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Abstract. Considering that the unranked tree languages L(G) and
L(G′) are those defined by given non-recursive XML types G and G′, this
paper proposes a simple and intuitive method to verify whether L(G) is
“approximatively” included in L(G′). Our approximative criterion con-
sists in weakening the father-children relationships. Experimental results
are discussed, showing the efficiency of our method in many situations.

1 Introduction

Today, XML is the lingua franca for data exchange on the web. To allow in-
teroperability among systems, one usually needs to obtain partial information
from another system file. In the context of tree-modeled data, this operation
corresponds to the retrieval of sub-trees according to some given application re-
quests. This retrieval may be approximative, trying to find the XML document
that best fit some given constraints. The situation is more complex when the
problem consists in comparing (or retrieving) XML types (or schemas) defining
approximate sub-trees of the trees generated by a given XML type.

Example 1. Suppose an application where we want to replace an XML type G by
a new type G′ (eg., a web service composition where a service replaces another,
each of them being associated to its own XML message type). We want to analyse
whether the XML messages supported by G′ contains (in an approximate way)
those supported by G. XML types are regular tree grammars where we just
consider the structural part of the XML documents, disregarding data attached
to leaves. Thus, to define leaves we consider rules of the form A→ a[ε].

Now let us suppose that both of our grammars contain the following rules:
F → firstName[ε], L → lastName[ε] , T → title[ε], Y → year[ε] and C →
conference[ε]. However, G defines a publication by using the following rule PUB
→ publication[(F.L)+.T.Y.C]; while in G′ the definition is done by the set of
rules: PUB → publication[A∗.P ]; A → authors[F.L] and P → paper[T.Y.C]. We
want to know whether messages valid with respect to G can be accepted (in an
approximate way) by G′. Notice that G accepts trees such as t in Figure 1 that
are not valid with respect to schema G′ but that represent the same kind of in-
formation G′ deals with. Indeed, in G′, the same information would be organised
as the tree t′ in Figure 1. �
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Fig. 1. Examples of trees t and t′ valid with respect to G and G′, respectively

The approximative criterion for comparing trees that is commonly used consists
in weakening the father-children relationships (i.e., they are implicitly reflected
in the data tree as only ancestor-descendant). In this paper, we consider this
criterion in the context of tree languages. We denote this relation weak inclusion
to avoid confusion with the inclusion of languages (i.e., the inclusion of a set of
trees in another one).

Given two types G and G′, we call L(G) and L(G′) the set of XML documents
valid with respect to G and G′, respectively. Our paper proposes a method for
deciding whether L(G) is weakly included in L(G′), in order to know if the
substitution of G by G′ can be envisaged. The unranked-tree language L(G) is
weakly included in L(G′) if for each tree t ∈ L(G) there is a tree t′ ∈ L(G′) such
that t is weakly included in t′. Intuitively, t is weakly included in t′ (denoted
t�t′) if we can obtain t by removing nodes from t′ (a removed node is replaced by
its children, if any). For instance, in Figure 1, t can be obtained by the removal
of the nodes authors and paper from t′.

To decide whether L(G) is weakly included in L(G′), we consider the set of
trees WI(L(G′)) = {t | ∃t′ ∈ L(G′), t � t′}. Note that L(G) is weakly included
in L(G′) iff L(G) ⊆WI(L(G′)).

Assuming that L(G′) is bounded in depth (which holds for most XML types),
we propose a direct and simple approach that deals with unranked trees, using
hedge grammars. The intuition of our method is to change types by allowing
the deletion of XML tree levels. Roughly speaking, according to this new type,
a given node in an XML tree can have as children those imposed by the original
XML type or any of its descendants. With this simple idea we can compute a
grammar capable of generating all the weakly included trees of a original non-
recursive type G′. We prove that our algorithm is correct and complete.

Example 2. Let us consider G′ from Example 1. We start from this tree grammar
and use our algorithm to obtain a tree grammar which generates the language
containing all the trees weakly-included in L(G′). The obtained grammar is:

PUB → publication[(A | ((F |ε).(L|ε)))∗. (P |((T |ε).(Y |ε).(C|ε)))]
A → authors[(F |ε).(L|ε)] P → paper[(T |ε).(Y |ε).(C|ε)]
F → firstName[ε] L → lastName[ε]
T → title[ε] Y → year[ε]
C → conference[ε].

