
CDR: A Rewriting Based Tool to Design FPLA

Circuits

Zahir Maazouzi, Nirina Andrianarivelo, Wadoud Bousdira, and Jacques Chabin

Laboratoire d’Informatique Fondamentale d’Orléans 45067 Orléans Cedex 02 (Fr.)
{maazouzi, andria, bousdira, chabin}@lifo.univ-orleans.fr

Abstract. A rewriting based method to design circuits on FPLA elec-
tronic devices is presented. It is an improvement of our previous work.
In comparison with this latter, the number of boolean vectors generated
during the design process is reduced. This is done thanks to new forms
of rewriting rules denoting new interesting properties on boolean vec-
tors, associated to boolean products. Only boolean products which are
implicants of the circuit to design are computed. Thus, this new design
process is more efficient than the previous one.

1 Introduction

FPLA (Field Programmable Logic Array) devices are the core of complex cir-
cuits as random logic circuits, interface logic, and other applications that require
decoding of device inputs. The aim of this work is to design logical circuits for
such kind of devices.

It is the first rewriting based method dealing with designing circuits on FPLA
chips [1]. It is a correct and complete method, in the sense that, if solutions of
the design exist, they will be deduced by our method within a finite period of
time. And if no solution exists, then within a finite period of time, a signal
of failure is also displayed. Let us note that theoretically, neither simulation
nor validation of the computed solutions is needed. Thanks to the formalism of
constraint we used, all the properties to be satisfied by the solution are specified
in the constraints of the rewrite rules, and they have to be considered in all the
steps of the process. Such properties could be conditions on the layout of the
logical gates in the device, for example. This approach has been implemented in
our prototype CDR (Circuit Design by Rewriting).

New properties of boolean vectors representing boolean products are stated.
To the best of our knowledge, we are the first to present all those properties.
They will be used to redefine our new system of constrained rewriting rules.

2 Boolean Vectors

We deal with basic notions on boolean algebra [4, 9, 8, 5]. The novelty of this
approach consists of handling the boolean functions in the sum of products
normal form by a vectorial representation, unlike the classical ones where an

J.A. Campbell and E. Roanes-Lozano (Eds.): AISC2000, LNAI 1930, pp. 219–222, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



220 Zahir Maazouzi et al.

algebraic representations is used. With this representation, we prove interesting
new properties that will be used to perform the design. It is independent of any
design method, which can be used to improve the classical ones.

A boolean vector −→v = (v1, v2, . . . , vn) is any n-uple of values all in the
set {0, 1}. Let −→

E
n be the set of all boolean vectors of size 2n. For example,−→

E
2 ={(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111), (1000),

(1001), (1010), (1011), (1100), (1101), (1110), (1111)}. n is the dimension of a
vector of −→E n, and 2n its size. Let us now define the following notions in order
to introduce these new properties :

– the split operation : ∀n ≥ 2

Split :
{−→
E

n → −→
E

2 ×−→
E

2 × . . . ×−→
E

2

−→v �→ ((v1, v2, v3, v4), . . . , (v2n−3, v2n−2, v2n−1, v2n))

– Let −→v = (v1, . . . , v2n) and −→u = (u1, . . . , u2n) be two vectors in −→
E

n :

−→v 	 −→u iff ∀i ∈ [1 . . . 2n], if ui = 0 then vi = 0.

Let us note that in the literature[8, 5], 	 is denoted implication. When−→v 	 −→u , we say that −→v implies −→u , we say also that −→v is an implicant of
−→u .

In the same way, we note −→
P

n all the vectors of −→E n corresponding to products.
We call them product vectors of dimension n. In order to distinguish between the
two notions : vectorial-syntactic, we represent a syntactic form with a pattern p
without arrow, and its vectorial value by −→p .

2.1 Recursive Properties on Products

The following theorem is an interesting result on the boolean algebra in the
sense that it is independent of any design method. It makes up the basis of our
method.

Theorem 1. Let be −→p ∈ −→
P

n such that Split(−→p ) = (−→b 1, · · · ,
−→
b k).

1. ∀i, j ≤ k, if −→b i = (0000) and −→
b j = (0000) then −→

b i =
−→
b j .

2. ∀i ≤ k, −→b i ∈ −→
P

2.

3 The Rewriting Approach

We use the paradigm of conditional rewriting[3] to perform the circuit design.
The formalism of constraints used here is also the usual one. For more details
see [6], and [7]. All the notations used here are the same as in our previous work
[2]. A constrained conditional rule is noted C ∧ L ⇒ s = t, in which C is a list
of constraints to be solved by using algorithms in the predefined algebras, or
by unification, and L is a list of equations to be solved by rewriting techniques.



CDR: A Rewriting Based Tool to Design FPLA Circuits 221

When the L part does not exist then we call it an equation. All the inference
rules of the maximal-unit-strategy described in [2] are included in our system.
The main inference rules we use are deduction of new rules by Conditional-
narrowing, and simplifying conditional rules and inequations. Let us point out
that this inference rule works between an inequation (a pure negative conditional
rule) and an equation as well. As usual in refutation based methods, we infer in
our system until the empty clause is generated. The proof of this empty clause
yields the design of the circuit.

