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Abstract. Considering that the unranked tree languages L(G) and L(G′)
are those defined by given possibly-recursive XML types G and G′, this
paper proposes a method to verify whether L(G) is “approximatively”
included in L(G′). The approximation consists in weakening the father-
children relationships. Experimental results are discussed, showing the
efficiency of our method in many situations.
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1 Introduction

In database area, an important problem is schema evolution, particularly when
considering XML types. XML is also used for exchanging data on the web. In this
setting, we want to compare XML types in a loose way. To do it, we address the
more general problem of approximative comparison of unranked-tree languages
defined by regular grammars.

Example 1. Suppose an application where we want to replace an XML type G by
a new type G′ (eg., a web service composition where a service replaces another,
each of them being associated to its own XML message type). We want to analyse
whether the XML messages supported by G′ contains (in an approximate way)
those supported by G. XML types are regular tree grammars where we just
consider the structural part of the XML documents, disregarding data attached
to leaves. Thus, to define leaves we consider rules of the form A → a[ǫ].

Suppose that G and G′ contain the following rules:

F → firstName[ǫ], L → lastName[ǫ] , T → title[ǫ] and Y → year[ǫ].

P defines a publication, and B is the bibliography.

In G : P → publi[(F.L)+.T.B?], B → biblio[P+].

InG′ : P→ publi[A∗.Pa], A→ author[F.L], Pa→ paper[T.Y.B?], B→ biblio[P+]

We want to know whether messages valid with respect to G can be accepted
(in an approximate way) by G′. Notice that G accepts trees such as t in Figure 1
that are not valid with respect to schema G′ but that represent the same kind
of information G′ deals with. Indeed, in G′, the same information would be
organized as the tree t′ in Figure 1. 2
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Fig. 1. Examples of trees t and t′ valid with respect to G and G′, respectively.

The approximative criterion for comparing trees that is commonly used consists
in weakening the father-children relationships (i.e., they are implicitly reflected
in the data tree as only ancestor-descendant). In this paper, we consider this
criterion in the context of tree languages. We denote this relation weak inclusion

to avoid confusion with the usual inclusion of languages (i.e., the inclusion of a
set of trees in another one).

Given two types G and G′, we call L(G) and L(G′) the sets (also called
languages) of XML documents valid with respect to G and G′, respectively. Our
paper proposes a method for deciding whether L(G) is weakly included in L(G′),
in order to know if the substitution of G by G′ can be envisaged. The unranked-
tree language L(G) is weakly included in L(G′) if for each tree t ∈ L(G) there
is a tree t′ ∈ L(G′) such that t is weakly included in t′. Intuitively, t is weakly
included in t′ (denoted t � t′) if we can obtain t by removing nodes from t′ (a
removed node is replaced by its children, if any). For instance, in Figure 1, t can
be obtained by removing nodes author, paper, year from t′, i.e. we have t� t′.

To decide whether L(G) is weakly included in L(G′), we consider the set of
trees WI(L(G′)) = {t | ∃t′ ∈ L(G′), t� t′}. Note that1 L(G) is weakly included
in L(G′) iff L(G) ⊆ WI(L(G′)).

To compute WI(L(G′)), we have already proposed [3] a direct and simple
approach using regular unranked-tree grammars (hedge grammars), assuming
that L(G′) is bounded in depth, i.e. G′ is not recursive. Given a hedge grammar
G′, the idea consists in replacing each non-terminal occurring in a right-hand-
side of a production rule, by itself or its children. For example, if G′ contains
the rules A → a[B], B → b[C], C → c[ǫ], we get the grammar G′′ = {C →
c[ǫ], B → b[C|ǫ], A → a[B|(C|ǫ)]}. This grammar generates WI(L(G′)), because
in each regular expression, whenever we have a non-terminal X (X ∈ {A,B,C})

1 If L(G) is weakly included in L(G′), for t ∈ L(G) there exists t′ ∈ L(G′) s.t. t � t′.
Then t ∈ WI(L(G′)), hence L(G) ⊆ WI(L(G′)).
Conversely if L(G) ⊆ WI(L(G′)), for t ∈ L(G) we have t ∈ WI(L(G′)). Thus there
exists t′ ∈ L(G′) s.t. t� t′. Therefore L(G) is weakly included in L(G′).
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that generates x (x ∈ {a, b, c}), we can also directly generate the children of x
(instead of x), and more generally the successors of x.

