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Abstract

This paper deals with overlapping clustering, a trade
off between crisp and fuzzy clustering. It has been moti-
vated by recent applications in various domains such as
information retrieval or biology. We show that the prob-
lem of finding a suitable coverage of data by overlap-
ping clusters is not a trivial task. We propose a new ob-
jective criterion and the associated algorithm OKM that
generalizes the k-means algorithm. Experiments show
that overlapping clustering is a good alternative and
indicate that OKM outperforms other existing methods.

1. Introduction
Clustering is a field of research belonging to both

data analysis and machine learning major domains.
Because new challenges appear permanently, new ap-
proaches have to be developed to deal with large amount
of data, heterogeneous in nature (numerical, symbolic,
spatial, etc.) and to produce several types of cluster-
ing schemes (crisp, overlapping or fuzzy partitions and
hierarchies).

Many methodologies have been proposed in order to
organize, to summarize or to simplify a dataset into a set
of clusters such that data belonging to a same cluster are
similar and data from different clusters are dissimilar.
The clustering process is usually based on a proximity
measure or, in a more general way, on the properties that
data share. We can mention three major types of clus-
tering processes: hierarchical, partitioning and mixture
model methods [7, 2].

Most of the clustering methods have been developed
in these frameworks in the last decades and allow a large
amount of application fields. Nevertheless, some fields
which led to recent attentions are still inefficiently pro-
cessed. This is all the more true when the natural classes
of data overlap. This situation occurs in important fields
of applications such as Information Retrieval (several
topics for one document) and biological data (several

metabolic pathways for one gene). The present study
proposes a theoretical framework coupled with an algo-
rithmic solution for the task of structuring a dataset into
suitable classes which overlap.

This paper is organized as follows: Section 2 de-
scribes the few major works related to overlapping clus-
tering. Section 3 presents the theoretical model and the
algorithm OKM we propose. The next section is dedi-
cated to experiments on real datasets before the conclu-
sion.

2. Related works on overlapping clustering

A first way to produce overlapping classifications
has been introduced by Jardine and Sibson [8]. They
first proposed the k-ultrametrics which led more re-
cently to the k-weak hierarchies [3], generalizing the
previous pyramidal model introduced by Diday [5].
Even if these models are interesting because of the
(visual) representation they produce, the overlapping
schemes they allow are limited because in a pyramid
each class can only overlaps with two other classes and
a k-weak hierarchy have the following limitation: “the
intersection of (k+1) arbitrary clusters must be reduced
to the intersection of some k of these clusters”.

Another approach frequently used in practical situ-
ations consists in running well-known algorithms (k-
means, fuzzy-k-means, EM, etc.) and modifying the
result obtained to produce overlapping clusters. Modifi-
cations are performed by means of a threshold deciding
whether an object belongs to a cluster or not, according
to its proximity with the cluster. This approach appears
to be natural but it outlines two fundamental problems:
first, the algorithm initially used aims at optimizing an
objective function under constraints (hard or fuzzy as-
signments) that do not match with the expected cluster-
ing; secondly, the choice of a suitable (global) thresh-
old, denoted above as the “thresholding problem”, re-
mains unsolved.

The method we propose is a center-based method
that extends the k-means algorithm. We define a new
objective function to minimize under constraints of



multi-assignment. In a more general way, our approach
explores the space coverages rather than the space par-
titions like k-means does. On this point of view, our
approach is similar to the MOC algorithm recently pro-
posed in [1] which is a kind of generalization of EM.
We will show that MOC suffers from theoretical limits
and algorithmic solutions which degrade its efficiency.

3. The OKM approach
3.1 Objective criterion

Given a set of data vectors X= {xi}ni=1 with xi ∈
Rp, the goal of the OKM algorithm (Overlapping k-
means) is to find a k-way coverage {πc}kc=1 of the date
(where πc represents the cth cluster) such that the fol-
lowing objective is minimized:

J ({πc}kc=1) =
∑
xi∈X

‖xi − φ(xi)‖2 (1)

Since {πc}kc=1 is a coverage, each data xi belongs
at least to one cluster and the coverage is such that⋃k
c=1 πc = X . Thus, in (1) φ(xi) denotes the “image”

of xi defined by combination of the prototypes (mc) for
the clusters xi belongs to :

φ(xi) =

∑
Ai
mc

|Ai|
(2)

In (2), Ai denotes the set of assignment for xi :
{mc | xi ∈ πc}.

Let us notice that the new criterion J generalizes
the least squared objective criterion used in k-means.
Indeed, for single assignments φ(xi) matches with the
prototype of the only membership cluster for xi.

3.2 Clustering algorithm

To minimize the objective J we propose a way to
define cluster prototypes and to assign data to cluster in
a traditional two-steps process.

