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I. INTRODUCTION

Exact real arithmetical algorithms have been studied
in Gosper [3], Vuillemin [14], Kornerup and Matula [5] or
Potts [12]. These algorithms perform a sequence of input
absorptions and output emissions and update their inner
state which may be a (2×2)-matrix in the case of a Möbius
transformation or a (2 × 4)-matrix in the case of binary
operations like addition or multiplication.

Using the concepts of symbolic dynamics, exact real
arithmetic has been generalized in the theory of Möbius
number systems (MNS) introduced in Kůrka [6] and de-
velopped in Kůrka and Kazda [10]. Möbius number systems
represent real numbers by infinite words from an expansion
subshift. The letters of the alphabet stand for Möbius
transformations and the concatenation of letters corresponds
to the composition of transformations.

The time complexity of the unary algorithm which
computes a Möbius transformation depends on the growth of
its inner state matrices during the computation. Heckmann
[4] analyzes this process in positional number systems and
Kůrka [9] investigates it in a general MNS using the methods
of ergodic theory. Delacourt and Kůrka [2] generalize the
result of Raney [13] and show that in a modular MNS
(whose transformations have unit determinant), the state ma-
trix remains bounded during the computation. This implies
that the algorithm can be realized by a finite state transducer
and has linear time complexity. However, modular MNS are
neither redundant nor expansive and their convergence may
be quite slow, so this result is of a limited practical interest.

In the present paper we analyze the unary algorithm in
redundant expansive bimodular number systems which are
extensions of the binary signed systems (see Kůrka [7], [8],
[9]). All bimodular systems have the same transformations
but differ in their interval almost-covers which determine

their expansion subshifts. As the length of the intervals
increases, the redundancy of the system increases as well
while its expansiveness decreases. We show that under
certain conditions, the norm of the state matrix is bounded
by a multiple of its determinant, so the time complexity of
the algorithm depends only on the fluctuations of the deter-
minant. The base 2 logarithm of the determinant performs a
random walk on nonnegative integers. If this random walk
is positively recurrent, the average determinant and norm of
the state matrix are bounded and the algorithm has average
linear time complexity. We give statistical evidence that there
do exist redundant expansive bimodular systems which are
positively recurrent and therefore have linear average time
complexity.

II. MÖBIUS TRANSFORMATIONS

On the extended real line R = R ∪ {∞} we have
homogeneous coordinates x = (x0, x1) ∈ R2 \ {(0, 0)}
with equality x = y iff det(x, y) = x0y1 − x1y0 = 0.
We regard x ∈ R as a column vector, and write it usually as
x = x0

x1
= x0/x1, for example ∞ = 1/0. A real orientation-

preserving Möbius transformation (MT) is a self-map of
R of the form

M(a,b,c,d)(x) =
ax+ b

cx+ d
=

ax0 + bx1

cx0 + dx1
,

where a, b, c, d ∈ R and det(M(a,b,c,d)) = ad− bc > 0. The
stereographic projection θ(z) = (iz + 1)/(z + i) maps
R to the unit circle T = {z ∈ C : |z| = 1} in the
complex plane. On T we get disc Möbius transformations
M̂(a,b,c,d)(z) = θ◦M(a,b,c,d)◦θ−1(z). The circle derivation
of M = M(a,b,c,d) at x ∈ R is

M•(x) = |M̂ ′(θ(x))| = det(M) · ||x||2

||M(x)||2
,

where ||x|| =
√

x2
0 + x2

1. The expansion interval of M is

V(M) = {x ∈ R : (M−1)•(x) > 1}.

If M̂(z) = eiα · z is a rotation, then M•(x) = 1 and V(M)
is empty. Otherwise V(M) is a proper set interval.



III. INTERVALS

A set interval is an open connected subset of R. A proper
set interval is a nonempty set interval properly included
in R. We represent set intervals by (2 × 2)-matrices with
negative determinant and write them as pairs I = (x0

x1
, y0

y1
)

of their left and right endpoints l(I) = x0

x1
, r(I) = y0

y1
. The

set of matrix intervals is therefore

I(R) = {(x0

x1
, y0

y1
) ∈ GL(R, 2) : x0y1 − x1y0 < 0}.