Unfortunately, it does not work if G′ is recursive. Consider G′

1 = {A →
a[B.(A|ǫ).C], B → b[ǫ], C → c[ǫ]}. If we work as previously, we get the rule A →
a[B.(A|(B.(A|ǫ).C)|ǫ).C]. However, a new occurrence of A has appeared in the
rhs, and if we replace it again, this process does not terminate. If we stop at some
step, the resulting grammar does not generate WI(L(G′)). In this very simple
example, it is easy to see that G′′

1 = {A → a[B∗.(A|ǫ).C∗], B → b[ǫ], C → c[ǫ]}
generatesWI(L(G′

1)). But if we now considerG′

2 = {A → a[B.(A.A | ǫ).C], B →
b[ǫ], C → c[ǫ]}, then in WI(L(G′

2)), a may be the left-sibling of b (which was not
possible in L(G′

2) nor in WI(L(G′

1))). Actually, WI(L(G′

2)) can be generated by
the grammar G′′

2 = {A → a[(A|B|C)∗], B → b[ǫ], C → c[ǫ]}. In other words, the
recursive case is much more difficult.

In this paper, we address the general case: some symbols may be recursive,
and some others may not. Given an arbitrary regular unranked-tree grammar
G′, we present a direct approach that computes a regular grammar, denoted
WI(G′), that generates the language WI(L(G′)). To do it, terminal-symbols are
divided into 3 categories: non-recursive, 1-recursive, 2-recursive. For n > 2, n-
recursivity is equivalent to 2-recursivity. Surprisingly, the most difficult situation
is 1-recursivity. We prove that our algorithm for computing WI(G′) is correct
and complete. An implementation has been done in Java, and experiments are
presented.

Consequently, for arbitrary regular grammars G and G′, checking that L(G)
is weakly included into L(G′), i.e. checking that L(G) ⊆ WI(L(G′)), is equivalent
to check that L(G) ⊆ L(WI(G′)), which is decidable since G and WI(G′) are
regular grammars.

Paper organisation: Section 2 gives some theoretical background. Section 3
presents how to compute WI(G) for a given possibly-recursive regular grammar
G, while Section 4 analyses some experimental results. Related work and other
possible methods are addressed in Section 5. Due to the lack of space, missing
proofs are given in [4].

2 Preliminaries

An XML document is an unranked tree, defined in the usual way as a mapping
t from a set of positions Pos(t) to an alphabet Σ. The set of the trees over Σ
is denoted by TΣ . For v ∈ Pos(t), t(v) is the label of t at the position v, and
t|v denotes the sub-tree of t at position v. Positions are sequences of integers in
IN∗ and Pos(t) satisfies: ∀u, i, j (j ≥ 0, u.j ∈ Pos(t), 0 ≤ i ≤ j) ⇒ u.i ∈ Pos(t)
(char “.” denotes the concatenation). The size of t (denoted |t|) is the cardinal of
Pos(t). As usual, ǫ denotes the empty sequence of integers, i.e. the root position.
t, t′ will denote trees.
Figure 1 illustrates trees with positions and labels: we have, for instance, t(1) =
lastName and t′(1) = paper. The sub-tree t′|1.2 is the one whose root is biblio.
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Definition 1. Position comparison: Let p, q ∈ Pos(t). Position p is an an-

cestor of q (denoted p < q) if there is a non-empty sequence of integers r such
that q = p.r. Position p is to the left of q (denoted p ≺ q) if there are sequences of
integers u, v, w, and i, j ∈ IN such that p = u.i.v, q = u.j.w, and i < j. Position
p is parallel to q (denoted p ‖ q) if ¬(p < q) ∧ ¬(q < p). 2

Definition 2. Resulting tree after node deletion: For a tree t′ and a non-
empty position q of t′, let us note Remq(t

′) = t the tree t obtained from t′ by
removing the node at position q (a removed node is replaced by its children, if
any). We have:

1. t(ǫ) = t′(ǫ),

2. ∀p ∈ Pos(t′) such that p < q: t(p) = t′(p),

3. ∀p ∈ Pos(t′) such that p ≺ q : t|p = t′|p,

4. Let q.0, q.1..., q.n ∈ Pos(t′) be the positions of the children of position q, if
q has no child, let n = −1. Now suppose q = s.k where s ∈ IN∗ and k ∈ IN.
We have:

– t|s.(k+n+i) = t′|s.(k+i) for all i such that i > 0 and s.(k + i) ∈ Pos(t′)
(the siblings located to the right of q shift),

– t|s.(k+i) = t′|s.k.i for all i such that 0 ≤ i ≤ n (the children go up). 2

Definition 3. Weak inclusion for unranked trees: The tree t is weakly

included in t′ (denoted t � t′) if there exists a series of positions q1 . . . qn such
that t = Remqn(· · ·Remq1(t

′)). 2

Example 2.