The algorithm OKM starts with k prototypes
{m(0)

c }kc=1 drawn randomly in Rp or X and derives a
first coverage {π(0)

c }kc=1 by assigning data via a multi-
assignment procedure we present below. Then OKM it-
erates the two following steps until a stopping criterion
is reached :

1. the computation of new cluster prototypes
{m(t+1)

c }kc=1,

2. a multi-assignment procedure that leads to a new
coverage {π(t+1)

c }kc=1.

Like for the k-means algorithm the stopping crite-
rion can be the convergence of the method, a maximum
number of iterations or a threshold on the decreasing of
the objective function. Figure 1 gives an overview of
the algorithm OKM.

OKM(X ,tmax,ε)
Input: X : a set of data vectors in Rp, tmax: optional
maximum number of iterations, ε: optional threshold
on the objective
output: {πc}kc=1: final coverage of the points
1. Draw randomly k initial cluster prototypes
{m(0)

c }kc=1 in Rp or X .

2. For each xi ∈ X compute the assignments A(0)
i =

ASSIGN(xi, {m(0)
c }kc=1)

and derive the initial coverage {π(0)
c }kc=1 such that

π(0)
c = {xi|m(0)

c ∈ A
(0)
i }

3. Set t = 0.

4. For each cluster π(t)
c successively, compute the

new prototype

m(t+1)
c = PROTOTYPE(π(t)

c )

5. For each xi ∈ X compute the assignments
A

(t+1)
i = ASSIGN(xi, {m(t+1)

c }kc=1, A
(t)
i ),

and derive the new coverage {π(t+1)
c }kc=1.

6. If not converged or tmax > t or J ({π(t)
c }) −

J ({π(t+1)
c }) > ε, set t = t+1 and go to Step 4; Oth-

erwise, stop and output final clusters {π(t+1)
c }kc=1.

Figure 1. OKM : Overlapping k-Means.

3.3 Multi-assignment procedure

Given a set of k cluster prototypes, the assignment
of each data to one or several clusters in a way such that
the objective is minimized is not a trivial task. Indeed
we cannot reasonably explore for every data points all
the 2k possibilities. Then we propose a heuristic (figure
2) that consists in scrolling through the list of proto-
types from the nearest to the farthest, and assigning xi
while its image φ(xi) is improved (in the sense of the
squared euclidean norm). The new assignment is con-
served only if it is better than the previous one (Step 3.),
ensuring objective criterion decreasing.



ASSIGN(xi,{mc}kc=1,Aoldi )
Input: xi: data vector in Rp, {m1, . . . ,mk}: set
of k cluster prototypes and Aoldi : optional multi-
assignment
output: Ai ⊂ {m1, . . . ,mk} a subset of cluster pro-
totypes defining a multi-assignment for xi
1. Set Ai = {m∗} such that

m∗ = argmin
{mc}k

c=1

‖xi −mc‖2

and compute φ(xi) with assignment Ai.
2. Find the following nearest prototype

m′ = argmin
{mc}k

c=1\Ai

‖xi −mc‖2

and compute φ′(xi) with assignment Ai ∪ {m′}.
3. If ‖xi − φ′(xi)‖ < ‖xi − φ(xi)‖ set Ai ← {m′},
set φ(xi) = φ′(xi) and go to step 2;
Otherwise, compute φold(xi) with Aoldi

if ‖xi − φ(xi)‖ ≤ ‖xi − φold(xi)‖ output Ai,
else output Aoldi

Figure 2. Multi-assignment procedure.

3.4 Cluster prototypes calculation

Given a cluster πh and a set of k − 1 prototypes
{mc}kc=1 \ {mh} the problem of finding mh that min-
imizes J ({πc}kc=1) can be expressed as a convex opti-
mization problem. The solution1 is given by the follow-
ing weighted average :

m∗h =
1∑

xi∈πh

αi

∑
xi∈πh

αi.m
i
h (3)

In expression (3), the weights αi denotes the sharing
of xi among several clusters and is defined by αi =
1/|Ai|2; the point mi

h can be seen as the prototype mh

“ideal” for xi, i.e. that would allow xi to match with its
image φ(xi). Formally, mi

h is given by

mi
h = |Ai|.xi −

∑
mc∈Ai\{mh}

mc

To close the presentation of the algorithm, let us no-
tice that the OKM iterative process generalizes the k-
means algorithm in the sense that allowing only single

1Proof is not given in the paper for space convenience.

assignment in OKM leads exactly to the traditional k-
means procedure (|Ai| = 1 , mi

h = xi and αi = 1).
Furthermore we notice that OKM inherits of the proper-
ties of k-means, it also has a linear complexity2 on the
size of X but it converges toward a local optima.

4 Experiments
We conducted experiments on real datasets from two

different domains that motivate strongly overlapping
clustering researches : Information Retrieval and Biol-
ogy. F-measure is used as external criterion in order to
compare different clustering methods; this criterion al-
lows to measure the matching between the clusters ob-
tained with OKM (and other clustering algorithms) and
a predefined expected categorization (see [1] for details
on this procedure).

