
Narrowing directed by a graph of terms

Jacques Chabin and Pierre Rgty

LIFO & LRI, Dgpt. math-info, Universit6 d'Orlgans
BP 6759, 45067 Orlgans cedex 2, France
E-mall : {chabin, rety}@univ-orleans.fr

Abstract

Narrowing provides a complete procedure to solve equations modulo confluent
and terminating rewriting systems. But it seldom terminates. This paper presents
a method to improve the termination. The idea consists in using a finite graph of
terms built from the rewriting system and the equation to be solved, which helps
one to know the narrowing derivations possibly leading to solutions. Thus, the
other derivations are not computed. This method is proved complete. An example
is given and some improvements are proposed.

1 I n t r o d u c t i o n

Solving equations (unification) modulo term rewriting systems is an important prob-
lem, which is necessary to combine functional and logic programming, for example as
in EQLOG langage [Goguen-Meseguer-86]. In this framework, completeness and ter-
mination of unification methods are desirable. Indeed, during a clause superposition
attempt, it is interesting to detect the unsatisflability of the equation to be solved, which
implies that the superpositlon is not possible. Conditional completion procedures also
need methods that solve the equations appearing in the conditions. If such an equation
is unsatisfiable, the conditional rewrite rule containing it can be deleted, because this
rule can't be applied. And to detect that, a complete and terminating procedure is
necessary.

This paper presents a method that improves the termination of basic narrowing.
Basic narrowing gives a complete set of solutions modulo confluent and terminating
rewriting systems, by computing all the narrowing derivations issued from the equation
to be solved [Hullot-80]. Actually, only the derivations that lead to a syntactically
unifiable equation give solutions. Thus, the others are useless. Our idea consists in
using this fact to prune useless paths from the search tree.

Let's look at a simple example. Consider the following confluent and terminating
rewriting system :

r l : h(f(g(Y))) -+ h(/(y))
r2 : h (0) - ~ 0

113

We want to solve the equation h(x) "-'R O. By using basic narrowing, there are two
derivations:

h(=) -R 0 ~[,,,,-~(,(,l)l h(/(x)) --'R 0 "~[~,,,~,C,)3 h(/(=)) -R 0 ~ . . .
"~[r2,~0] 0 --R 0

The first derivation does not terminate and gives no solution. The second gives the
solution (x ~ 0).

To improve the termination, we build a graph (called graph of terms) whose nodes
are left-hand-sides and right-hand-sides of the rules, as well as the sides of the equation
to be solved; and whose edges are the rewrite arrows --* and arrows ~ (gr means
graph) between the syntactically unifiable terms (their variables are implicitly renamed
to be disjoint):

h(f(g(y)) -~[r~l h(f(y)) h(0) -~['~1 0

Now we apply the only rewrite rules that occur along the paths going from h(x) to 0.
In this graph, there is only one (by using r2). Then the method provides the solution
(x ~-. 0) and terminates. In general, the graph of terms is more complicated because
some arrows may appear between subterms, and the two sides of the equations can be
narrowed.

Our method is an extension of [Sivakumar-Dershowitz-87] and [Dershowitz-Sivaku-
mar-87], where a graph of top symbols is used. Their procedure applied on the above
example does not terminate, because if we only consider the top symbols, the graph
becomes:

~ h [r~l ~ 0

and there are infinitely many paths going from h to 0. In order to get a finite graph,
we will suppose the rewriting system is finite.

After introducing preliminary notions in section 2, we present the graph building
algorithm as inference rules in section 3. A narrowing procedure is given in section 4 by
inference rules and using equation systems. Its completeness is proved. Two variants
of an example (about lists) are shown : one which terminates (in section 5) whereas
it wouln't, if some known narrowing optimizations are used; the other which doesn't
terminate (in section 6), and we show how the method can be improved.