In Figure 1, t = Rem0(Rem1(Rem1.1(Rem1.2.0.0(Rem1.2.0.1(Rem1.2.0.1.1(t
′)))))),

then t � t′. Notice that for each node of t, there is a node in t′ with the same
label, and this mapping preserves vertical order and left-right order. However
the tree t1 = paper(biblio, year) is not weakly included in t′ since biblio should
appear to the right of year. 2

Definition 4. Regular Tree Grammar: A regular tree grammar (RTG) (also
called hedge grammar) is a 4-tuple G = (NT,Σ, S, P ), where NT is a finite set
of non-terminal symbols ; Σ is a finite set of terminal symbols ; S is a set of start
symbols, where S ⊆ NT and P is a finite set of production rules of the form
X → a [R], where X ∈ NT , a ∈ Σ, and R is a regular expression over NT . We
recall that the set of regular expressions over NT = {A1, . . . , An} is inductively
defined by: R ::= ǫ | Ai | R|R | R.R | R+ | R∗ | R? | (R) 2

Grammar in Normal Form: As usual, in this paper, we only consider reg-
ular tree grammars such that (i) every non-terminal generates at least one tree
containing only terminal symbols and (ii) distinct production rules have distinct
left-hand-sides (i.e., tree grammars in normal form [13]).
Thus, given an RTG G = (NT,Σ, S, P ), for each A ∈ NT there exists in P

exactly one rule of the form A → a[E], i.e. whose left-hand-side is A. 2
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Example 3. The grammar G0 = (NT0, Σ, S, P0), where NT0 = {X,A,B}, Σ =
{f, a, c}, S = {X}, and P0 = {X → f [A.B], A → a[ǫ], B → a[ǫ], A → c[ǫ]}, is
not in normal form. The conversion of G0 into normal form gives the sets NT1 =
{X,A,B,C} and P1 = {X → f [(A|C).B], A → a[ǫ], B → a[ǫ], C → c[ǫ]}.

Definition 5. Let G = (NT,Σ, S, P ) be an RTG (in normal form). Consider a
non-terminal A ∈ NT , and let A → a[E] be the unique production of P whose
left-hande-side is A.
Lw(E) denotes the set of words (over non-terminals) generated by E.
The set LG(A) of trees generated by A is defined recursively by:

LG(A) = {a(t1, . . . , tn) | ∃u ∈ Lw(E), u = A1 . . . An, ∀i, ti ∈ LG(Ai)}

The language L(G) generated by G is : L(G) = {t ∈ TΣ | ∃A ∈ S, t ∈ LG(A)}.
A nt-tree is a tree whose labels are non-terminals. The set Lnt

G (A) of nt-trees
generated by A is defined recursively by:

Lnt
G (A) = {A(t1, . . . , tn) | ∃u ∈ Lw(E), u=A1 . . . An, ∀i (ti ∈ Lnt

G (Ai) ∨ ti=Ai)}

3 Weak Inclusion for possibly-recursive Tree Grammars

First, we need to compute the recursivity types of non-terminals. Intuitively,
the non-terminal A of a grammar G is 2-recursive if there exists t ∈ Lnt

G (A)
and A occurs in t at (at least) two non-empty positions p, q ∈ Pos(t) s.t. p ‖ q.
A is 1-recursive if A is not 2-recursive, and A occurs in some t ∈ Lnt

G (A) at a
non-empty position. A is not recursive, if A is neither 2-recursive nor 1-recursive.

Example 4. Consider the grammar G of Example 1. P is 2-recursive since P may
generate B, and B may generate the tree biblio(P, P ). B is also 2-recursive. On
the other hand F , L, T , Y are not recursive. No non-terminal of G is 1-recursive.

Definition 6. Let G = (NT,Σ, S, P ) be an RTG in normal form. For a regular
expression E, NT (E) denotes the set of non-terminals occurring in E.

- We define the relation > over non-terminals by:
A > B if ∃A → a[E] ∈ P s.t. B ∈ NT (E).

