
Minimal tree language extensions: a keystone of

XML type compatibility and evolution⋆

Jacques Chabin1, Mirian Halfeld-Ferrari, Martin A. Musicante2, and
Pierre Réty1

1 Université d’Orléans, LIFO, Orléans, France
{jacques.chabin, mirian, pierre.rety}@univ-orleans.fr

2 Universidade Federal do Rio Grande do Norte, DIMAp Natal, Brazil
mam@dimap.ufrn.br

Abstract. In this paper, we propose algorithms that extend a given
regular tree grammar G0 to a new grammar G respecting the following
two properties: (i) G belongs to the sub-class of local or single-type tree
grammars and (ii) G is the least grammar (in the sense of language in-
clusion) that contains the language of G0. Our algorithms give rise to im-
portant tools in the context of web service composition or XML schema
evolution. We are particularly interested in applying them in order to
reconcile different XML type messages among services. The algorithms
are proven correct and some of their applications are discussed.

1 Introduction

When dealing with web service composition, one should consider the problem of
how to reconcile structural differences among types of XML messages supported
by different services. A web service designer may wish to implement a service
S that is able to accept XML messages coming from different services A, B or
C (i.e. services offering the same service, in slightly different formats). To allow
the composition of S with any of these services, it would be practical to infer
a general type from the message types of services A, B and C. Moreover, the
initial type accepted by S may evolve if one decides to consider also messages
coming from a new service D.

The learning of new types (or schema) can be very helpful for the harmo-
nious work of the applications that manipulate these data. Some algorithms for
learning XML data have been proposed [GGR+00,Chi01,BNV07]. In general,
these algorithms consist of learning the schema using sets of (positive or nega-
tive) examples. Our work considers another situation, since we aim at integrating
different schemas in order to implement a service or to adapt it to a new en-
vironment: our goal is to maintain the global behavior of a composition while
extending the type of the messages being processed.

We are thus interested in automatically generating a new type which is a con-
servative extension of some given types. Moreover, we are interested in obtaining

⋆ Supported by: Codex ANR-08-DEFIS-04, e-cloudss (LACCIR), CAPES 3164/08-0

the least schema (in the sense of type inclusion) that complies with this condi-
tion and that can be specified in current XML schema language standards such
as DTD or XMLSchema. The following example illustrates schema evolution as
proposed by our method.

Example 1. Consider a web service, built for a library consortium, capable of giving
information about publications existing in different libraries. This service should be
able to accept messages from different library services, each of them specified over its
own message format. Let GA and GB be the DTDs (Local Tree Grammars) which
define the type of messages coming from library services A and B respectively. As
usual we represent non terminals by starting with a capital letter and terminals with
a small letter. Besides the production rules presented below (C and Z are the start
symbols), we suppose that all the production rules X → x[ǫ] such that (respectively)
X ∈ {A, T, D, P, N, V, E, W} and x ∈ {author, title, datePublication, price, number,

volume, editor, status} are included in the sets of rules of the schema (grammar):

Productions rules of GA Productions rules of GB

C → catalog[B∗] Z → catalog[(Y | L)∗]
B → book[A+.T.D.W] Y → book[A+.T.D.P?.E]

L → article[A+.T.D.J.E]
J → journal[N.V]

The simple union of these two grammars (G0 = GA ∪ GB) is not a solution to the
problem, since it is not a Local Tree Grammar (LTG). This means that it cannot be
described as a well-formed DTD. Our algorithm starts processing G0 and returns the
following grammar G2 as output (by merging some production rules of G0), where CZ

is the start symbol.

Productions rules of G2

CZ → catalog[(BY | L)∗ | B∗
Y] BY → book[A+.T.D.W | A+.T.D.P?.E]

L → article[A+.T.D.J.E] J → journal[N.V]

Our algorithms are capable of finding a definition for the least (local or single-
type) tree language (set of XML documents) that contains the XML documents
described by both original types. For instance, in Example 1, grammar G2 is the
least LTG that contains the languages generated by GA and GB .

The algorithms proposed in this paper are able to transform a (general)
regular tree grammar into a Local or Single-Type tree grammar (the user can
choose whether the resulting grammar will be a LTG or a STTG). Our algorithms
are proven correct for any regular tree grammar in reduced normal form.

The rest of this paper is organized as follows: in Section 2 we recall the
theoretical background needed to the introduction of our method; Section 3
presents our schema evolution algorithms for LTG and STTG and Section 4
discusses the implementation of these methods. The paper finishes by considering
some related work and by discussing our perspectives of work.

2 Theoretical Background

It is a well known fact that type definitions for XML and regular tree grammars
are similar notions and that some schema definition languages can be repre-
sented by using specific classes of regular tree grammars. Thus, DTD and XML

Schema, correspond, respectively, to Local Tree Grammars and Single-type Tree
Grammars [MLMK05]. Given an XML type T and its corresponding tree gram-
mar G, the set of XML documents described by the type T corresponds to the
language (set of trees) generated by G.

In this paper we consider a tree language as a set of unranked trees. Tree
nodes have a label (from a set Σ) and a position (given as a string of integers).
Let U be the set of all finite strings of non-negative integers with the empty
string ǫ as the identity. In the following definition we assume that Pos(t) ⊆ U
is a nonempty set closed under prefixes (i.e. , if u � v , v ∈ Pos(t) implies
u ∈ Pos(t)).