Define the size and the length of an interval I = (x, y) by

sz(I) =
x0y0 + x1y1
x0y1 − x1y0

=
x · y

det(x, y)
,

|I| =
1

2
+

1

π
arctan sz(x, y).

Then |I| ∈ (0, 1) is the length of the oriented arc from
θ(x) to θ(y) (in the unit circle) divided by 2π. It is an
increasing function of the size sz(I) ∈ (−∞,+∞), and for
small intervals we have an approximation |I| ≈ − 1

π·sz(I) . A
matrix interval I = (x, y) defines an open set interval by z ∈
I ⇔ det(x, z)·det(z, y) > 0. If I, J are intervals, then I ⊂
J iff l(I) ∈ J , r(I) ∈ J , and either l(J) ̸∈ I or r(J) ̸∈ I . In
this case sz(I) < sz(J). When we transform intervals, we
work with the matrix representations of MT rather than with
the transformations themselves. Möbius transformations are
represented by matrices (written as pairs of fractions of their
columns)

M(R) = {M = (ac ,
b
d ) ∈ GL(R, 2) : det(M) > 0}

which act on vectors x ∈ R2 by x 7→ Mx and on intervals
by I 7→ MI . Two matrices represent the same MT if one
is a nonzero multiple of the other. The composition of MT
corresponds to matrix multiplication.

IV. SUBSHIFTS

For a finite alphabet A denote by A∗ :=
∪

m≥0 A
m the set

of finite words, where A0 consists of the empty word λ. The
length of a word u = u0 . . . um−1 ∈ Am is |u| = m. Denote
by AN the Cantor space of infinite words with the metric
d(u, v) = 2−k, where k = min{i ≥ 0 : ui ̸= vi}. We say
that v ∈ A∗ is a subword of u ∈ A∗ ∪AN and write v ⊑ u,
if v = u[i,j) = ui . . . uj−1 for some 0 ≤ i ≤ j ≤ |u|. The
cylinder of u ∈ An is the set [u] = {v ∈ AN : v[0,n) = u}.
The shift map σ : AN → AN is defined by σ(u)i = ui+1.
A subshift is a nonempty set Σ ⊆ AN which is closed
and σ-invariant, i.e., σ(Σ) ⊆ Σ. If D ⊆ A∗ then ΣD =
{x ∈ AN : ∀u ⊑ x, u ̸∈ D} is the subshift (provided it is
nonempty) with forbidden words D. Any subshift can be
obtained in this way. A subshift is uniquely determined by
its language L(Σ) = {u ∈ A∗ : ∃x ∈ Σ, u ⊑ x}. Denote
by Ln(Σ) = L(Σ) ∩An.

A labelled graph over an alphabet A is a structure G =
(V,E, s, t, ℓ), where V is the set of vertices, E is the set
of edges, s, t : E → V are the source and target maps, and

ℓ : E → A is a labeling function. The subshift of G consists
of all labels of all paths of G. A subshift is sofic, if it is the
subshift of a finite labelled graph. A subshift Σ is of finite
type (SFT) of order p, if its forbidden words have length at
most p, i.e., if Σ = ΣD for some set D ⊂ Ap (see Lind and
Marcus [11]).

V. MÖBIUS NUMBER SYSTEMS

A Möbius iterative system over an alphabet A is a family
of orientation-preserving Möbius transformations F = (Fu :
R → R)u∈A∗ satisfying Fuv = Fu ◦ Fv and Fλ = Id. An
open almost-cover is a system of open intervals W = {Wa :
a ∈ A} indexed by the alphabet A, such that

∪
a∈A Wa = R.