- We define > over multisets2 of non-terminals, whose size is at most 2, by:

- {A} > {B} if A > B,

- {A,B} > {C,D} if A = C and B > D,

- {A} > {C,D} if there exists a production A → a[E] in G and a word
u ∈ L(E) of the form u = u1Cu2Du3.

Remark 1. To check whether {A} > {C,D}, i.e. ∃u ∈ L(E), u = u1Cu2Du3, we
can use the recursive function ”in” defined by in(C,D,E) =
- if E = E1|E2, return in(C,D,E1) ∨ in(C,D,E2),
- if E=E1.E2, return (C∈NT (E1)∧D∈NT (E2))∨(C∈NT (E2)∧D∈NT (E1))
∨ in(C,D,E1) ∨ in(C,D,E2),

2 Since we consider multisets, note that {A,B} = {B,A} and {C,D} = {D,C}.
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- if E = E∗

1 or E = E+
1 , return (C∈NT (E1)) ∧ (D∈NT (E1)),

- if E = E?
1 , return in(C,D,E1),

- if E is a non-terminal or E = ǫ, return false.
This function terminates since recursive calls are always on regular expressions
smaller than E. The runtime is O(|E|), where |E| is the size of E.

Definition 7. Let >+ be the transitive closure of >

- The non-terminal A is 2-recursive iff {A} >+ {A,A}.
- A is 1-recursive iff A >+ A and A is not 2-recursive.

- A is not recursive iff A is neither 2-recursive nor 1-recursive.

Remark 2. The transitive closure of > can be computed using Warshall algo-

rithm. If there are n non-terminals in G, there are p = n+ n.(n+1)
2 multisets of

size at most 2. Then a boolean matrix p× p can represent >, consequently the
runtime for computing >+ is O(p3) = O(n6), which is polynomial.

Example 5. Using grammar G of Example 1, we have {P} > {B} > {P, P}.
Therefore P is 2-recursive.
We have ¬({F} >+ {F, F}) and ¬(F >+ F ), therefore F is not recursive.

Now, to define an RTG that generatesWI(L(G)), we need additional notions.

Definition 8. Let G = (NT,Σ, S, P ) be an RTG in normal form.

- ≡ is the relation over non-terminals defined by A ≡ B if A >∗ B ∧ B >∗ A,
where >∗ denotes the reflexive-transitive closure of >.
Note that ≡ is an equivalence relation, and if A ≡ B then A and B have the
same recursivity type. Â will denote the equivalence class of A.

- Succ(A) is the set of non-terminals s.t. Succ(A) = {X ∈ NT | A >∗ X}.
- For a set Q = {A1, . . . , An} of non-terminals, Succ(Q) = Succ(A1) ∪ · · · ∪
Succ(An).

- Left(A) is the set of non-terminals defined by Left(A) = {X ∈ NT | ∃B,C ∈

Â, ∃B → b[E] ∈ P, ∃u ∈ Lw(E), u = u1Xu2Cu3}.
- Similarly, Right(A) is the set of non-terminals defined by Right(A) = {X ∈

NT | ∃B,C ∈ Â, ∃B → b[E] ∈ P, ∃u ∈ Lw(E), u = u1Cu2Xu3}.
- RE(A) is the regular expression E, assuming A → a[E] is the production
rule of G whose left-hand-side is A.

- R̂E(A) = RE(A)|RE(B1)| · · · |RE(Bn) where Â = {A,B1, . . . , Bn}.

Example 6. With the grammar G′ of Example 1, we have :

- P ≡ B, because P > Pa > B and B > P .

- P̂ = {P, Pa,B}.
- Succ(A) = {A,F, L}.
- Left(P ) is defined using non-terminals equivalent (≡) to P , i.e. B, P , Pa,
and grammar G′, which contains rules (among others):
B → biblio[P+], P → publi[A∗.Pa], Pa → paper[T.Y.B?].
P+ may generate P.P , therefore Left(P ) = {P}∪{A}∪{T, Y }= {P,A, T, Y }.
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- RE(P ) = A∗.Pa

- R̂E(P ) = RE(P )|RE(Pa)|RE(B) = (A∗.Pa)|(T.Y.B?)|P+.

Lemma 1. Let A, B be non-terminals.

- If A ≡ B then Succ(A) = Succ(B), Left(A) = Left(B), Right(A) = Right(B),

R̂E(A) = R̂E(B).