2 Prel iminary not ions

We assume the reader is familiar with the standard definitions of one-sorted terms,
substitutions, equations, rewriting systems, complete sets of unifiers (see [Dershowltz-
Jouannaud-90]).

114

We denote constants by a, b; function symbols by f , g, h , . . . ; variables by x, y, z , . . °;
terms by s , t , . . . ; occurrences (also called positions) by u , v , w , . . . , and e denotes the
top occurrence; substitutions by a, 0, The set of variables of a term t is denoted by
V(t). We denote by t], the subterm of t at occurrence u, and by t[u ~-- s] the term
obtained by replacing t]~ by s in t. D(t) is the set of the occurrences of t, and O(t) is
the set of non-variable occurrences. In the whole paper, we consider a rewriting system
R which contains finitely many rewrite rules. The rewriting relation is denoted by -+.

The narrowing relations defined below don't normalize resulting terms~ in contrast
with [Fay-78] and [R~ty-80]. The definitions and the theorem come from [Hullot-80].

D e f i n i t i o n 1 We say t is narrowable into t ~ and we write t ~,zi~,z_~,~] t ~ if t[~ and 1
are unifiable by the most general unifier a, with u e O(t), and t' = a(t[u ~-- r]). The
relation ~,~ is called n a r r o w i n g . O

Def in i t i on 2 A narrowing derivation is said to be bas ic if at each step the narrowing
occurrence does not belong to a part brought by a substitution in a previous step.
Formally the derivation tl ~[u~,h-.rl,~l] ~ . . . "~zlu.,l.-~r.,~.] t ,+l is basic if there exist
some sets U2, . . . , U,+I of occurrences of t2 , . . . , t ,+ l respectively such that for all i E
{ 2 , . . . , n } , ul E U~ and

u,+, = (~, - {v e u ,13~, v = ~,.w}) u {~,.v l v e O(r,)}

The equations to be solved modulo the rewriting system R are written in the form
t -'R t', and are considered as new terms in the signature.

T h e o r e m 1 I f the rewriting system R is confluent and terminating, the set o/substi-
tutions 0 such that

there exists a basic narrowing derivation issued from to - R t'o

to - n t~ ,-,~[,,,] tl - n t~ ,,,~ .. . "~[a.] t,, -'n t"
such that tn and t~ are unifiable by the most general unifier fl

0 = ~ .a , . . . a l and 0 is normalized on V(to) U V(t~),

is a complete set of R-unifiers of to and t' o.

3 B u i l d i n g t h e g r a p h o f t e r m s

3 . 1 E x a m p l e s

In this section some graphs are shown to explain the method. They are not completely
built, i.e. some arrows may be missing.

Consider a basic narrowing derivation issued from a term to. In each narrowing step
t~ ~*[~,Z;-.r,,a;t ti+l, the occurrence u~ does not belong to a part brought by a substitution.

115

Then it comes from to or from a right-hand-side of a rewrite rule. Moreover t~I. ~ and
the left-hand-side li are unifiable. Therefore, we can summarize this basic narrowing

derivation by considering only to and the rule sides. We see them as the nodes of a
graph, whose edges are rewrite arrows and syntactical unification possibilities. The
part brought by narrowing substitutions is omitted. This graph is finite since the set of
rewrite rules is. For example, consider the rewrite rule :

r : h(=,gCv)) -* i(x,y)

Then the step :

hCI(=,), v,) ~f.,,.,o~.,c.,),.~,,c.))l i(1(=1), v)
is summarized by the graph :

h(f(xl),yl) ~ h(x,g(y)) -*[r] i(x,y)
The arrow g-~ shows that two terms are unifiable (gr means graph). Since the narrowing
substitution is not applied on the terms in the graph, the last term of the narrowing
step i(f(xl) , y) is an instance of the term i(=, y) of the graph.

Conversely, if the graph contains ~f~ whenever two terms are unifiable, then it
associates a path in the graph with every basic narrowing derivation issued from to.
Therefore, by considering all the paths that lead to a given term s of the graph, we
know all the basic derivations issued from to, that may lead to an instance of s.