If Wa ∩Wb = ∅ for a ̸= b, then W is an open partition. If∪
a∈A Wa = R, then W is an open cover. The Lebesgue

size number L(W) of an open cover is the maximal number
such that for every I ∈ I(R) with sz(I) ≤ L(W) there exists
a ∈ A with I ⊆ Wa. If W is not a cover, then L(W) = −∞.
Denote by E(W) = {l(Wa), r(Wa) : a ∈ A} the set of
endpoints of W . A Möbius number system (MNS) over
an alphabet A is a pair (F,W) where F : A∗ × R → R is
a Möbius iterative system and W = {Wa : a ∈ A} is an
almost-cover such that Wa ⊆ V(Fa) for each a ∈ A. If W
is a cover, we say that (F,W) is redundant. The cylinder
interval of u ∈ An+1 is

Wu = Wu0 ∩ Fu0Wu1 ∩ · · · ∩ Fu[0,n)
Wun .

The expansion subshift SW is defined by

SW = {u ∈ AN : ∀k > 0,Wu[0,k)
̸= ∅}.

We denote by LW = L(SW) the language of SW and by
Ln
W = Ln(SW).
Theorem 1 (Kůrka and Kazda [10]): If (F,W) is a

MNS, then there exists a surjective continuous map
Φ : SW → R such that for each u ∈ SW ,

Φ(u) = lim
n→∞

Fu[0,n)
(i), {Φ(u)} =

∩
n≥0

Wu[0,n)
.

Here i is the imaginary unit. If (F,W) is an MNS then
limn→∞ max{|Wu| : u ∈ Ln

W} = 0. This is an immediate
consequence of the uniform continuity of Φ : SW → R.
The rate of this convergence can be characterized by the
expansion quotient Q = Q(F,W) defined by

qu = min{(F−1
u )•(x) : x ∈ Wu},

Qn(F,W) = min{qu : u ∈ Ln
W},

Q(F,W) = lim
n→∞

n
√
Qn(F,W).

We have Qn+m ≥ Qn · Qm, so the limit Q exists and
Q ≥ n

√
Qn for each n. If Q > 1, we say that the

system is expansive. In this case there exists C > 0 such
that |Wu| ≤ C · Q−|u| for u ∈ LW . We give now a
characterization of MNS with sofic expansion subshifts.



Definition 2: Let (F,W) be an MNS over an alphabet A.
An open partition V = {Vp : p ∈ B} over an alphabet B is
an SFT refinement of W , if the following two conditions
are satisfied
1. If Vp ∩Wa ̸= ∅, then Vp ⊆ Wa,
2. If Vp ⊆ Wa and Vq ∩ F−1

a Vp ̸= ∅, then Vq ⊆ F−1
a Vp.

Then we say that (F,W,V) is a sofic Möbius number
system over A × B. The base graph G(W,V) of (F,W,V)
is an A-labelled graph whose vertices are letters of B and
whose labelled edges are p a→ q if FaVq ⊆ Vp ⊆ Wa. Set

Ap = {a ∈ A; Vp ⊆ Wa},
Bp,a = {q ∈ B; FaVq ⊆ Vp},

E = {(p, a) ∈ B ×A : a ∈ Ap}.

Denote by S(W,V) ⊆ EN the SFT of order two with
transitions (p, a) → (q, b) iff p a→ q.

Theorem 3 (Kůrka [8], [9]): A MNS (F,W) has a sofic
expansion subshift iff there exists an SFT refinement V of
W . In this case SW is the subshift of the base graph G(W,V)

and we have a factor map π : S(W,V) → SW given by
π(p, a) = a. There exists a constant s > 0 such that for each
u ∈ SW , the set π−1(u) has at most s elements. Moreover,
π−1(u) can be computed by a finite state transducer.

VI. INTEGER MNS

Denote by Z the set of integers and by

Q = {x ∈ Z2 \ { 0
0} : gcd(x) = 1}

the set of (homogeneous coordinates of) rational numbers
which we understand as a subset of R. Here gcd(x) > 0 is
the greatest common divisor of x0 and x1. The norm of a
vector x ∈ Q is ||x|| =

√
x2
0 + x2

1. We have a cancellation
map d : Z2 \ { 0

0} → Q given by d(x) = x0/ gcd(x)
x1/ gcd(x) . Denote

by GL(Z, 2) the set of 2 × 2 matrices with integer entries
and nonzero determinant,

M(Z) = {M ∈ GL(Z, 2) : gcd(M) = 1, det(M) > 0},
I(Z) = {I ∈ GL(Z, 2) : gcd(I) = 1, det(I) < 0}.