Given this new grammar G′′ we can verify that L(G) is included in L(G′′). �
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However, if L(G′) is not bounded in depth, computing WI(L(G′)) may be diffi-
cult as illustrated by the following example.

Example 3. Let G′
1 be a grammar containing the rule A → a[B.(A|ε).C] where

non-terminals B and C generate leaves b and c respectively. In this simple
case, it is easy to imagine an extension of our basic algorithm for computing
WI(G′

1). This new grammar replaces the first rule by A → a[B∗.(A|ε).C∗].
However, one can take G′

2 with a more complex rule such as A → a[B.(A |
A.A | ε).C]. The solution here should be given by replacing this rule by
A → a[(A|B|C)∗.(A|ε).(A|B|C)∗ ]. Notice, for instance, that in WI(L(G′

2)) we
can have trees where nodes a, b or c appear on the left of a node labelled a
while according to G′

2 this was not possible. We can remark that the method
needed to obtain WI(G′

2) is more sophisticated than the one used for WI(G′
1).

The situation becomes worse if we suppose G′
3 similar to G′

2 except for the rule
concerning B, which is now B → b[B|ε]. In this case, we should guarantee that
in WI(G′

3) nodes labelled b will have at most one child. Thus, in WI(G′
3), the

rule B → b[B|ε] stays unchanged. This represents another special case to be
treated. �

It seems difficult to define a general and simple algorithm for treating all the
recursive cases. To obtain simple methods we believe that different classes of
recursivity should be considered. A generic approach may need sophisticated
tools.

In this paper, given non-recursive regular tree grammars1 G and G′, to check
if L(G) is weakly included in L(G′), we proceed according to the following steps:

1. Starting from G′, we compute a grammar WI(G′) that generates WI(L(G′)).
2. Then we check whether L(G) ⊆WI(L(G′)), i.e. the inclusion of regular tree

languages. The runtime of this step is exponential in the worst case [18].
However, if G′ satisfies some deterministic-like restrictions, we show that so
does WI(G′) and thus the runtime of this step becomes polynomial [15,6].

Paper organisation: Section 2 gives some theoretical background. Section 3
presents how to compute WI(G) for a given non-recursive grammar G, while
Section 4 analyses some experimental results of our method. Section 5 considers
the special case of deterministic DTDs. Due to the lack of space, missing proofs
are given in [1].

Related work: Several works deal with the (weak) tree inclusion problem in
the context of ordered trees: different improvements (e.g. [2,7,17]) have been
presented to the initial proposal in [13]. Our proposal differs from these ap-
proaches because it considers the weak inclusion with respect to tree languages
(and not with respect to trees only). Given a pattern query, to select the an-
swers, [11] proposes a polynomial algorithm which verifies whether a sub-tree

1 Notice that although Example 2 deals with local tree grammars (DTDs), our algo-
rithm can be applied to any non-recursive regular tree grammar.
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belongs to the language defined by the pattern and by: (i) weakening the father-
children relationship and (ii) disregarding the ordering of children. Contrary to
us, they do not compare XML types, and, thus, are not concerned by horizon-
tal constraints in general. Testing precise inclusion of XML types is considered
in [6,8,9,15]. In [15], the authors study the complexity of the inclusion, iden-
tifying tractable cases. In [6] we find a new polynomial algorithm for checking
whether L(A) ⊆ L(D), where A is an automaton for unranked trees and D is a
deterministic DTD.

2 Preliminaries

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions Pos(t) to an alphabet Σ. Thus for v ∈ Pos(t), t(v) is
the label of t at the position v, and t|v denotes the sub-tree of t at position v.
Positions are sequences of integers in IN∗ and the set Pos(t) satisfies: j ≥ 0, u.j ∈
Pos(t), 0 ≤ i ≤ j ⇒ u.i ∈ Pos(t). As usual, ε denotes the empty sequence of
integers, i.e. the root position. In the following definition, let t, t′ be unranked
trees. The char “.” denotes the concatenation of sequences of integers. Figure 1
illustrates trees with positions and labels: we have, for instance, t(1) = lastName
and t′(1) = paper. The sub-tree t′|0 is the one whose root is authors.