Definition 1 (Unranked Σ-valued tree t). A nonempty unranked Σ-valued
tree t is a mapping t : Pos(t)→ Σ where Pos(t) satisfies: j ≥ 0, uj ∈ Pos(t), 0 ≤
i ≤ j ⇒ ui ∈ Pos(t). The set Pos(t) is called the set of positions of t. We write
t(v) = a, for v ∈ Pos(t), to indicate that the Σ-symbol associated to v is a. 2

The following figure represents a tree whose alphabet is the set of element names
appearing in an XML document.

Given a tree t we denote by t|p the subtree
whose root is at position p ∈ Pos(t),i.e.
Pos(t|p) = {s | p.s ∈ Pos(t)} and for each
s ∈ Pos(t|p) we have t|p(s) = t(p.s).

ε

1.11.00.10.0 1.2

10

name

student

namenumber address phone

professor

directory

For instance, in the figure t|0 = {(ǫ, student), (0, name), (1, number)}, or equiv-
alently, t|0 = student(name, number).

Given a tree t such that the position p ∈ Pos(t) and a tree t′, we note t[p← t′]
as the tree that results of substituting the subtree of t at position p by t′.

Definition 2 (Sub-tree, Forest). Let L be a set of trees. ST (L) is the set of
sub-trees of elements of L, i.e. ST (L) = {t | ∃u ∈ L, ∃p ∈ Pos(u), t = u|p}. A
forest is a (possibly empty) tuple of trees. For a ∈ Σ and a forest w = 〈t1, . . . , tn〉,
a(w) is the tree defined by a(w) = a(t1, . . . , tn). On the other hand, w(ǫ) is
defined by w(ǫ) = 〈t1(ǫ), . . . , tn(ǫ)〉, i.e. the tuple of the top symbols of w. 2

Definition 3 (Regular Tree Grammar). A regular tree grammar (RTG) is
a 4-tuple G = (N,T, S, P), where: N is a finite set of non-terminal symbols; T
is a finite set of terminal symbols; S is a set of start symbols, where S ⊆ N and
P is a finite set of production rules of the form X → a [R], where X ∈ N , a ∈ T ,
and R is a regular expression over N (We say that, for a production rule, X is
the left-hand side, aR is the right-hand side, and R is the content model.) 2

Definition 4 (Derivation). For a RTG G = (N,T, S, P), we say that a tree
t built on N ∪ T derives (in one step) into t′ iff (i) there exists a position p
of t such that t|p = A ∈ N and a production rule A → a [R] in P , and (ii)
t′ = t[p ← a(w)] where w ∈ L(R) (L(R) is the set of words of non-terminals
generated by R). We write t →[p,A→a [R]] t′. More generally, a derivation (in
several steps) is a (possibly empty) sequence of one-step derivations. We write
t→∗

G t′.
The language L(G) generated by G is the set of trees containing only terminal
symbols, defined by : L(G) = {t | ∃A ∈ S, A→∗

G t}. 2

Example 2. Let G = (N, T, {X}, P), where P = {X → f [A∗.B], A → a, B → b}. A

derivation from the start symbol is X →[X→f [A∗.B]] f(A, A, B) →∗
G f(a, a, b). Conse-

quently f(a, a, b) ∈ L(G). 2

To produce grammars that generate least languages, our algorithms need to
start from grammars in reduced form and (as in [ML02]) in normal form. A
regular tree grammar (RTG) is said to be in reduced form if (i) every non-
terminal is reachable from a start symbol, and (ii) every non-terminal generates
at least one tree containing only terminal symbols. A regular tree grammar
(RTG) is said to be in normal form if distinct production rules have distinct
left-hand-sides.
Example 3. Given the tree grammar G0 = (N, T, S, P0), where N = {X, A, B}, T =

{f, a, c}, S = {X}, and P0 = {X → f [A.B], A → a, B → a, A → c}. Note that

G0 is in reduced form, but it is not in normal form. The conversion of G0 into the

normal form gives the set P1 = {X → f [(A|C).B], A → a, B → a, C → c}. Thus

G1 = (N ∪ {C}, T, S, P1) is in reduced normal form. 2

The following three definitions come from [MLMK05].

Definition 5 (Competing Non-Terminals). Two different non-terminals A
and B (of the same grammar G) are said to be competing with each other if
(i) a production rule has A in the left-hand side, (ii) another production rule
has B in the left-hand side, and (iii) these two production rules share the same
terminal symbol in the right-hand side. 2

Definition 6 (Local Tree Grammar). A local tree grammar (LTG) is a reg-
ular tree grammar that does not have competing non-terminals. A local tree
language (LTL) is a language that can be generated by at least one LTG. 2

Note that converting a LTG into normal form produces a LTG as well.

Definition 7 (Single-Type Tree Grammar). A single-type tree grammar
(STTG) is a regular tree grammar in normal form, where (i) for each production
rule, non terminals in its regular expression do not compete with each other, and
(ii) starts symbols do not compete with each other. A single-type tree language
(STTL) is a language that can be generated by at least one STTG. 2

In [MLMK05] the expressive power of these classes of languages is discussed.
We recall that LTL ⊂ STTL ⊂ RTL. Moreover, the LTL and STTL are closed
under intersection but not under union; while the RTL are closed under union,
intersection and difference.

3 Type Evolution

This section describes our type evolution approach by presenting the main theo-
retical contributions of our work. The algorithms proposed here take as argument
a general regular tree grammar in reduced normal form. They produce a LTG
(respectively a STTG) whose language is the least LTL (resp. the least STTL)
that contains the language described by the original tree grammar.

The intuitive idea underlying both algorithms is to locate sets of competing
non-terminal symbols of the tree grammar, and fix the problem by identifying
these non-terminals as the same one.