However, some narrowing steps may be applied on subterms. For example, consider
the rewriting system :

r , : h,(o,=) - . I(9(=))
r s : g(0) -~ h(0)
r ~ : iCf (h(0))) -~ 0

and the basic narrowing derivation :

iCh, (=,, xs)) ~[~,,,,(,,~o,,~=)1 i(f(gCz))) ~t2.,~,,~01 iC/(h(0))) "~I~.~,"] 0

The two first steps are applied on subterms. In order to get in the graph a path at the
top from i(h~(x,,x2)) to 0, first we add a ~ corresponding to the second step, then
a ~* corresponding to the first step. Obviously, the arrow 0~, from i(hl(xl,x2)) to
i([(h(O))) does not mean these two terms are unifiable, it only means i(hl(xl, x2)) can
be narrowed only on subterms into an instance of i(](h(O))). Actually, the arrows
have two meanings.

g r r 3
i ~ i ~ 0

i t
h l _.qr__~. ht r I ~ f ~r -~-

/ \ / \ 1 I gr
x l X2 0 X g - - ~ g r2-i~--I~-h 3r--,.. - h

! I] I
x 0 0 0

Observe that one of the gr arrows goes from a term to a subterm.

116

Now, let's t ry to solve an equation t ='R t t. A solution is found whenever t -'--R t t is
narrowed into a syntactically unifiable equation. Then t and t ~ can be narrowed into
unifiable terms t2 and t~ :

t ~ ~*~[~1 t~ '~* [#,I t~

tt,t~ are instances of right-hand-sides (or of t,t/), and we add the arrow ~ between
them in the graph to show that they can be narrowed (possibly by 0 step) only on
subterms into two unifiable terms. For example consider the following graph, where the
terms to be solved are encercled. Remark tha t adding a ~ arrow may create another.

" \ ~r. _,../t \
0 x z

hl _Z_LI~. f . q____gr
/ \
z ~ g -7

t] ' - - _g-~
X I

/

/gr
[

/
!
- ~ g r2_~ c

m

I
~ f

/ \
D. .e h \

1
Y

\

~qr
\

\

h r 3 _ ~ c

b l
l

I
l

",4

3.2 T h e a lgor i thm

We present the algorithm in a simple form, via inference rules. It could be optimized

to avoid useless arrows.

Notations : G denotes the current graph, 1 is a (sub)-Ieft-hand-side, and r, r ' are (sub)-
right-hand-sides. Actually r, H, I are bo th pointers in the graph and terms. We assume
r and H do not point inside the same right-hand-side of the graph (except in section 6).

~* denotes a pa th in the graph that may contain gr> arrows and rewriting arrows.
gr)? denotes zero or one step of Jff-~.

r is a variable

(Add g__ff_~) G or I is a variable
G U {r g'* I} or r = f (r t , . . . , r ~) , I = f(I t , . . . ,1,) and

Vi E { 1 , . . . , n } , r ~ .~* l~ E G

117

if r is a variable

(Add 9,~__~} G or r' is a variable
" . , = f(~,...,r'J =d G U (r , , r ' } o r r = f (r l , . , r ,) , r '

#r ? l * t Vi ~ { 1 , . . . , n}, 3t~,t~/r~ - - - : t~ ~ t~ ~ r~ E G

Let t and t t be the terms to be unified modulo the rewriting system R. The algorithm
consists in two steps :

- initialization : G ~ R U {t, t J considered as right-hand-sides}

- adding arrows : apply the inferences rules as long as they add new arrows.

The terminat ion is ensured since the graph can' t contain infinitely many arrows (recall
R is finite).

The graph depends on the terms to be unified. However, if one wants to unify
several pairs of terms modulo the same rewriting system, one can avoid building the
whole graph several times :

- Initialize the graph by R and add all the arrows.