Definition 1. Relationships on a tree: Let p, q ∈ Pos(t). Position p is an
ancestor of q (denoted p < q) if there is a non-empty sequence of integers r such
that q = p.r. Position p is to the left of q (denoted p ≺ q) if there are sequences
of integers u, v, w, and i, j ∈ IN such that p = u.i.v, q = u.j.w, and i < j. �

Definition 2. Resulting tree after node deletion: For a tree t′ and a non-
empty position q of t′, let us note Remq(t′) = t the tree obtained after the
removal of the node at position q in t′ (a removed node is replaced by its children,
if any). We have:

1. t(ε) = t′(ε),
2. ∀p ∈ Pos(t′) such that p < q: t(p) = t′(p),
3. ∀p ∈ Pos(t′) such that p ≺ q : t|p = t′|p,
4. Let q.0, q.1..., q.n ∈ Pos(t′) be the positions of the children of position q, if

q has no child, let n = −1. Now suppose q = s.k where s ∈ IN∗ and k ∈ IN.
We have:
– t|s.(k+n+i) = t′|s.(k+i) for all i such that i > 0 and s.(k + i) ∈ Pos(t′)

(the siblings located to the right of q shift),
– t|s.(k+i) = t′|s.k.i for all i such that 0 ≤ i ≤ n (the children go up). �

Definition 3. Weak inclusion for unranked trees: The tree t is weakly
included in t′ (denoted t � t′) if there exists a series of positions q1 . . . qn such
that t = Remqn(· · ·Remq1(t

′)). �

Example 4. In Figure 1, we have tree t� t′. Notice that for each node of t, there
is a node in t′ with the same label, and this mapping preserves vertical order and
left-right order. However a tree t1 such as publication(lastName, firstName)
is not weakly included in t′ since the left-right order is not preserved. �
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Definition 4. Regular Tree Grammar: A regular tree grammar (RTG) (also
called hedge grammar) is a 4-tuple G = (NT, T, S, P ), where: NT is a finite set
of non-terminal symbols; T is a finite set of terminal symbols ; S is a set of start
symbols, where S ⊆ NT and P is a finite set of production rules of the form
X → a [R], where X ∈ NT , a ∈ T , and R is a regular expression over NT . We
recall that the set of regular expressions over NT = {A1, . . . , An} is inductively
defined by: R ::= ε | Ai | R|R | R.R | R+ | R∗ | R? | (R). �

Definition 5. Derivation: For an RTG G = (NT, T, S, P ), we say that a tree
t built on NT ∪ T derives (in one step) into t′ iff (i) there exists a position p
of t such that t|p = A ∈ NT and a production rule A → a [R] in P , and (ii)
t′ = t[p ← a(w)] where w ∈ L(R) (L(R) is the set of words of non-terminals
generated by R). We write t →[p,A→a [R]] t′. A derivation (in several steps) is a
(possibly empty) sequence of one-step derivations. We write t→∗

G t′. Let TreeT

be the set of all trees that contain only terminal symbols. The language L(G)
generated by G is defined by : L(G) = {t ∈ TreeT | ∃A ∈ S, A→∗

G t}. �

Remark 1. As usual, in this paper, we only consider regular tree grammars such
that : (A) every non-terminal generates at least one tree containing only terminal
symbols and (B) distinct production rules have distinct left-hand-sides (i.e., tree
grammars in the normal form [14]). �

Remark 2. Given an RTG G = (NT, T, S, P ), for each A ∈ NT , there exists in
P a unique rule of the form A→ a[E], i.e. whose left-hand-side is A. �

Example 5. Grammar G0 = (NT, T, S, P0), where NT = {X, A, B}, T =
{f, a, c}, S = {X}, and P0 = {X → f [A.B], A → a[ε], B → a[ε], A → c[ε]}
does not respect the conditions stated in this paper since it is not in the nor-
mal form. The conversion of G0 into normal form gives the set P1 = {X →
f [(A|C).B], A→ a[ε], B → a[ε], C → c[ε]}.
Among regular tree grammars we are particularly interested in local tree gram-
mars which have the same expressive power as DTDs2. We recall their definition
from [16]:

Definition 6. Local Tree Grammar: A local tree grammar (LTG) is a regular
tree grammar that does not have competing non-terminals. Two non-terminals
A and B (of the same grammar G) are said to be competing with each other if
A 
= B and G contains production rules of the form A → a[E] and B → a[E′]
(i.e. A and B generate the same terminal symbol). A local tree language (LTL)
is a language that can be generated by at least one LTG. �

To finish this section we recall some definitions and results concerning the regular
expressions that will be important for us in Section 5.

Firstly we recall that, as W3C standard, only 1-unambiguous regular expres-
sions are allowed in DTDs. A regular expression is 1-unambiguous if every symbol
2 Note that converting an LTG into normal form produces an LTG as well.
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in any input string can be uniquely matched to one occurrence of the symbol
in the regular expression, without looking ahead in the string. As an example,
consider the regular expression E = (A|B)∗.A.A∗. and the word w = BAA in
L(E). The word w can be parsed in two different ways: (i) the first and the
second A in w match the first and the second A in E, respectively; (ii) the first
and the second A in w match the second and the third A in E, respectively.
The regular expression E is therefore not 1-unambiguous. We refer to [4] for a
formal definition of this concept. It is also known that a regular expression E
is 1-unambiguous if and only if its corresponding Glushkov automaton is deter-
ministic [4,5,19].

Definition 7. Monadic and strict regular expression: A regular expression
E is monadic if each non-terminal of E occurs only once in E. It is strict if it
does not contain operators + (positive closure) nor ? (optional). A grammar is
monadic (resp. strict) if all its regular expressions are monadic (resp. strict). �

The following lemma is an immediate consequence of the previous notions.

Lemma 1. A monadic regular expression is 1-unambiguous. Consequently, a
strict and monadic LTG is deterministic3. �

It may happen that algorithm for testing tree language inclusion (second step of
our proposal) are built by considering strict regular expressions only. In this case,
recall that it is always possible to make a regular expression strict, by replacing
each E? by E|ε and each E+ by E.E∗. Unfortunately, removing operator + does
not preserve monadicity. However if ε ∈ L(E) then L(E+) = L(E∗) and in this
case we can just replace each + by ∗ , which preserves monadicity.

3 Weak Inclusion for Regular Tree Grammars

Given a non-recursive regular tree grammar G, in this section we present how to
generate a grammar G1 such that L(G1) = WI(L(G)). To do that, we introduce
some definitions and results.

Definition 8. Relation �G over non-terminals: Let G = (NT, T, S, P ) be
an RTG and A, B be non-terminals. We write A �G B if there exists a rule
A→ a[E] in G s.t. B ∈ NT (E) (where NT (E) denotes the set of non-terminals
occurring in E). We say that A0, . . . , An (Ai ∈ NT ) is a chain for �G if A0 �G

· · · �G An. The relation �G is noetherian if �G does not have an infinite
chain A0 �G · · · �G An �G · · · . Grammar G is recursive if there exists a
non-terminal A s.t. A �+

G A (where �+
G is the transitive closure of �G). �

Lemma 2. If G is non-recursive then �G is noetherian. �

To compute WI(G), the idea is: for each non-terminal A that generates terminal
a, either we generate a, or a is not generated and we generate its children instead.
First, we extend �G to regular expressions. Moreover, to each non-terminal A,
we associate a new non-terminal denoted A� (called marked non-terminal).
3 An LTG or DTD is deterministic if all its regular expressions are 1-unambiguous [4].
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Definition 9. Relation �G over regular expressions: Let G be a grammar
and E be a regular expression appearing in one of its production rules. Suppose
that A is a non-terminal appearing at some position in E and that there is a rule
A→ a[E′′] in G. Let E′ be the regular expression defined by E′ = E[A← A�|E′′]
(i.e. this occurrence of A is replaced by A�|E′′]). Then we say that E �G E′. �

Lemma 3. If G is non-recursive then �G (over reg. exp.) is noetherian. �

Definition 10. Substitutions in the context of �G: Let G be a grammar.
We define a substitution σ over non-terminals as follows. Due to the assumptions,
for each non-terminal A there exists in G a unique rule whose left-hand-side is
A, say A→ a[E]. Then σ(A) = A�|E. We extend σ to regular expressions: if E
contains at least one non-marked non-terminal, σ(E) is the regular expression
obtained by replacing each non-marked non-terminal A in E by σ(A). Otherwise
σ(E) is not defined. Note that E �+

G σ(E) (where �+
G is the transitive closure

of �G). �

Example 6. In grammar G′ of Example 1, let us consider the rule PUB →
publication[A∗.P ]. Let E = A∗.P be its regular expression. Then, according to
Definition 10, we have σ(E) = (A� | (F.L))∗.(P � | T.Y.C). �

In the following definition we present an algorithm to produce grammar WI(G)
for a given grammar G. By σn we denote n successive applications of σ, i.e.
σn = σ ◦ · · · ◦ σ (n times).

Definition 11. Algorithm for computing WI(G): Let G be a non-recursive
grammar. As �G and �+

G are noetherian, for any regular expression E, there
exists n ∈ IN s.t. σn(E) is defined and σn+1(E) is not, which means that σn(E)
contains only marked non-terminals. We define E↑= σn(E). The grammar G↑ is
the one obtained from G by replacing each regular expression E in G by E↑. �

Example 2 shows the resulting grammar after applying Definition 11. Notice
that the marks inserted by our algorithm are just to follow substitutions already
done. The resulting grammar is one where every non terminal is marked, i.e.,
all substitutions have been applied. We can then rewrite the grammar as usual,
disregarding the marks used during the algorithm processing. This is why, when
talking about WI(G) we do not consider the marks anymore.

Theorem 1. Given a non-recursive grammar G, we have L(G↑) = WI(L(G))
(with common roots). �

4 Experimental Results

Given a grammar G′, the computation of WI(G′) (Definition 11) considers each
non-terminal of each production rule. Our implementation avoids repeating com-
putation (which may lead to an exponential blow-up in the worst case) by com-
puting each A↑ only once. Thus, supposing that G′ has n non-terminals (and
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thus n production rules), the computation of WI(G′) can be seen as the traversal
of a graph having n nodes and n × l edges (where l is the max. length of reg.
exp.). Notice that n× l equals the number of non-terminal occurrences, denoted
by |G′|, the size of G′. Thus, the complexity of our algorithm is O(n + |G′|).

Our prototype is implemented in Java and our experiments are done on an
Intel Dual Core T2390 with 1.86GHz and 2GB of memory. The first phase of our
tests concerns the generation of WI(G′). Results shown in Figure 2 correspond
to 400 synthetic DTDs whose size ranges from 50 to 10000 non-terminal (NT)
occurrences. These experiments concern DTDs with simple regular expressions
composed by the concatenation of A1 . . . An; where we vary the number n of
non-terminals, allowing as maximal value n = 9. Notice that our algorithm does
not exceed 100ms for DTDs having less than 10000 NT-occurrences. We have
also considered 10 real DTDs having about 50 NT-occurrences. The execution
time was approximately 10ms.

Fig. 2. Runtime for computing WI(G′) for grammar G′

We have run a hundred complete tests and Table 1 shows the results for
21 of them. Here we have considered more complex DTDs with �, +, ?,
| and imbrications. In this case, most regular expressions are of the form
E = E1.E2.E3 where each Ei is a disjunction involving one or more Kleene
or positive closure. The DTDs are deterministic or non-deterministic. When a
DTD is non-deterministic, some Ei of E are of the form (Aj .Aj+1)|(Aj .Aj+2) or
(Aj |(Aj+3|Aj+4))+.(Aj+2|(Aj+3|Aj+4))∗. Results on lines 1 to 9 concern syn-
thetic non-deterministic DTDs, while those on lines 10 to 18 correspond to
synthetic deterministic DTDs. On lines 19 to 21 we deal with deterministic real
DTDs.