3.1 Transforming a RTG into a LTG

We consider the problem of obtaining a local tree grammar whose language
contains a given tree language. Given a regular tree grammar G0, we are inter-
ested in the definition of the least local tree language that contains the language
generated by G0. The new language will be described by a local tree gram-
mar. The algorithm described below obtains a new grammar by transforming
G0. The transformation rules are intuitively simple: every pair of competing
non-terminals are transformed into one symbol. We show that this simple trans-
formation of the original grammar yields to a local tree grammar in a finite
number of steps.

Now, consider some useful properties of local tree languages. These properties
will be used to show the correctness of our grammar-transformation algorithm.
Proofs of the properties are omitted here due to the lack of space. They are
available in [CHMR09]. The following lemma states that the type of the subtrees
of a tree node is determined by the label of its node (i.e. the type of each node
is locally defined). Recall that ST (L) is the set of sub-trees of elements of L.

Lemma 1. (see also [PV00, Lemma 2.10]) Let L be a local tree language (LTL).
Then, for each t ∈ ST (L), each t′ ∈ L and each p′ ∈ Pos(t′), we have that
t(ǫ) = t′(p′) =⇒ t′[p′ ← t] ∈ L. 2

In the following, we also need a weaker version of the previous lemma:

Corollary 1. Let L be a local tree language (LTL). Then, for each t, t′ ∈ ST (L),
and each p′ ∈ Pos(t′), we have that t(ǫ) = t′(p′) =⇒ t′[p′ ← t] ∈ ST (L). 2

In practical terms, Corollary 1 gives us a rule of thumb on how to “complete”
a regular language in order to obtain a local tree language. For instance, let
L = {f(a(b), c), f(a(c), b)} be a regular language. According to Corollary 1, we
know that L is not LTL and that the least local tree language L′ containing L
contains all trees where a has c as a child together with all trees where a has b
as a child. In other words, L′ = {f(a(b), c), f(a(c), b), f(a(c), c), f(a(b), b)}.

Let us now define our first algorithm for schema (DTD, Local Tree Grammar)
evolution. The main intuition behind our algorithm is to merge rules having com-
peting non terminals in their left-hand side. New non terminals are introduced
in other to replace competing ones.

Definition 8 (RTG into LTG Transformation). Let G0 = (N0, T0, S0, P0)
be a regular tree grammar in reduced normal form. We define a new regular tree
grammar G = (N,T, S, P), obtained from G0, according to the following steps:

1. Let G2 := G0, where G2 is denoted by (N2, T2, S2, P2).
2. While there exists a pair of production rules of the form X1 → a [R1] and

X2 → a [R2] in P2 (X1 6= X2) do:
(a) Let Y be a new non-terminal symbol and define a substitution

σ = [X1/Y, X2/Y].
(b) Let G3 := (N2 ∪ {Y }−{X1,X2}, T2, σ(S2), P3),

where P3 = σ(P2 ∪ {Y → a [R1|R2]} − {X1 → a [R1],X2 → a [R2]}).
(c) Let G2 := G3, where G2 is denoted by (N2, T2, S2, P2).

3. Return G2. 2

Example 4. Consider Example 1 where grammar G0 is the input for the algorithm

of Definition 8. In a first step, rules Z → catalog[(Y | L)∗] and C → catalog[B∗]

are replaced by CZ → catalog[(Y | L)∗ | B∗]. Following the same idea, rules B →

book[A+.T.D.W] and Y → book[A+.T.D.P?.E] are replaced by BY →book[A+.T.D.W |

A+.T.D.P?.E]. This change implies changes on the right-hand side of other rules, con-

sequently CZ → catalog[(Y | L)∗ | B∗] is changed into CZ → catalog[(BY | L)∗ | B∗
Y].

In this way we obtain the grammar G2 as shown in Example 1. 2

It can be shown that our algorithm stops, generating a local tree grammar in
normal form (see [CHMR09]). The main result of this section is stated below.

Theorem 1. The grammar returned by the algorithm of Definition 8 generates
the least local tree language that contains L(G0). 2

Example 5. Let the RTG G0 be the input of the algorithm of Definition 8 and G be
the resulting LTG:

G0: G:

S → a[A.A] Y → a[Y.Y | B]
A→ a[B] B → b[ǫ]
B → b[ǫ]

Notice that L(G0) contains just the tree t = a(a(b), a(b)) and that t ∈ L(G). 2

3.2 Transforming a RTG into a STTG

Given a regular tree grammar G0, we are interested in the definition of the least
single-type tree language that contains the language generated by G0. The new
language will be described by a single-type grammar. The algorithm described
below obtains a new grammar by transforming G0. Roughly speaking, for each
production rule A → a [R] in G0, an equivalence relation is defined on the
non-terminals of R, so that all competing non-terminals of R are in the same
equivalence class. These equivalence classes form the non-terminals of the new
grammar. Let G0 = (N0, T0, S0, P0) be a RTG in reduced normal form.

Definition 9 (Grouping competing non-terminals). Let ‖ be the relation
on N0 defined by: for all A,B ∈ N0, A ‖ B iff A = B or A and B are competing
in P0. For any χ ∈ P(N0), let ‖χ be the restriction of ‖ to the set χ (‖χ is defined
only for elements of χ).

Lemma 2. Since G0 is in normal form, ‖χ is an equivalence relation for any
χ ∈ P(N0). 2

Some notation used in this section:

– N(R) denotes the set of non-terminals occurring in a regular expression R.
– For any χ ∈ P(N0) and any A ∈ χ, Âχ denotes the equivalence class of A w.r.t.
relation ‖χ. In other words, Âχ contains A and the non-terminals of χ that are
competing with A in P0.
– σN(R) is the substitution defined over N(R) by ∀A ∈ N(R), σN(R)(A) =

ÂN(R). By extension, σN(R)(R) is the regular expression obtained from R by
replacing each non-terminal A in R by σN(R)(A).