We illustrate the usefulness of OKM for Information
Retrieval applications by considering the text cluster-
ing task on the benchmark Reuters-215783. The whole
dataset contains 21578 articles belonging to one or sev-
eral categories among a set of 114 topics. We built the
three following subsets :

• Reuters-1 : contains the 1156 articles having at
least one tag among the the set of 10 categories
{gold, ipi,ship,yen, dlr, money-fx,acq,rice,grain
and crude}.

• Reuters-2 : contains the 1308 articles having at
least one tag among the the set of 10 categories
{coffee, sugar, trade, rubber, earn, cpi, cotton,
alum, bop and jobs}.

• Reuters-3 : contains the 333 articles having at least
one tag among the the set of 10 categories {gnp, in-
terest, veg-oil, oilseed, corn, nat-gas, carcass, live-
stock, wheat and soybean}.

For each dataset a feature set is extracted by select-
ing tokens that occurs into three articles at least. Re-
parameterization is then performed with LSA in order
to provide a semantic indexing for each document.

We compare five clustering algorithms : (1) [KM] the
k-means algorithm that produces crisp partitions, (2)
[KM+] k-means + an additional soft-assignment step4,
(3) [FKM] the fuzzy-k-means algorithm + an additional
soft-assignment step, (4) the [MOC] proposed by Baner-
jee et al. in [1] that builds overlapping clusters and
(5) the [OKM] approach. Table 1 reports average F-
measures on fifty runs with k = 10. For each run the
five algorithms have the same initialization.

2The complexity order for OKM is O(t.n.k log k).
3http://www.research.att.com/∼lewis/reuters21578.html
4Additional soft-assignment steps are performed via a threshold

that is fixed empirically in order to obtain the best performances.



Reuters-1 Reuters-2 Reuters-3
[KM] 0.500±0.0073 0.370±0.0015 0.332±0.0008

[KM+] 0.500±0.0073 0.370±0.0015 0.331±0.0000

[FKM] 0.447±0.0000 0.489±0.0000 0.338±0.0000

[MOC] 0.538±0.0033 0.694±0.0013 0.347±0.0005
[OKM] 0.548±0.0003 0.761±0.0000 0.339±0.0000

Table 1. Clustering on Reuters.

We first note that results are very similar for the al-
gorithms [KM] and [KM+]; it illustrates the difficulty
to determine a suitable threshold for additional assign-
ments, particularly when the clustering is performed
under constraints of single assignments. We also ob-
serve that dedicated overlapping approaches (MOC and
OKM) obtain noticeable better results than traditional
methods modified artificially via post assignments. Fi-
nally we notice that OKM outperforms MOC distinctly
on the two first datasets and that OKM has a more sta-
ble behavior from one run to an other. The last remarks
throw light on drawbacks of MOC which has recourse
to k-means to performs the initialization step, among
other things.

The second experiment is led on the domain of bi-
ology. On this domain comparative studies on real
datasets are scarce because of the difficulty to work on
reliable data (measures). Though we propose an exper-
iment on the dataset of Gasch et al. [6] who character-
ized the genomic expression patterns of yeast genes in
15 different experimental conditions. Each of the 4373
gene is associated to one or several biological pathways
among a set of 34 tags. We run 10 times the algorithms
[KM], [MOC] and [OKM] on this dataset with k = 34
and observe the average results reported in table 2.

Precision Recall F-measure
[KM] 0.1658 0.1234 0.1409

[MOC] 0.0562 0.6936 0.1040

[OKM] 0.0800 0.6046 0.1413

Table 2. Clustering on yeast genes.

This new experiment the previous one and show
that performances of overlapping clustering can be ex-
plained by the additional assignments which involve a
high recall in spite of the loss in the precision. The clus-
ters produced by OKM have limited imprecision with
respect to MOC, this results by a better F-measure.

5 Conclusion and perspectives
The present study started from the following obser-

vation: clustering methods developed so far are not suit-
able to search an organization of data into overlapping

clusters. We then proposed a new approach which aims
at exploring the search space of possible coverages in
order to retrieve a suitable organization into overlapping
clusters (or coverage). The approach presented is based
first on the definition of an objective criterion which en-
ables to evaluate overlapping schemes and then on the
algorithm OKM as a heuristic to approach the optimal
coverage according to the criterion. Both, criterion and
algorithm must be seen as generalizations of the square
error criterion and the k-means algorithm respectively.

Experiments on real datasets showed a consistent be-
havior of the algorithm OKM and an ability to provide
better overlapping clusters than other dedicated or ex-
tended algorithms.

We plan to purchase this study by considering a (lo-
cal) feature weighting for each class. This idea has been
led in [4] for traditional clustering but is meaningful in
our framework since data should be assigned to each
class on the basis of different features.
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