The second phase of our tests analyses the performance of the other steps
of our method. Given a grammar G, to decide whether L(G) ⊆ L(WI(G′)),
we have implemented the algorithm presented in [3]. Although the complexity
of this method is exponential, the authors show that it allows very important
performance improvement. Table 1 summarizes our results. Notice that, as the
algorithm in [3] is proposed for ranked trees, to apply this method, we con-
vert WI(G′) and G into binary grammars bin(WI(G′)) and bin(G), respectively.
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This conversion gives us grammars having more rules than their unranked coun-
terpart. Given a grammar G, the production rules of bin(G) are generated by
considering each regular expression of each rule in G. The number of rules also
depends on the format of the regular expressions (eg., the presence of the Kleene
closure). For WI(G′) this augmentation can be very important since in this
grammar regular expressions are more complex than those in G′.

Table 1. Runtime in seconds for Phase1 (computing WI(G′)) and Phase2 (convert-
ing unranked grammars WI(G′) and G to their binary counterpart and testing if
L(bin(G)) ⊆ L(bin(WI(G′))). Result is the boolean value for the inclusion test.

Unranked grammars Ranked grammars Runtime Result

|G| |G′| |WI(G′)| #Rules #Rules #Rules #Rules Phase1 Phase2 T/F
G G′ bin(G) bin(WI(G′)) (s) (s)

1 32 52 123 25 40 113 5622 0 73 T
2 37 68 167 29 50 82 6420 0 139 T
3 42 98 233 33 77 93 19107 0 350 F
4 98 68 167 77 50 314 6420 0 354 F
5 86 98 233 65 77 249 19107 0 918 F
6 19 98 233 14 77 72 19017 0 14 F
7 42 86 222 33 65 93 22762 0 1455 T
8 52 98 233 43 77 168 19107 0 1890 T
9 68 86 222 50 65 200 22762 0 1729 F

10 10 62 125 9 53 30 5728 0 2 T
11 33 62 125 28 53 96 5728 0 61 T
12 42 78 183 34 62 174 7483 0 278 F
13 62 96 249 53 78 166 21808 0 522 F
14 47 96 249 40 78 210 21808 0 90 F
15 42 96 249 34 78 174 21808 0 110 F
16 20 90 224 18 74 22 11299 0 8 F
17 27 96 249 24 78 148 21808 0 18 F
18 48 96 249 40 78 167 21808 0 3217 T

19 31 31 86 25 25 35 3625 0 114 T
20 32 32 68 14 14 190 2254 0 36 T
21 32 31 86 14 25 190 3625 0 1 F

As expected, the first phase is much more faster than the second. In order
to have tractable tests in Phase 2, we have chosen small examples having thus
insignificant (0s) time for Phase 1 (see also Figure 2). In general, the execution
time of Phase 2 is higher when the inclusion is true. However, when languages
are very similar, Phase 2 can take a lot of time even for non-included languages
(as in line 5, 9). On the contrary, for very different languages the inclusion test is
very fast (as in lines 6, 16, 17 and 21). It is interesting to consider the case on line
18 which takes about 2-times longer than for any other examples. Notice that we
have DTD with more than 90 non-terminal occurrences, and a positive result for
the inclusion test. Indeed, DTD G corresponds to a subset of the rules of DTD G′.
To achieve some improvement on Phase 2, we may envisage to apply techniques
presented in [15] to find regular expressions for which inclusion verification is
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tractable or to restrict ourselves to the use of deterministic DTDs which allow
us to use a polynomial time algorithm for testing language inclusion. The latter
option (that we intend to implement) is discussed in the following section.

5 The Special Case of Deterministic DTDs

We finally discuss a restricted situation where the weak inclusion between XML
types can be computed in polynomial time. We first define Succ(A) as the set of
non-terminals obtained from A by applying rules of the grammar G (including
A itself). Then we consider LTGs respecting some constraints.

Definition 12. Set of successive non terminals: Let G = (NT, T, S, P ) be
an LTG and �G the relation introduced in Definition 8. For any A ∈ NT we
define Succ(A) = {B ∈ NT | A �∗

G B} where �∗
G is the reflexive-transitive

closure of �G. �

Theorem 2. Let G = (NT, T, S, P ) be a non-recursive monadic LTG such that
∀C→c[E] ∈ P, ∀A, B ∈ NT (E), (A 
= B =⇒ Succ(A) ∩ Succ(B) = ∅)

Then G↑ is a monadic LTG. �

The following example illustrates the need of the condition imposed on non-
terminals by Theorem 2. It also introduces the idea that by renaming common
terminals and non-terminals one can adapt a given grammar to the condition
imposed by Theorem 2.