Definition 10 (RTG into STTG Transformation). Let G0 = (N0, T0, S0,
P0) be a regular tree grammar in reduced normal form. We define a new regular
tree grammar G = (N,T, S, P), obtained from G0, according to the steps:

1. Let G = (P(N0), T0, S, P) where:

• S = {ÂS0 | A ∈ S0},
• P = { {A1, . . . , An} → a [σN(R)(R)] | A1 → a[R1], . . . , An → a[Rn] ∈ P0,

R = (R1| · · · |Rn)},
where {A1, . . . , An} denotes each possible set of competing non-terminals.

2. Remove all unreachable non-terminals and rules in G, then return it. 2

Our generation of STTG from RTG is based on grouping competing non-
terminals into equivalence classes. In the new grammar, each non-terminal is
formed by a set of non-terminals of N0. When competing non-terminals which
appear in the same regular expression R in G0 are identified, the sets that contain
them form non-terminal symbols. The production rules having these new symbols
as left-hand side are obtained from those rules containing the competing symbols
in G0. Although this amounts to an exponential number of non-terminal, we have
notice that, in practice, this explosion is not common (notice that unreachable
rules are removed at step 2). The algorithm version presented in Definition 10
eases our proofs. An optimized version, where just the needed non-terminals are
generated, is given in Section 4.

Example 6. Consider a non-STTG grammar G0 having the following set P0 of pro-
ductions rules (Image is the start symbol):

Image→ image[Frame1 | Frame2 | Background.Foreground]
Frame1→ frame[Frame1.F rame1 | ǫ]
Frame2→ frame[Frame2.F rame2.F rame2 | ǫ]
Background→ back[Frame1] and Foreground→ fore[Frame2].

Grammar G0 defines different ways of decomposing an image: recursively into two or
three frames or by describing the background and the foreground separately. Moreover,
the background (resp. the foreground) is described by binary decompositions (resp.
ternary decompositions). In other words, the language of G0 contains the union of the
trees: image(bin(frame)); image(ter(frame)) and image (back (bin (frame)), fore (ter
(frame))) where bin (resp. ter) denotes the set of all binary (resp. ternary) trees that
contains only the symbol frame.
The algorithm returns G, which contains the rules below (the start symbol is {Image}) :

{Image} → image[{Frame1, F rame2} | {Frame1, F rame2}
| {Background}.{Foreground}]

{Background} → back[{Frame1}]
{Foreground} → fore[{Frame2}]
{Frame1, F rame2}→ frame[ǫ | {Frame1, F rame2}.{Frame1, F rame2} | ǫ

| {Frame1, F rame2}.{Frame1, F rame2}.{Frame1, F rame2}]
{Frame1} → frame[{Frame1}.{Frame1} | ǫ]
{Frame2} → frame[{Frame2}.{Frame2}.{Frame2} | ǫ]

Note that some regular expressions could be simplified. G is a STTG that generates the

union of image(tree(frame)) and image (back (bin (frame)), fore (ter (frame))) where

tree denotes the set of all trees that contain only the symbol frame and such that each

node has 0 or 2 or 3 children. Let LG(X) denote the language obtained by deriving

in G the non-terminal X. Actually, LG({Frame1, F rame2}) is the least STTL that

contains LG0(Frame1) ∪ LG0(Frame2). 2

Theorem 2. The grammar returned by the algorithm of Definition 10 generates
the least STTL that contains L(G0). 2

The rest of this sub-section is a proof sketch of the previous theorem. The
notations are those of Definition 10. The proof somehow looks like the proof
concerning the transformation of a RTG into a LTG (see [CHMR09] for details).
However it is more complicated since in a STTL (and unlike what happens in a
LTL), the confusion between t|p = a(w) and t′|p′ = a(w′) should be done only
if position p in t has been generated by the same production rule as position p′

in t′, i.e. the symbols occurring in t and t′ along the paths going from root to p
(resp. p′ in t′) are the same. This is why, in Definition 11, we introduce notation
path(t, p) to denote these symbols. First, we enunciate some properties.

Lemma 3. Let χ ∈ P(N0) and A,B ∈ χ (A 6= B). Then Âχ and B̂χ are not
competing in P . 2

Example 7. Given the grammar of Example 6, let χ = {Frame1 ,Frame2 ,Background}.

The equivalence classes induced by ‖χ are F̂rame1
χ

= F̂rame2
χ

= {Frame1 ,Frame2};
̂Background

χ

= {Background}; which are non-competing non-terminals in P .

Lemma 4. G is a STTG. 2

The next lemma establishes the basis for proving that the language generated
by G contains the language generated by G0. It considers the derivation process
over G0 at any step (supposing that this step is represented by a derivation
tree t) and proves that, in this case, at the same derivation step over G, we can
obtain a tree t′ having all the following properties: (i) the set of positions is the
same for both trees (Pos(t) = Pos(t′)); (ii) positions associated to terminal are
identical in both trees; (iii) if position p is associated to a non-terminal A in
t then position p ∈ Pos(t′) is associated to the equivalence class Âχ for some
χ ∈ P(N0) such that A ∈ χ.