- If A, B are not recursive, then A 6= B implies A 6≡ B, therefore Â = {A}

and B̂ = {B}, i.e. equivalence classes of non-recursive non-terminals are

singletons.

Proof. The first part is obvious.
(A >+ A) =⇒ (A>+A ∧ ¬({A}>+ {A,A})) ∨ ({A}>+ {A,A}) which implies
that A is (1 or 2)-recursive. Consequently, if A is not recursive, then A 6>+ A.
Now, if A, B are not recursive, A 6= B and A ≡ B, then A >+ B ∧ B >+ A,
therefore A >+ A, which is impossible as shown above. 2

To take all cases into account, the following definition is a bit intricate. To
give intuition, consider the following very simple situations:

- If the initial grammarG contains production rules A → a[B], B → b[ǫ] (here
A and B are not recursive), we replace these rules by A → a[B|ǫ], B → b[ǫ]
to generate WI(L(G)). Intuitively, b may be generated or removed (replaced
by ǫ). See Example 7 below for a more general situation.

- If G contains A → a[(A.A.B)|ǫ], B → b[ǫ] (here A is 2-recursive and B

is not recursive), we replace these rules by A → a[(A|B)∗], B → b[ǫ] to
generate WI(L(G)). Actually the regular expression (A|B)∗ generates all
words composed of elements of Succ(A). See Example 8 for more intuition.

- The 1-recursive case is more complicated and is illustrated by Examples 9
and 10.

Definition 9. For each non-terminal A, we recursively define a regular expres-
sion Ch(A) (Ch for children). Here, any set of non-terminals, like {A1, . . . , An},
is also considered as being the regular expression (A1| · · · |An).

- if A is 2-recursive, Ch(A) = (Succ(A))∗

- if A is 1-rec, Ch(A) = (Succ(Left(A)))∗.Chrex
Â

(R̂E(A)).(Succ(Right(A)))∗

- if A is not recursive, Ch(A) = Ch
rex

Â
(RE(A))

and Chrex
Â

(E) is the regular expression obtained from E by replacing each non-
terminal B occurring in E by Ch

Â
(B), where

Ch
Â
(B) =

- B̂|ǫ if B is 1-recursive and B ∈ Â

- Ch(B) if (B is 2 recursive) or (B is 1-recursive and B 6∈ Â)
- B|Ch(B) if B is not recursive

By convention Chrex
Â

(ǫ) = ǫ and Ch(ǫ) = ǫ.
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Algorithm. Input: let G = (NT, T, S, P ) be a regular grammar in normal form.
Output: grammar G′ = (NT, T, S, P ′) obtained from G by replacing each pro-
duction A → a[E] of G by A → a[Ch(A)].

Theorem 1. The computation of Ch always terminate, and L(G′) = WI(L(G)).

The proof is given in [4]. Let us now consider several examples to give more
intuition about the algorithm and show various situations.

Example 7. Consider grammar G = {A → a[B], B → b[C], C → c[ǫ]}.
A is the start symbol. Note that A, B, C are not recursive.
Ch(C) = Chrex

Ĉ
(RE(C)) = Chrex

Ĉ
(ǫ) = ǫ.

Ch(B) = Chrex
B̂

(RE(B)) = Chrex
B̂

(C) = Ch
B̂
(C) = C|Ch(C) = C|ǫ.

Ch(A) = Chrex
Â

(RE(A)) = Chrex
Â

(B) = Ch
Â
(B) = B|Ch(B) = B|(C|ǫ).

Thus, we get the grammar G′ = {A → a[B|(C|ǫ)], B → b[C|ǫ], C → c[ǫ]} that
generates WI(L(G)) indeed. In this particular case, where no non-terminal is
recursive, we get the same grammar as in our previous work [3], though the
algorithm was formalized in a different way.