- For each pair of terms t, t' to be unified, add t, t r into the graph and add all the
arrows between t (respectively ~') and others (sub)terms. Once having finished
dealing with t and t ~, remove them out of the graph and delete the arrows that
arrive at or s tar t from them.

4 The narrowing procedure

We describe here how to use the graph of terms. For that , we present an equational
formulation of narrowing, which is not identical to that of [Martelli-etal-87], because we
introduce a fur ther equation symbol ~R in order to avoid some redundancies. We use
equational systems, called unificands, as in [Kirchner-84], except tha t we don ' t use any
multiequations.

We define 5 kinds of equations, and the associated sets of solutions S O L . For terms
t, t r, consider :

t ----'R t ' where S O L (t - n t') = {0 normalized IO(t) =-R O(t')}

t ~ n t ' where S O L (t Z R t') = {8 normalized lO(t) --+*R O(t') by a basic rewriting
derivation}

t ---" t' where S O L (t - t') = {0 normalized IO(t) = O(t')}

T where S O L (T) = {0 normalized}

F where S O L (F) = 0

Let A, V be two new associative and commutat ive symbols of variable arity. The un i f -
i c ands are defined by :

- any equation t - t' or t ~ n t' or t "--R t' or F or T is a unificand.

- if S x , . . . , Sn are unificands, then AS1. . . Sn and VS1. . . Sn are unificands.

t t8

A unificand in the form AS1. . . S , is called conjunctive factor. S O L is extended in the
natural way :

S O L (A S I . . . S,~) --- N~: ISOL(SI)
S O L (V S I . . . S ,) : U~: ISOL(S ,)

The unificands are viewed as flattened terms in a new signature. It is assumed that
considered unificands are completely flattened. A, V are prefix symbols, but they may
be used as infix symbols.

The procedure is given by some inference rules. They are similar to those of [Chabin-
90]. Each inference rule preserves the solutions, thus the choice of the equation to be
reduced is "don ' t care". The following proper ty is preserved by the inference rules, up
to a variable renaming :

In an equation t --'R t t, the terms t and t' are (sub)-right-hand-sides of the graph.

- in an equation t --'R t ~, the term t is a (sub)-right-hand-side of the graph, and the
t e rm t' is a (sub)-left-hand-side of the graph.

In the inference rules, we distinguish variables and non variable terms, x and y de-
note variables, while s , t denote non-variable terms, top(s) is the top-symbol of s and
s t , . . . , s , are its subterms, t l , . . . , t , are subterms of t and l --+ r is a rewrite rule.

Recall tha t JE-~ ? means zero or one step of , gr). The big symbol V means there are
several conjunctive factors in the line if there exist several paths in the graph satisfying
the condition. The symbol ** denotes a path in the graph which may contain 9%
and rewrite arrows ---~. If an inference rule creates an empty conjunctive factor, it has
to be replaced by T, and if a rule creates an empty disjunctive factor (for none of the
conditions is satisfied), it has to be replaced by F. When a rewriting rule is used, its
variables must be renamed (if necessary) to avoid conflicts of variables. Note that the
graph is only used for the equations whose terms are both non-variable.

T h e n a r r o w i n g ru l e s

(Narrow- "--R)
s -"R t ~ Sl --'R tZ A . . . Asn --R t . if s ~ g~) t

?

V SZ-- - ' - -Rl l / \ . . .ASn-- ' - -RtnAr--Rt i f s g r) l - + r),(gr). , (t

V t l ~ R l l A " ' A t n ~ R l n A s - - R r ifsJ'-¢%? *< r~ - - l< gr t

s "--Ry
) y "-s

y - - R S

V st - l^s[u r] y
if u E O(s) and
s}u and I have the same top symbol

x -~ ;{ y ~ x "---- y

119

(Narrow- ~n)

S ~ R t } S l ~ F t t I A . . . A s n ~ R ~ n

V S , ~ R I I A . . . A s n ~ n l n A r ~ R t

y~Rt----+ y - - t

S - ~ R Z ---+ :g "-- S

V sl.--" z A s[u . - - ,] Z , x

if s at} t

i f s g r ~ l ~ r ~*t

if u E O (s) and
sl~ and I have the same top symbol

y ~ R x- - -+ y - x

Now, we need some rules to simpD.fy the unificands.