Lemma 5. Let Y ∈ S0. If G0 derives:
t0 =Y → · · · → tn−1 →[pn, An→an[Rn]] tn then G can derive: t′0 = Ŷ S0 → · · · →
t′n−1 →[pn, Ân

χn→an[σN(Rn|···)(Rn|···)]] t′n s.t. ∀i ∈ {0, . . . , n}, Pos(t′i) = Pos(ti) ∧

∀p ∈ Pos(ti): (ti(p) ∈ T0 =⇒ t′i(p) = ti(p))∧

(ti(p) = A ∈ N0 =⇒ ∃χ ∈ P(N0), A ∈ χ ∧ t′i(p) = Âχ)

Proof. The proof is by induction in the length of the derivation process.
For n = 0, the property holds because t0(ǫ) = Y and t′0(ǫ) = Ŷ χ with χ = S0

and Y ∈ χ. Induction step: Assume the property for n − 1 ∈ IN. By hypothesis
tn−1 →[pn, An→an[Rn]] tn, then tn−1(pn) = An ∈ N0. By ind. hyp., t′n−1(pn) = Ân

χn

for some χn ∈ P(N0), and An ∈ χn.
By construction of P , Ân

χn
→ an[σN(Rn|···) (Rn| · · ·)] ∈ P .

Thus t′n−1 →[pn, Ân
χn→an[σN(Rn|···)(Rn|···)]] t′n = t′n−1[pn ← an[σN(Rn|···)(w)]] whereas

tn = tn−1[pn ← an(w)] and w ∈ L(Rn). Consequently t′n(pn) = an = tn(pn) and
∀i ∈ IN, tn(pn.i) = B ∈ N(Rn) ⊆ N(Rn| · · ·) ∧ t′n(pn.i) = B̂N(Rn|···).

Example 8. Given the grammar of Example 6, consider trees t, t′ and t′′ in Figure 1

obtained after three steps in the derivation process: t is a derivation tree for G0 while

t′ and t′′ are for G. Tree t′ is the one that corresponds to t according to Lemma 5.

Notice that t′′ is a tree that can also be derived from G, but it is not in L(G0) (indeed,

since Pos(t) 6= Pos(t′′), tree t′′ does not have the properties required in Lemma 5). 2

ǫ ǫ ǫ

Frame1

0.0

0

0.1

0.0.10.0.0

image

frame

frame Frame1

Frame1

{Frame1, F rame2}

{Frame1, F rame2}

0.0

0

0.1

0.0.10.0.0

image

frame

frame

{Frame1, F rame2}

0.0

0

0.1

0.0.10.0.0

image

frame

frame

{Frame1, F rame2}

0.0.2

{Frame1, F rame2}

{Frame1, F rame2}

{Frame1, F rame2}

Fig. 1. Derivation trees t, t′ and t′′ .

The following corollary proves that the language of the new grammar G, pro-
posed by Definition 10, contains the original language of G0.

Corollary 2. L(G0) ⊆ L(G). 2

In the rest of this section we work on proving that L(G) is the least STTL that
contains L(G0). To prove this property, we first need to prove some properties
over STTLs. We start by considering paths in a tree. We are interested by paths
starting on the root and achieving a given position p in a tree t. Paths are defined
as a sequence of labels. For example, path(a(b, c(d)), 1) = a.c.

Definition 11 (Path in a tree t to a position p). Let t be a tree and
p ∈ Pos(t). We define path(t, p) as being the word of symbols occurring in
t along the branch going from the root to position p. Formally, path(t, p) is
recursively defined by : path(t, ǫ) = t(ǫ) and path(t, p.i) = path(t, p).t(p.i) where
i ∈ IN. 2

Given a STTG G, let us consider the derivation process of two trees t and t′

belonging to L(G). The following lemma proves that positions (p in t and p′ in
t′) having identical paths are derived by using the same rules. A consequence of
this lemma (when t′ = t and p′ = p) is the well known result about the unicity
in the way of deriving a given tree with a STTG [ML02].

Lemma 6. Let G′ be a STTG, let t, t′ ∈ L(G′).
Let X →∗

[pi,rulepi
] t be a derivation of t and X ′ →∗

[p′
i
,rule′

p′
i

] t′ be a derivation of

t′ by G′ (X,X ′ are start symbols). Then ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′),
(path(t, p) = path(t′, p′) =⇒ rulep = rule′p′)

In a STTL, it is possible to exchange sub-trees that have the same paths.

Lemma 7. (also in [MNSB06, Prop 6.3 and 6.5])
Let G′ be a STTG. ∀t, t′ ∈ L(G′), ∀p ∈ Pos(t), ∀p′ ∈ Pos(t′), (path(t, p) =
path(t′, p′) =⇒ t′[p′ ← t|p] ∈ L(G′))

Example 9. Let G be the grammar of Example 6. Consider a tree t as shown in

Figure 2. Exchanging subtrees t|0.0 and t|0.1 gives us a new tree t′′. Both t and t′′ are

in L(G). 2

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

ǫǫ

0

image

frame

0.0

0.0.0 0.0.1

frame frame

0.0

0

0.1

0.0.10.0.0

image

frame

0.0.2 0.1.10.1.0

frame frameframe frame frame

frame

frame

frame

0.1

frame

0.1.2

frame frame frame

0.1.0 0.1.1

Fig. 2. Trees t and t′′ with sub-tree exchange.

The following lemma expresses what the algorithm of Definition 10 does.
Given a forest w = (t1, . . . , tn), recall that w(ǫ) = 〈t1(ǫ), . . . , tn(ǫ)〉, i.e. w(ǫ) is
the tuple of the top symbols of w.