4 The Design Specification

The specification of the circuit is divided into three main parts. The axioms
represent the inputs, called also equations. All the outputs are represented by
a pure negative clause, and finally five conditional rules with the corresponding
constraints specify the design of the FPLA and the chip specification. As usual
in refutation based methods, CDR infers new clauses until the empty clause is
generated. The proof of this empty clause yields the design of the circuit.

All the axioms are ground equations of the form P$(out(−→v ), 2) = tt, where−→v is a product vector of dimension 2, the second argument of P$.
There are 5 conditional rules specifying the design of the FPLA device. Three

of those rules does deduce product vectors, and the remaining ones deduce the
output sums. For example the first conditional product rule is as follows:
[r = 1 ∧ r < n − 2] ∧ P$(out(−→x ), 2) = tt ∧ P$(out(t), r) = tt

⇒ P$(out(ab(−→x , t)), r + 2) = tt

This rule exploits the theorem 1 in order to deduce recursively product vec-
tors of upper dimension. The operator ab keeps the resulting product vector in
a compact way without expanding it in its vectorial representation. It allows to
reduce to memory consuming.

The following rule performs a sum between a product and an already deduced
sum. This deduction is performed only through two conditions as shown in the
constraint part.
[−→x = simp(t, n) ∧ −→x 	 −→y ∧ x ≤ y] ∧ P$(out(t), n) = tt ∧ S$(out(−→y )) = tt

⇒ S$(out(or(−→x ,−→y ))) = tt

The constraint −→x 	 −→y forbids redundant sums. For example, if xi’s are
boolean variables, then the sum between x1x2x3 and x1x2 + x2x

′
3 are not to be

performed, because x1x2x3 	 x1x2. The second constraint x ≤ y means that the
syntactic representation of x must be syntactically smaller than y with respect
to an arbitrary lexicographic order <, defined on the algebraic representation
of products and which is extended over the sums. The vectors −→x and −→y take
part of the predefined algebra, thus all the information corresponding to them
are wired like integers and booleans. They are in the low hierarchy level [2]. For
example, x1x2 < x2x3 + x′

1x3 while x3 < x2x3 + x′
1x3. This constraint allows

us to reduce the process in the search space avoiding the deduction of the same
sum (i.e. the same semantic value) though syntactically different.



222 Zahir Maazouzi et al.

Finally, the outputs is represented by an inequation. All these outputs are
the subterms of the variadic term A$(. . . ). The inequation is as follows :
A$(S$(out(−→o 1)), . . . , S$(out(−→o k)) = tt =⇒

A$(tt, . . . , tt) → tt
where −→o 1, . . . , −→o k are the column vectors of the truth table. Once all the
subterms S$(. . . ) in A$(. . . ) are reduced to tt, the second standard rewrite rule
reduces the negative clause to the nil one, thus we get the refutation.

5 Conclusion

In comparison with our previous work[1], thanks to those new properties com-
bined with a goal-oriented deletion criteria, the number of clauses generated is
tremendously reduced. This second version of CDR is more efficient than the
first one. All the product vectors are stocked in a particular data structure as
the BDDs[?]. The preliminary statistics show that the memory consuming is re-
duced to 30% with respect to the first version of CDR. Moreover, thanks to the
constraints introduced in the product and sum rules, as presented above, only
implicants of the outputs are deduced. The number of these deduced products is
divided in some cases by half with respect to the previous version. Unfortunately,
this saving is performed only for the product vectors, due to the main property
stated in theorem 1. We think that additional improvements of our approach are
still possible, especially for vectors sum deduction.

References

[1] N. Andrianarivelo, W. Bousdira, J. Chabin, and Z. Maazouzi. Designing FPLA
combinational circuits by conditional rewriting. In H. Prade, editor, John Wiley and
Sons, pages 373–377, Brighton, UK, 1998. 13th European Conference on Artificial
Intelligence.

[2] N. Andrianarivelo, W. Bousdira, and J-M. Talbot. On theorem-proving in Horn
theories with built-in algebras. In J. Calmet, J.A. Campbell, and J. Pfalzgraf,
editors, Lecture Notes in Computer Science, volume 1138, pages 320–338, Steyr,
Austria, 1996. Third International Conference on Artificial Intelligence and Sym-
bolic Computation.

[3] N. Dershowitz and J-P. Jouannaud. Rewriting Systems. In J. Van Leuven, edi-
tor, Handbook of Theoretical Computer Science. Elsevier Science Publishers North-
Holland, 1990.

[4] P.R. Halmos. Lectures Notes on Boolean Algebras. Springer, Berlin, 1974.
[5] Randy H. Katz. Contemporary logic design. Benjamin Cummings/Addison Wesley

Publishing Company, 1993.
[6] C. Kirchner, H. Kirchner, and M. Rusinowitch. Deduction with Symbolic Con-

straints. Revue Française d’Intelligence Artificielle, 4(3):9–52, 1990. Special issue
on Automatic Deduction.

[7] G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. PHD
Thesis, Universitat Kaiserslautern, FB Informatik, West Germany, 1989.

[8] John F. Wakerly. Digital Design Principles and Practices. Prentice Hall Interna-
tional Editions, 1991.

[9] Ingo Wegener. The Complexity of Boolean Functions. J. Wiley and Sons, 1987.


	CDR: A Rewriting Based Tool to Design FPLA Circuits
	Introduction
	Boolean Vectors
	Recursive Properties on Products

	The Rewriting Approach
	The Design Specification
	Conclusion
	References