D e f i n i t i o n 3 A conjunctive factor C is said to be in so lved f o r m if C = F or C = T
or C = A x , - - t I . . . x,, " - t , whe reVi , j (i7 ~ j ~ x ~ 7 ~xi) and there is no cycle of
variable. O

T h e s i m p l i f i c a t i o n ru les

Transforming the conjunctive factors into solved form (well known problem of syntac-
tical unification) :

. IS, tt* where { and SOL(S') = SOL(At, -- t~ . . . t . "= t~)
(Solve--) At, --" t' . . . t . --" ' S' is a conjunctive factor in solved form

Deleting the equations that lead to non normalized solutions (they are redundant):

(Del-'=) x --" t if t is not in normal form
F

Deleting trivial equations :

(DeI-'--R) a --'T R a if a is a constant (Del- ~R) if a is a constant

Deleting the equations T and F :

(DeI-V-T) VS, . . .S I_ ,TSI+I . . .S~
T

(DeI-A-T) AS , . . .S~_ITS~+I . . .S ,
- A S , . . . S .

(DeI-V-F)

(DeI-A-F)

vS1 .. S~-IFS~+I S.
VSI . . . S .

A & . . . S~_,FS~+,... S,
F

T h e d i s t r i b u t i v i t y ru le

Transforming the unificands into disjunctive form :

(Distributivity) , AS1.. . S.(VQ1 ._.. Qp)
v (^ s , . . , s , Q d . • • (A & . . . s~Q~)

120

R e m a r k : The narrowing relation defined by these inference rules is basic since the part
brought by substitutions is inside the -" equations (after applying {Solve--}), which are
not narrowed. It can even be left-to-right basic [Herold-86] (or right-to-left) because of
the "don't care" choice of the equation to be narrowed.

We use the following strategy to apply the rules.

D e f i n i t i o n 4 A derivation So - -~ . . . ~ S, - -* o.. is said f a i r if it is created by the
following procedure :
while the current unificand contains ='R or -~R equations do

- apply the rule (Narrow--:-a) on all the --'R equations, and (Narrow-~R) on ~11 the ~-R
equations,

- apply the simplifications rules.

- if you wish, transform into disjunctive form by applying (Distributivity), and then apply
the simplification rules.

©

Transforming the unificand into disjunctive form is necessary to compute the possibly
solutions. The loop must not be run infinitely many times without transforming the
unificand into disjunctive form.

The above procedure is complete, i.e. any solution is found in a finite time.

T h e o r e m 2 Let So be a unificand, 00 E SOL(So) , and So ~ * . . . ~ *S, * . . .
a fair derivation issued from So, where S t , . . . , Sn , . . . are the unificands in disjunctive
form obtained at the end of some loop steps in the procedure.

Then there exists a unifieand Si of this derivation and a substitution 0~ such that

- 0~ is solution of a conjunctive factor of S~ that contains no -~R and ~R equation

O, = O0 [V(S0)]

P r o o f : See [Chabin-R~ty-91]. []

Intuitively, we see that if a term can be narrowed infinitely many times, then there
is a cycle in the graph of terms.

D e f i n i t i o n 5 The graph of terms ~s said to contain a cycle by s u b t e r m if there are
some right-hand-sides Q, . ° . , t , and some occurrences ul E O(tz) ,un E O(tn), such
tha t there exist paths in the g raphof the formtl[ul ~* t2, t21u~ ----** tz, . . . , t , lu, ---**

tl. O

C o n j e c t u r e 1 (termination criterion)
I f the graph of terms doesn't have any cycles by subterm, then the above procedure
terminates.