Lemma 8. ∀t ∈ L(G),∀p ∈ Pos(t), t|p = a(w) =⇒ ∃t′ ∈ L(G0),∃p
′ ∈

pos(t′), t′|p′ = a(w′) ∧ w′(ǫ) = w(ǫ) ∧ path(t′, p′) = path(t, p). 2

Example 10. Let G be the grammar of Example 6 and t the tree of Figure 2. Let

p = 0. Using the notations of Lemma 8, t|0 = frame(w) where

w = 〈frame(frame, frame, frame), frame(frame, frame)〉. We have t 6∈ L(G0).

Let t′ = image(frame(frame(frame, frame), frame)) ∈ L(G0) and (with p′ = p =

0) t′|p′ = frame(w′) where w′ = 〈frame(frame, frame), frame〉. Thus w′(ǫ) = w(ǫ).

Note that others t′ ∈ L(G0) suit as well. 2

We end this section by proving that the grammar obtained by our algorithm
generates the least STTL which contains L(G0).

Lemma 9. Let L′ be a STTL s.t. L(G0) ⊆ L′. Let t ∈ L(G). Then, ∀p ∈
Pos(t),∃t′ ∈ L′,∃p′ ∈ pos(t′), (t′|p′ = t|p ∧ path(t′, p′) = path(t, p)). 2

Proof. We define the relation = over Pos(t) by p = q ⇐⇒ ∃i ∈ IN, p.i = q. Since Pos(t)
is finite, = is noetherian. The proof is by noetherian induction on =. Let p ∈ pos(t).
Let us write t|p = a(w). From Lemma 8, we know that:
∃t′ ∈ L(G0), ∃p

′ ∈ pos(t′), t′|p′ = a(w′) ∧ w′(ǫ) = w(ǫ) ∧path(t′, p′) = path(t, p). Thus,
t|p = a(a1(w1), . . . , an(wn)) and t′|p′ = a(a1(w

′
1), . . . , an(w′

n)). Now let p = p.1. By
induction hypothesis:
∃t′1 ∈ L′, ∃p′

1 ∈ pos(t′1), t
′
1|p′

1
= t|p.1 = a1(w1) ∧path(t′1, p

′
1) = path(t, p.1). Notice that

t′1 ∈ L′, t′ ∈ L(G0) ⊆ L′, and L′ is a STTL. Moreover path(t′1, p
′
1) = path(t, p.1) =

path(t, p).a1 = path(t′, p′).a1 = path(t′, p′.1).
As path(t′1, p

′
1) = path(t′, p′.1), from Lemma 7 applied on t′1 and t′, we get t′[p′.1 ←

t′1|p′
1
] ∈ L′. However (t′[p′.1← t′1|p′

1
])|p′ = a(a1(w1), a2(w

′
2), . . . , an(w′

n)) and

path(t′[p′.1← t′1|p′
1
], p′) = path(t′, p′) = path(t, p).

By applying the same reasoning for positions p.2, . . . , p.n, we get a tree t′′ ∈ L′ s.t.
t′′|p′ = t|p and path(t′′, p′) = path(t, p).

Corollary 3. (when p = ǫ, and then p′ = ǫ) Let L′ be a STTL s.t. L′ ⊇ L(G0).
Then L(G) ⊆ L′. 2

4 Implementation

A prototype tool implementing our algorithms can be downloaded from [CHMR].
It is developed using the ASF+SDF Meta-Environment [vdBHdJ+01] and it is
about 1000 lines of code.

The algorithm of Definitions 8 is implemented in a straightforward way. How-
ever, Definition 12 below gives an improved version of the algorithm of Defini-
tion 10. This new version avoids to generate unreachable non-terminals, and
is suited for direct implementation. Indeed, it keeps a set of unprocessed non-
terminals (denoted by U) which are accessible from the start symbol. We just
compute those non-terminal symbols which are accessible from the start sym-
bols of the grammar. More precisely, in Definition 12, we start by computing
the equivalence classes of the start symbols of G0 and we insert them to the set
U , containing those non-terminals which are not yet processed. At each itera-
tion of the while loop, an element of U is chosen as the new non-terminal for
which a new production rule is going to be created. This non-terminal is added
to the set N . At each step, the set U is updated by adding to it those non-
terminals appearing on the right-hand side of the new production rule, filtering
the non-terminals already processed.

Definition 12 (RTG into STTG Transformation). Let G0 = (N0, T0, S0,
P0) be a (general) regular tree grammar. We define a new single-type tree gram-
mar G = (N,T, S, P), obtained from G0, according to the following steps:

1. Let S := {ÂS0 | A ∈ S0}; G := (N := ∅, T := T0, S, P := ∅); U := S;
2. While U 6= ∅ do:

(a) Choose {A1, . . . , An} ∈ U ;
(b) Let U := U − {{A1, . . . , An}}; N := N ∪ {{A1, . . . , An}};
(c) Let P := P ∪ { {A1, . . . , An} → a σN(R)(R)

| A1 → a[R1], . . . , An → a[Rn] ∈ P0, R = (R1| · · · |Rn)};
(d) Let U := (U ∪ {ÂN(R)|A ∈ N(R)})−N ;
End While

3. Return G. 2

It is straightforward to see that the algorithm of Definition 12 generates
the same STTG as that of Definition 10. In the worst case, the number of non-
terminals of the STTG returned by both algorithms is exponential in the number
of the non-terminals of the initial grammar G0. However, in many examples, most
non-terminals generated by step 1 of Definition 10 are unreachable, and thus are
not generated by the implemented algorithm.

