of the agent a, themessage {n5(Nb).xor(i,n9(Na))}_ka should ome from i (the intruder) beausen5(Nb) identi�es the agent i for a. Aording to his dedution, the agent a sends{n5(Nb)}_ki to the intruder. Finally, the latter an dedue n5(Nb) whih is a seretsupposed to be shared between b and a.The Di�e-Helmann Protool is a key establishment protool between twoagents A and B. The simplest version of this protool is omposed of three steps.At step 1, A generates the none Na and omputes exp(G,Na) (standing for GNa)where G is a number known by every agents. Thus A sends the message exp(G,Na)to the agent B. At step 2, the agent B generates also a number Nb and omputeson the one hand exp(G,Nb) and on the other hand K = exp(X,Nb) where X isthe message reeived i.e. exp(G,Na). The former is sent to A and the latter standsfor the symmetri key shared between A and B. As soon as B reeives the message
exp(G,Nb) from A, (s)he then omputes exp(exp(G,Nb), Na) and thus onsiders itas the symmetri key shared with A. Indeed, aording to the algebrai propertiesof the exponentiation, K = exp(exp(G,Na), Nb) = exp(exp(G,Nb), Na). Finally,the message {secret}K is sent by A to B in whih secret is a datum initially knownuniquely by A and B. Using TA4SP this protool has been shown as being �awed in24.73 seonds. For this protool, a MIM (Man in the Middle) attak is known andis detailed below with the attak trae outputted with the AVISPA tool-set.1. i -> (a,3): start2. (a,3) -> i: exp(g,n1(Na))3. i -> (b,4): g4. (b,4) -> i: exp(g,n5(Nb))5. i -> (a,3): g6. (a,3) -> i: {seab}_(exp(g,n1(Na)))7. i -> (b,4): {seab}_(exp(g,n5(Nb)))8. (b,4) -> i: ()Roughly, the intruder establishes two keys: exp(exp(g,n1(Na)),g) with a atsteps 2 and 5 and exp(exp(g,n5(Nb)),g) with b at steps 3 and 4. At step 6,8



Boichut, Heam and Kouchnarenko.the agent a sends the seret data to b with the key unfortunately shared with theintruder. The intruder then extrats the seret data and forwards it to b with theother key. Finally, b is persuaded that this message omes from a.4.2 Related WorkIn [18℄ it has been shown that using equational tree automata under assoiativityand/or ommutativity is relevant for seurity problems of ryptographi protoolswith an equational property. For protools modeled by assoiative-ommutativeTRSs, the authors announe the possibility for the analysis to be done automatiallythanks to the tool ACTAS manipulating assoiative-ommutative tree automata andusing approximation algorithms. However, the engine has still room to be modi�edand optimised to support an automated veri�ation.In [11℄, the authors study the IBM 4758 CCA (Common Cryptographi Arhite-ture) API whih has been shown as �awed in [6℄. In response to this �aw, IBM thenhas proposed three reommendations designed to prevent it. The formalisation ofthese reommendations leads Cortier et al. to draw up a partiular lass of seurityprotools using the operator ⊕ for whih the serey problem is deidable with anunbounded number of sessions. They have then shown that any one of the threereommendations is su�ient to seure the API against a Dolev-Yao intruder [13℄.In the reent survey [10℄, the authors give an overview of the existing methodsin formal approahes to analyse ryptographi protools. In the same work, a listof some relevant algebrai properties of ryptographi operators is established, andfor eah of them, the authors provide examples of protools or attaks using theseproperties. This survey lists two drawbaks with the reent results aiming at theanalysis of protools with algebrai properties. First, in most of the papers a par-tiular deision proedure is proposed for a partiular property. Seond, the authorsemphasise the fat that the results remain theoretial, and very few implementationsautomatially verify protools with algebrai properties.5 ConlusionThe main purpose of this paper is to show that the symboli approximation-basedapproah we have been developing is well-adapted for deteting attaks on proto-ols using algebrai properties while onsidering an unbounded number of sessions.Indeed, the automatially generated symboli under-approximation funtion enablesus 1) an automated normalisation of transitions, and 2) an automated ompletionproedure within the set of reahable terms.With this extension our approximation-based framework proposes veri�ationmethods using either over-approximations of the set of reahable terms in general, orits under-approximations under additional onditions on TRSs. The ontributionsof the paper have been integrated into the push-button tool TA4SP [1℄ suessfullyapplied for analysing the NSPK-xor protool and the Di�e-Hellman protool. Letus remark that TA4SP is used for protools spei�ed in the standard High LevelProtool Spei�ation Language (HLPSL) [8℄. This language is known to be suitablefor industrial users. 9
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