Unfortunately, there is a cycle by subterm if a function symbol is recursively defined.

121

5 E x a m p l e

Consider a set (a, b) (which could be extended) of constants, strictly ordered by <, and
the lists with the symbols {empty , eens}, the booleans with {true, fa lse , and}, and the
function is_sorted that says whether a llst is strictly sorted. The graph is below. Some
arrows are missing, only the usefull ~orrows are indicated. The terms to be unified are
encercled.

l s _ s o E e o t r u e -,*,-- - - _ _ ,9 r
~ , l i l t

g r / / ~. ~" r
e m p t y gr C .- ~- 4k

_,gr.4~ i s _ s o r t e d r2-C~l I ~ t r u e J ' ' ~ and ~ t r u e

cons "- g ~ .- t r u e t r u e
\ gr I / \ " , . .. Iv,"

\ 1 X e m p t y ~ ~ " ~ ,,~gr~ ~ /

/ "~ " / and ~ f a l s e
/ is_sorted ~ and z / / \

/ ¢ Y f a l s e / / cons x'< x i s _ s o r t e d 1
/ / / \ \ I ~ gq

c o n s / / x ' / \ \ cons ~ I and ~ f a l s e
l~ ~q~ / \ ~ ~ / \

// x l \ x 1 ~ /
e _ \ \ / f a l s e y

gr ~ /
r7 ~ 1 r9

b < a---I~,,- f a l s e a < b t r u e x < x ~ f a l s e

We solve is_sorted(F) ~R true. We obtain :

t. After narrowing
(((t'--'~ empty) ^ (true -R true)) V ((t'-% co-8(~1, empty)) ^ (true -R t,ue))
vCCt' ~-R co.8(~, co..(~2,/~))) ^ ((~ < ~5) ""~ i._~orteaCco..(=:, Z~))) -R t.ue)))
2. After simplifying
((l' -'--R em~y) v (t' -'-R ~o,,~(=~, empty)) V ((l'-----'R ¢o"~(~, co-~(~2, Z~)))^
((~'~ < ~5) . , ,d (i~.~o.ted(~o,,~(=~, 15))) -R t,ue)))
3. After narrowing
((l' "-" empty) V (l' - cons(x1, empty)) V ((l' -- cons(x~2, cons(x2,~5))) A ((zS2 < zs) ~1~ true) A
(is-sorted(cons(=2,1~))-~R true) A (true ~1~ true)))
4. After simplifying
((l' "-:- empty) V {l' "- cons(=1, empty))V ((t' ~ cons(z~, cons(x2,12))) A ((4 < x2) ~1~ true) A
(is-sorted(cons(z2, I:)) ~n true)))
5. After narrowing
((l' -- empty) V (i' ~ cons(z1, empty))v ((l' "-- cons(z~, eons(z~, 12))) A (zr 2 ~R a) A (z2 ~R b) A
(true-----'n re, e) ^ (((~on,(~2, t~) ~R ~on~(~, empty)) ^ (true-----'n t,ue))V
((eons(zs, 12) ~n cons(x~, cons(z4, l,)) ^ ((x~ < xa) A is_sorted(cons(z4,14))) ~1~ true))))

122

6. After simplifying and transforming into normal form
((l' - empty) v (t' - co~s(=l, empty)) V (it' - co.s(=~, co-s(=2,12))) ^ (=~ -~R a) ^ (=2 ~R b) ^
(co.~(=2,12) ~R eo.s(=~, empty))) V ((Z' - e o . s (~ , co"~(~2,12))) ^ (=~ ~R ~) ^ (~ ~R b) ^
((eo.s(=2, l~) ~R ~o.~(=~, eo-~(=4, t,))) ^ ((=~ < ~) ~.d~_~orted(~o.~(=~, I,))) eR true))))
7. After narrowing
((v -" empty) v (1' =" co.s(~,, empty)) V ((1' ---- eo .~ (~ , eo-.(~2,t~))) ^ (=~ = a) ^ (=2 -- b) ^
(~. e R ~s) ^ (12 ~R empty)) V ((V -- ~o.~(='~, eo.~(=2,t .))) ^ (='~ -- a) ^ (=2 -- b) ^ (=2 e R ='4) ^