The example below represents a usual situation, in which the schemas of two
different digital libraries (Grammars G1 and G2) are joined into one schema.
Library and Lib are the start symbols. For lack of space, we do not depict
the production rules X → x[ǫ] such that X ∈ {Author, Title, ISBN, Publisher,
Date, ISSN, Editor, Year, Pages, Dimensions, Scale} and x ∈ {author, title, isbn,
publisher, date, issn, editor, year, pages, dim, scale} respectively. We apply the
algorithm on G0 = G1 ∪ G2. Note that Author, Title, ISBN, Publisher, Date
appear both in G1 and G2. It is not necessary to rename them before computing
the union, since each of them generates only one terminal. G0 contains 18 rules.

Productions rules of G1 Productions rules of G2

Library → lib [Book*] Lib → lib [(Mag | Record | Book2 | Map)*]
Book → book [Author.Title. Mag → mag [Title.ISSN.Editor.Publisher.Date]

ISBN.Publisher.Date] Record → rec [Title.Author.Date]
Book2 → book [ISBN.Title.Author.Publisher.Year.Pages]
Map → map [Editor.Dimensions.Scale.Year]

The resulting grammar, after applying the algorithm, is3:

Resulting production rules
Library → lib [(Mag | Record | Book | Map)* | Book*]
Book → book [ISBN.Title.Author.Publisher.Year.Pages | Author.Title.ISBN.Publisher.Date]
Mag → mag [Title.ISSN.Editor.Publisher.Date]
Record → rec [Title.Author.Date]
Map → map [Editor.Dimensions.Scale.Year]

Notice that the new grammar has only 16 rules (included those with empty
regular expressions on their right-hand side). Only 16 new non-terminals were
created by our algorithm, that is two less than those from the original grammar.
This shows that in a typical situation, our algorithm runs in acceptable time,
even if the worst case is exponential.

5 Related Work

As discussed in [Flo05], traditional tools require the data schema to be developed
prior to the creation of the data. Unfortunately, in several modern applications
the schema often changes as the information grows and different people have in-
herently different ways of modeling the same information. Complete elimination
of the schema does not seem to be a solution since it assigns meaning to the data
and thus helps automatic data search, comparison and processing. To find a bal-
ance, [Flo05] considers that we need to find how to automatically map schemas
and vocabulary to each other and how to rewrite code written for a certain
schema into code written for another schema describing the same domain.

Most existing work in the area of XML schema evolution concerns the sec-
ond proposed solution. For instance, in [GMR05] the idea is to keep track of the
updates made to the schema and to identify the portions of the schema that
require validation. Our approach aims to be included in the first proposed solu-
tion of [Flo05] since it allows the conservative evolution of schemas. Indeed, our
method extends the work in [BDH+04,dHM07] which considers the conservative
evolution of LTG by proposing the evolution of regular expressions. Contrary to
this, the present paper proposes schema evolution in a global perspective, dealing
with the tree grammars as a whole. We also consider the evolution of STTG.

Our proposal is inspired in some grammar inference methods (such as those
in [BM03,BM06] which deal with ranked tree languages) that return a tree
grammar or a tree automaton from a set of positive examples (see [Ang92,Sak97]
for surveys). Our method deals with unranked trees, starts from a given RTG

3 For more readability, the non-terminals have been renamed. Library is the start
symbol. We have chosen not to simplify the regular expressions, showing them as
produced by our algorithm. Our implementation do not implement any simplification
yet.

G0 (representing a set of positive examples) and finds the least LTG or STTG
that contains L(G0). As we consider an initial tree grammar we are not exactly
inserted in the learning domain, but their methods inspire us and give us tools
to solve our problem, namely, the evolution of a original schema (and not the
extraction of a new schema).

Several papers (such as in [GGR+00,Chi01,BNST06,BNV07]) deal with XML
schema inference. In [BNST06] DTD inference consists in an inference of regu-
lar expressions from positive examples. As the seminal result from Gold [Gol67]
shows that the class of all regular expressions cannot be learnt from positive ex-
amples, [BNST06] identifies classes of regular expressions that can be efficiently
learnt. Their basic method consists in inferring a single occurrence automaton
called SOA from a finite set of strings and to transform it to a SORE (regular
expressions in which every element name can occur at most once). Their method
is extended to deal with XMLSchema (XSD) in [BNV07].

In [AGM09], given a target global type of a distributed XML document, the
authors propose a method to provide a subtype for each marked subtree such
that (i) if each subtree verifies its subtype, the global type is verified and (ii) no
extra restrictions than those imposed by the global type are introduced. Their
approach consists in regarding the problem locally (each node and its children)
and to find the FSA which should be associated to the children generated by
external sources. Their approach can be seen as the inverse or ours. Let us
suppose our library consortium example, with a big distributed XML document
where nodes marked by functions are calls to different libraries. Their approach
focus on defining the subtypes corresponding to each library supposing that
a design is given. Our approach proposes to find the integration of different
library subtypes by finding the least library type capable of verifying all library
subtypes.

In [MNSB06, Th 10.3], it is shown that deciding whether a regular tree gram-
mar has an equivalent LTG, or an equivalent STTG, is EXPTIME-complete.
Using our algorithms, we can also solve these decision problems by computing
the LTG (in linear time), or the STTG (in exponential time), that generates the
least local (or single-type) language L containing the initial language L0, and
checking (in exponential time) that L = L0.

6 Conclusion

This paper proposes algorithms that compute a minimal tree language, by find-
ing the local or single-type grammar which generates it and which extends a
given original regular grammar. The paper proves the correctness and the mini-
mality of the generated grammars. A prototype has been implemented in order
to show the feasibility of our approach. Our goal is to allow a given type to
evolve encompassing the needs of the application using it. Indeed, we aim at
developing tools for adapting XML message type of a web service to the needs
of a composition.