Example 7. Consider a non-recursive monadic LTG G having the following rules:
R→ root[PROF ∗.STUD∗] PROF → professor[F.L] STUD→ stud[F.L]

F → firstName[ε] L→ lastName[ε]
and not respecting the condition in Theorem 2. The resulting G ↑ computed
by our algorithm (Definition 11) has a production rule R → root[E] where
E = (PROF | ((F |ε).(L|ε)))∗.(STUD | ((F |ε). (L|ε)))∗. Clearly the regular
expression E is not 1-unambiguous and thus the LTG G↑ is not deterministic �

Now we consider how to compute the weak inclusion of the language generated
by a grammar G into the language generated by a grammar G′, when G′ is a
non-recursive monadic (and maybe non-strict) LTG that respects the condition
of Theorem 2. Indeed, to decide whether L(G) is weakly included in L(G′), we
compute G′ ↑, which is also a monadic LTG (Theorem 2). Clearly, G′ ↑ may
be non-strict. However, it is interesting to remark that the construction of G′↑
(Definition 11) gives us a grammar where each non terminal of a regular expres-
sion in G′ can be replaced by ε. Indeed, let E = A1 ◦ A2 ◦ · · · ◦ An be a part
of a regular expression, composed of non-terminals Ai (where ◦ is any allowed
operator). Each step of our algorithm consists in changing E = A1 ◦A2 ◦ · · · ◦An

into a new regular expression E′ = (A1 | E1) ◦ (A2 | E2) ◦ · · · ◦ (An | En) where
each Ei is a regular expression in G′ (see Definition 11). Then E′ is modified
by replacing each non terminal Bij in each expression Ei by Bij |Eij and so on,
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until reaching some Eij...k
= ε. It follows that all resulting regular expression

have the form E′′ = A1 | (B11 |(· · · |ε)) ◦ · · · ◦ An | (Bn1 |(· · · |ε)). In other words,
ε ∈ L(E′′). As explained at the end of Section 2, for a given regular expression
E, when ε ∈ L(E) we have that L(E+) = L(E∗) and thus we can replace each
+ by ∗. Based on all these points one can easily see that the obtained G′↑ can
be transformed into a strict grammar G′

1 by transforming operator ? and by
replacing + by ∗. As the LTG G′

1 is strict and monadic, it is also deterministic.
Now, to decide whether the language L(G) is weakly included into the language
L(G′), we just need to check whether L(G) ⊆ L(G′

1). Since L(G′
1) is generated

by a deterministic LTG, which is equivalent to a deterministic DTD, this can be
done in polynomial time by using the method presented in [6].

6 Conclusion

The main contribution of this paper is a simple algorithm for computing the weak
inclusion between two non-recursive XML types. It extends the weak inclusion
notion, normally used for trees, to tree languages. Our approach is composed
of two steps: the generation of WI(G′), which is linear; and precise language
inclusion testing, exponential for non-recursive tree grammars (but polynomial
for deterministic DTDs). Our tests show a good performance for practical cases.
Weak inclusion is important for comparing types by relaxing father-children
relationship and can be useful in applications such as the substitution of a web
service in a composition.

To process recursive tree grammars, we envisage two directions: by defining
restricted classes of recursive grammars, and trying to keep simple the generation
of WI(G′); or by translating unranked trees into binary trees and using a com-
plex machinery. Another idea could consist in translating the initial regular tree
grammars G and G′ into context-free word grammars word(G) and word(G′)
that generate the corresponding XML texts. We refer to [12,10] as examples of
the translation of a DTD or a tree automaton to a context-free word grammar.
By using similar techniques it is possible to compute WI(word(G′)). Unfortu-
nately, checking that L(word(G)) ⊆ L(WI(word(G′))) (phase 2) is undecidable
since it amounts to check inclusion between context-free languages.
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