8. After simplifying
((l' "-- empty) V (1' - eons (x l , emp ty)) V ((1' - eons(xl2,eons(z2,12))) A (z~ -- a) A (x2 -- b)A
(=~ -'-R =~) ^ (l~-'-R empty)) v ((V -~ eo.~(='~, eo.~(=~, 1~))) ^ (='2 "-- a) ^ (=5 "- b) ^ (=2-'-R ='~) ̂
(12 ~ R eorts(x4,14)) A (xt4 < x4 ~ R true) A (is_sorted(cons(z4,1,))) -~R true)))
9. After narrowing
((I' - empty) V (l' "-- cons(=1, empty)) V ((I' - cons(=~, cons(=2, I~))) A (x~ -- a) A (x2 ± b)A
(~2 "-- =s) ^ (t~ "- empty)) V ((V ~- ~o-.(=~, eo-~(=~,12))) ^ (~ =" a) ^ (=5 - b) ^ (=2 --" =~)^
(1~ -'- eo. .(=~, 14)) ^ (=~--'R ~) ^ (=~---'R b) ̂ (true--'R true) ^ (((~o.~(=~, 14) ---R eo~.(=~, empty)) ^
(true-'~ tr~e)) V ((~o~.(~,, 1,) ~-R eo-~(4 , co.~(=~, l~)))^
((4 < 16) and is.sorted(cons(z6, t6)) -'--R true)))
10. After simplifying
((l' -- empty) V (l' "-- cons(x1, empty)) V ((t' "-- eons(x~, cons(x2,15))) ^ (xl2 "-- a) ^ (z2 "-- b)^
(zs -" b) ^ (/2 =" empty)) V ((l' ~ consC=~, eonsCz2,12))) ^ (=~ =- a) ^ (z2 - b) ^ (z~ - b)^
(12 -- cons(z4,14)) ^ (z~ ~R a) A (x4 ~j~ b) A (((cons(x4,14) ~R eons(x~, empty)))V

11. After narrowing
((l' "-- empty) V (l' -- cons(x1, empty)) V ((I' ~ cons(x~2, cons(x2,15))) A (=~ -----" a) A (=5 -" b)^
(~ "- b) ^ (1~ - empty)) v ((V ~- eo.~(='~, ~o.~(=2,12))) ^ (='~ "= a) ^ (=2 - ~) ^ (='~ "= ~)^
(Is -- cons(z~, I,)) ^ (x~ --' a) A (x4 -- b) A (((x~ ~-R xs) ^ (14 ~ empty)) V ((z4 ~.~ z~) A
(/a ~ R cons(x , , 16)) A (z~ < =~ ~ R true) A (is_sorted(eons(x, , /6)) ~R true) ^ (true ~ n true)))
12. After simplifying
((l' "-- empty) V (l' "~ cons(x1, empty)) V ((l' "-- e o n s (~ , cons(z2, I2))) A (=~ "-- a) A (x5 ~ b)A
(=3 -- b) A (12 -- empty)))

The procedure terminates, although there is a cycle by subterm in the graph, and
we obtain 3 solutions, from which 4 closed solutions can be deduced.

Consider the infinite derivation :
i s_sor ted(V) "~[,~l (z ' < z) a n d i s _ s o r t e d (c o n s (z , l))

(z ' < z) and (z'~ < z~ and is_sorted(eons(x~, l~))) ~ . . .