It is encouraging to us to note that our work complements that of [MNSB06],
where the complexity of deciding whether a regular tree grammar has an equiv-
alent LTG or STTG is provided. In that work, the authors are interested in
analyzing the actual expressive power of XSD. With some non-trivial amount
of work, part of their theorem proofs can be used to produce an algorithm sim-
ilar to ours. This emphasizes the relevance of our method whose usability is
twofold: as a theoretical tool, it can help answering the decision problem an-
nounced in [MNSB06]; as an applied tool, it can easily be adapted to the con-
text of digital libraries, web services, etc. Our work complements the proposals
in [BDFM09,dHM07], since we consider not only DTD but also XSD, and adopts
a global approach where all the tree grammar is taken into account as a whole.

Some aspects of our tool can be improved, in particular the conciseness of the
regular expressions appearing in the generated grammars. We are working on
improving and extending our approach to solve other questions related to type
compatibility and evolution. Indeed, in this context, many other aspects may
be taken into account such as integrity constraints (how they evolve when the
schema evolves) and semantics of elements (how to deal with identical concepts
named differently in each type). We intend not only to extend our work in these
new directions but also to build an applied tool capable of comparing types or
extracting some relevant parts of a type. Interesting theoretical problems are
related to these applications.

References

[AGM09] Serge Abiteboul, Georg Gottlob, and Marco Manna. Distributed xml
design. In PODS ’09: Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
247–258. ACM, 2009.

[Ang92] Dana Angluin. Computational learning theory: survey and selected bib-
liography. In STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 351–369, New York, NY, USA,
1992. ACM.

[BDFM09] Batrice Bouchou, Denio Duarte, Mirian Halfeld Ferrari, and Martin A.
Musicante. Extending XML types using updates. In Dr. Hung, editor,
Services and Business Computing Solutions with XML: Applications for
Quality Management and Best Processes, pages 1–21. IGI Global, 2009.

[BDH+04] B. Bouchou, D. Duarte, M. Halfeld Ferrari, D. Laurent, and M. A. Musi-
cante. Schema evolution for XML: A consistency-preserving approach. In
Mathematical Foundations of Computer Science (MFCS), number 3153
in Lecture Notes in Computer Science, pages 876–888. Springer-Verlag,
August 2004.

[BM03] Jérôme Besombes and Jean-Yves Marion. Apprentissage des langages
réguliers d’arbres et applications. Traitement automatique de langues,
44(1):121–153, Jul 2003.

[BM06] Jérôme Besombes and Jean-Yves Marion. Learning tree languages from
positive examples and membership queries. Theoretical Computer Sci-
ence, 2006.

[BNST06] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Karl Tuyls. In-
ference of concise DTDs from XML data. In VLDB, pages 115–126,
2006.

[BNV07] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring xml
schema definitions from xml data. In VLDB, pages 998–1009, 2007.

[Chi01] B. Chidloviskii. Schema extraction from XMLS data: A grammatical
inference approach. 2001.

[CHMR] Jacques Chabin, Mirian Halfeld Ferrari, Martin A. Musicante, and
Pierre Réty. A software to transform a RTG into a LTG or a STTG.
http://www.univ-orleans.fr/lifo/Members/rety/logiciels/RTGal -
gorithms.html.

[CHMR09] Jacques Chabin, Mirian Halfeld Ferrari, Martin A. Musicante,
and Pierre Réty. Minimal extensions of tree languages: Applica-
tion to XML schema evolution. Technical Report RR-2009-06.
http://www.univ-orleans.fr/lifo/Members/rety/RR-2009-06.pdf,
LIFO, 2009.

[dHM07] Robson da Luz, Mrian Halfeld Ferrari, and Martin A. Musicante. Regular
expression transformations to extend regular languages (with application
to a datalog XML schema validator). Journal of Algorithms (Special
Issue), 62(3-4):148–167, 2007.

[Flo05] Daniela Florescu. Managing semi-structured data. ACM Queue, 3(8):18–
24, 2005.

[GGR+00] Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, and
Kyuseok Shim. Xtract: A system for extracting document type descrip-
tors from xml documents. In SIGMOD Conference, pages 165–176, 2000.

[GMR05] Giovanna Guerrini, Marco Mesiti, and Daniele Rossi. Impact of XML
schema evolution on valid documents. In WIDM’05: Proceedings of the
7th annual ACM international workshop on Web information and data
management, pages 39–44, New York, NY, USA, 2005. ACM Press.

[Gol67] E. Mark Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967.

[ML02] Murali Mani and Dongwon Lee. Xml to relational conversion using theory
of regular tree grammars. In In VLDB Workshop on EEXTT, pages 81–
103. Springer, 2002.

[MLMK05] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi.
Taxonomy of XML schema languages using formal language theory. ACM
Trans. Inter. Tech., 5(4):660–704, 2005.

[MNSB06] Win Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex.
Expressiveness and complexity of xml schema. ACM Trans. Database
Syst., 31(3):770–813, 2006.

[PV00] Y. Papakonstantinou and V. Vianu. DTD inference for views of XML
data. In PODS - Symposium on Principles of Database System, pages
35–46. ACM Press, 2000.

[Sak97] Yasubumi Sakakibara. Recent advances of grammatical inference. Theor.
Comput. Sci., 185(1):15–45, 1997.

[vdBHdJ+01] Mark van den Brand, Jan Heering, Hayco de Jong, Merijn de Jonge, To-
bias Kuipers, Paul Klint, Leon Moonen, Pieter Olivier, Jeroen Scheerder,
Jurgen Vinju, Eelco Visser, and Joost Visser. The asf+sdf meta-
environment: a component-based language development environment.
Electronic Notes in Theoretical Computer Science, 44(2), 2001.