Example 8. Consider grammar G that contains the rules:

A → a[(C.A.A?)|F |ǫ], C → c[D], D → d[ǫ], F → f [ǫ]

A is 2-recursive; C, D, F are not recursive. Ch(D) = Ch(F ) = ǫ. Ch(C) = D|ǫ.
Succ(A) = {A,C,D, F}. Considered as a regular expression, Succ(A) = A|C|D|F .
Therefore Ch(A) = (A|C|D|F )∗. We get the grammar G′:

A → a[(A|C|D|F )∗], C → c[D|ǫ], D → d[ǫ], F → f [ǫ]

The tree t below is generated by G. By removing underlined symbols, we get
t′ � t, and t′ is generated by G′ indeed. Note that a is a left-sibling of c in t′,
which is impossible in a tree generated by G.

t = a

c

d

a

f

a

c

d

a

t′ = a

d a c

d

Example 9. Consider grammarG that contains the rules (A is the start symbol):

A → a[(B.C.A?.H)|F ], B → b[ǫ], C → c[D], D → d[ǫ], H → h[ǫ], F → f [ǫ]

A is 1-recursive; B, C, D, H , F are not recursive. Ch(B) = Ch(D) = Ch(H) =

Ch(F ) = ǫ. Ch(C) = D|ǫ. Â = {A}, then R̂E(A) = RE(A) = (B.C.A?.H)|F .

Chrex

Â
(R̂E(A)) = Chrex

Â
((B.C.A?.H)|F ) = (Ch

Â
(B).Ch

Â
(C).Ch

Â
(A)?.Ch

Â
(H))|Ch

Â
(F )

= ((B|Ch(B)).(C|Ch(C)).(A|ǫ)?.(H |Ch(H)))|(F |Ch(F ))
= ((B|ǫ).(C|(D|ǫ)).(A|ǫ)?.(H |ǫ))|(F |ǫ), simplified into (B?.(C|D|ǫ).A?.H?)|F ? .
Left(A) = {B,C}, then Succ(Left(A)) = {B,C,D}.
Right(A) = {H}, then Succ(Right(A)) = {H}.
Considered as regular expressions (instead of sets), Succ(Left(A)) = B|C|D and
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Succ(Right(A)) = H .

Therefore Ch(A) = (Succ(Left(A)))∗.Chrex
Â

(R̂E(A)).(Succ(Right(A)))∗ =

(B|C|D)∗.[(B?.(C|D|ǫ).A?.H?)|F ?].H∗, which could be simplified into
(B|C|D)∗.(A?|F ?).H∗; we get the grammar G′:

A → a[(B|C|D)∗.(A?|F ?).H∗], B → b[ǫ], C → c[D|ǫ], D → d[ǫ], H → h[ǫ], F → f [ǫ]

The tree t below is generated by G. By removing underlined symbols, we get
t′ � t, and t′ is generated by G′ indeed. Note that c is a left-sibling of b in t′,
which is impossible for a tree generated by the initial grammar G. On the other
hand, b, c, d are necessarily to the left of h in t′.

t = a

b c

d

a

b c

d

a

f

h

h

t′ = a

c b d a

f

h h

Example 10. The previous example does not show the role of equivalence classes.
Consider G = {A → a[B?], B → b[A]}. A and B are 1-recursive.

A ≡ B then Â = B̂ = {A,B}. Left(A)=Left(B)=Right(A)=Right(B)=∅.

Therefore Ch(A) = Chrex
Â

(R̂E(A)) = Chrex
Â

(B?|A) = (Ch
Â
(B))?|(Ch

Â
(A)) =

(B̂|ǫ)?|(Â|ǫ) = (A|B|ǫ)?|(A|B|ǫ). Note that Â and B̂ have been replaced by
A|B, which is needed as shown by trees t and t′ below. Ch(A) can be simplified
into A|B|ǫ. Since A ≡ B, Ch(B) = Ch(A).
Then we get the grammar G′ = {A → a[A|B|ǫ], B → b[A|B|ǫ]}.
The tree t = a(b(a)) is generated by G. By removing b, we get t′ = a(a) which
is generated by G′ indeed.

4 Implementation and Experiments

Our prototype is implemented in Java and the experiments are done on an Intel
Quad Core i3-2310Mwith 2.10GHz and 8GB of memory. The only step that takes
time is the computation of recursivity types of non-terminals. The difficulty is
for deciding whether a recursive non-terminal is 2- or 1-recursive. To do it, we
have implemented two algorithms: one using Warshall algorithm for computing
>+, whose runtime is O(n6) where n is the number of non-terminals3, and
another based on comparison of cycles in a graph representing relation > (over
non-terminals, not over multisets). In the worst case, the runtime of the second
algorithm is at least exponential, since all cycles should be detected. Actually,
the runtime of the first algorithm depends on the number n of non-terminals,
whereas the runtime of the second one depends on the number of cycles in the
graph.