It is left-to-right basic, and every term is in normal form. Therefore none among the or-
dinary, basic, left-to-right basic, normalizing, basic normalizing narrowings terminates.

6 I m p r o v e m e n t s a n d c o n c l u s i o n

The previous example works well because most rewriting rules have closed terms as
right-hand-slde. Unfortunately, ~f we replace the rule r4 by (t rue a n d y) --+ y, the

123

unificand obtained at step 3 contains the conjunctive factor :

((t' - co (x2,t2))) ^ < -"-R true) ^ y)^
(Y "--R true)))

Then y "--n true is transformed into y "-- true, and is_sorted(cons(x~,l~)) ~ n Y can be
narrowed infinitely many times. Therefore our procedure does not terminate.

Actually, we need to take into account the fact tha t y is equal to true, i.e. by solving
is_sorted(cons(x2,t2)) ~R true, which terminates. For that , we propose to introduce
merging rules, like

s-- '--RxAx "----t , s~RtAx "--t
s " - : - n x A x - - t ~.s "- -RtAx "--t

s ~ n x A x "----Rt ; S " - - R t A x - - R t

and so on. Thus, we don' t have to narrow equations in the form s-~R x or x -'R t if
x ~ s. So, we hope the method will often terminate.

Building the graph of terms obviously spends a long time. By using a graph of
top symbols, as in [Dershowitz-Sivakumar-87], it would spend less time. But it would
terminate less often.

7 R e f e r e n c e s

[Chabin-90] Jacques Chabin. Surr~duction dirig~e par un graphe d'op~rateurs. Formulation
~quitable par des syst~mes d'~quations et implantation. Rapport de DEA, universit~ d'Orlg-
alas, Septembre 1990. (In french).

[Chabin-tt6ty-91] J. Chabin and P. R~ty. Narrowing directed by a graph of terms (including
proofs}. Internal report 91-1, LIFO, Universitg d'Orl~ans. 1991.

[Dershowitz-Sivakumar-87] N. Dershowitz and G. Sivakumar. Solving goals in equational
langages. Proceedings of the first workshop CTRS. Springer-Verlag, vol 308. 1987.

[Dershowitz-Jouannaud-90] N. Dershowitz and J.P. Jouannaud. Rewrite system. Handbook
of Theoretical Computer Science, Vol B, North-Holland, 1990.

[Fay-T8] M. Fay. First-Order Unification in an Equational Theory. Master Thesis 78-5-002.
University of Santa Cruz. 1978.

[Goguen-meseguer-86] J.A. Goguen and J. Meseguer. EQLOG : Equality. Types and generic
Modules for logic Programming. In logic programming: functions, relations and equations.
D. Degroot and G. Lindstrom, eds. Prentice-Hall, Englewood Cliffs, N J, pp 295-363, 1986.

[Herold-86] A. Herold. Narrowing Techniques applied to idempotent Unification. Internal SEKI
Report SR-86-16. August 1986.

[ttullot-80] J.M. Hullot. Canonical forms and unification. Proceedings of the fifth Conference
on Automated Deduction, Springer-Verlag, vol 87, July 1980.

[Kirchner-8&] C. Kirchner. A new equational unification method : a generalization of Martelli-
Montanari's algorithm. Proceedings of the 7th CADE. Springer-Verlag, vol 170. 1984.

[Martelli-etal-87] A. Martelli, C. Moiso, and G-F. Rossi. Lazy unification algorithms for canon-
ical rewrite systems. Proceedings of CREAS, Austin, Texas. May 1987.

[l~6ty-87] P. R~ty. Improving basic Narrowing Techniques. Proceedings of the second conference
on Rewriting Techniques and Applications, Springer-Verlag, vol 256. May 1987.

[Sivakumar-Dershowitz-87] G. Sivakumar and N. Dershowitz. Goal directed equation solving.
Technical report. University of Illinois, USA. 1987.