In Table 1, #1-rec denotes the number of 1-recursive non-terminals (idem for
#0-rec and #2-rec), #Cycles is the number of cycles, and |G| (resp. |WI(G)|)

3 Since grammars are in normal form, n is also the number of production rules.
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denotes the sum of the sizes of the regular expressions4 occurring in the initial
grammar G (resp. in the resulting grammar WI(G)). Results in lines 1 to 4
concern synthetic DTDs, while those in lines 5 to 6 correspond to real DTDs.
The experiments show: if n < 50, the Warshall-based algorithm takes less than
6 seconds. Most often, the cycle-based algorithm runs faster than the Warshall-
based algorithm. An example with n = 111 (line 3) took 7 minutes with the first
algorithm, and was immediate with the second one. When the number of cycles
is less than 100, the second algorithm is immediate, even if the runtime in the
worst case is bad.

Now, consider the DTD (line 5) specifying the linguistic annotations of
named entities performed within the National Corpus of Polish project [2, page
22]. After transforming this DTD into a grammar, we get 17 rules and some
non-terminals are recursive. Both algorithms are immediate (few rules and few
cycles). The example of line 6 specifies XHTML DTD5 (with n = 85 and
#Cycles = 9620). The Warshall-based algorithm and the cycle-based algorithm
respond in 2 minutes.

Unranked grammars Runtime (s) Sizes

#0-rec #1-rec #2-rec #Cycles Warshall Cycle-compar. |G| |WI(G)|

1 9 2 38 410 5.48 0.82 183 1900
2 34 4 12 16 5.51 0.08 126 1317
3 78 12 21 30 445 0.2 293 4590
4 8 2 16 788 0.38 1.51 276 397

5 14 0 2 1 0.08 0.01 30 76
6 30 0 55 9620 136.63 113.91 1879 22963
Table 1. Runtimes in seconds for the Warshall-based and the Cycle-comparison algo-
rithms.

5 Related Work and Discussion

The (weak) tree inclusion problem was first studied in [12], and improved in [5,
7, 15]. Our proposal differs from these approaches because we consider the weak
inclusion with respect to tree languages (and not only with respect to trees).
Testing precise inclusion of XML types is considered in [6, 8, 9, 14]. In [14], the
authors study the complexity, identifying efficient cases. In [6] a polynomial
algorithm for checking whether L(A) ⊆ L(D) is given, where A is an automaton
for unranked trees and D is a deterministic DTD.

In this paper, given a regular unranked-tree grammar G (hedge grammar),
we have presented a direct method to compute a grammar G′ that generates the
set of trees (denoted WI(L(G))) weakly included in trees generated by G.

In [1], we have computed G′ by transforming unranked-tree languages into
binary-tree ones, using first-child next-sibling encoding. Then the weak-inclusion
relation � is expressed by a context-free synchronized ranked-tree language, and

4 The size of a regular expression E is the number of non-terminal occurrences in E.
5 http://www.w3.org/TR/xhtml1/dtds.html
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using join and projection, we get G1. By transforming G1 into an unranked-tree
grammar, we get G′. This method is complex, and gives complex grammars.

Another way to compute G′ could be the following. For each rule A → a[E]
in G we add the collapsing rule A → E. The resulting grammar G1 generates
WI(L(G)) indeed, but is not a hedge grammar: it is called extended grammar6

in [11], and can be transformed into a context-free hedge grammar G2 (without
collapsing rules). Each hedge H of G2 is a context-free word language over
non-terminals defined by a word grammar, and if we consider its closure by sub-
word7, we get a regular word languageH ′ defined by a regular expression [10]. Let
G′ be the grammar obtained from G2 by transforming every hedge in this way.
Then G′ is a regular hedge grammar, and the language generated by G′ satisfies
L(G′) = L(G2) ∪ L2 where L2 ⊆ WI(L(G2)) (because of sub-word closure
of hedges). Moreover L(G2) = L(G1) = WI(L(G)). Then L2 ⊆ WI(L(G2)) =
WI(WI(L(G))) = WI(L(G)). Therefore L(G′) = WI(L(G))∪L2 = WI(L(G)).
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2. Amavi, J., Bouchou, B., Savary, A.: On correcting XML documents with respect
to a schema. Tech. Rep. 301, LI, Université de Tours (2012)
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4. Amavi, J., Chabin, J., Réty, P.: Weak inclusion for recursive XML types (full
version). Tech. Rep. RR-2012-02, LIFO, Université d’Orléans, http://www.univ-
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