For x ∈ Q we distinguish M · x ∈ Z2 from Mx =
d(M · x) ∈ Q. For M = (ac ,

b
d ) ∈ GL(Z, 2) denote

by d(M) = (a/gc/g ,
b/g
d/g ), where g = gcd(M), so we

have a cancellation map d : GL(Z, 2) → M(Z) ∪ I(Z).
We distinguish the matrix multiplication M · N from the
multiplication MN = d(M · N) in M(Z). The pseudo-
inverse of M is (ac ,

b
d )

−1 = ( d
−c ,

−b
a ). We have M ·M−1 =

det(M) · Id, where Id is the identity matrix. The norm
of M(a,b,c,d) is ||M || =

√
a2 + b2 + c2 + d2. We have

||M ·N || ≤ ||M || · ||N ||.
Lemma 4: If M,N ∈ M(Z), then g = gcd(M · N)

divides both det(M) and det(N).
Proof: Clearly g divides M−1 · M · N = det(M) ·

N . Since gcd(N) = 1, g divides det(M). For the similar
reason, g divides det(N).

Lemma 5 (Delacourt and Kůrka [2]): If I ∈ I(Z) is an
interval, then

||I|| ≥
√

2 · | det(I) · sz(I)|,
||I|| ≤ 2 · | det(I)| ·max{|sz(I)|, 1}.

If sz(I) < 0 and x ∈ I ∩Q, then

||I|| ≤
√
5 · ||x|| · | det(I)|,

|sz(I)| ≤ 5
2 ||x||

2 · | det(I)|.

We say that a MNS (F,W) over A is an integer MNS,
if its transformations have integer entries and its intervals
have rational endpoints, i.e., if Fa ∈ M(Z) and Wa ∈ I(Z)
for each a ∈ A.

VII. THE UNARY GRAPH

We consider the unary algorithm which computes a
Möbius transformation M ∈ M(Z) in an integer MNS. We
assume that the input is a path (p, u) ∈ S(W,V) of a sofic
MNS (F,W,V). The output should be a word v ∈ SU in
an MNS (G,U) which satisfies ΦG(v) = MΦF (u). The
algorithm works with a state matrix X ∈ M(Z) which is
initialized to X := M and then updated by X := XFa

on absorption of an input letter a or by X := G−1
c X on

emission of an output letter c.
Definition 6: The unary graph from (F,W,V) over A×

B to (G,U) over C is a labelled graph whose vertices are
(X, p) ∈ M(Z)×B. Its labelled edges are

(X, p) a/λ
−→ (XFa, q) if FaVq ⊆ Vp ⊆ Wa.

(X, p) λ/c
−→ (G−1

c X, p) if XVp ⊆ Uc.

The admissible set of (X, p) ∈ M(Z)×B is

C(X, p) = {c ∈ C : XVp ⊆ Uc}.

The label u/v of a path is the concatenation of the labels
of its edges.

Proposition 7: If (X, p) u/v
−→ (Y, q) is a finite path in the

unary graph, then

Y = G−1
v XFu, FuVq ⊆ Vp ∩Wu, XFuVq ⊆ Uv.

If u/v ∈ AN×CN is the label of an infinite path with source
(M,p0), then u ∈ SW , v ∈ SU , and M(ΦF (u)) = ΦG(v).

Proof: Since Uλ = R and Fλ = Id, the statement
holds for the absorption and emission edges. Assume by
induction that the statement holds for a path with label u/v.
If (X, p) u/v

−→ (Y, q) a/λ
−→ (Z, r) then Z = Y Fa = G−1

v XFua,
FaVr ⊆ Vq ⊆ Wa, so FuaVr ⊆ FuVq ⊆ Vp∩Wu∩FuWa =
Vp ∩Wua, and XFuaVr ⊆ XFuVq ⊆ Uv, so the statement
holds for (X, p) ua/v

−→ (Z, r). If (X, p) u/v
−→ (Y, q) λ/c

−→ (Z, q)
then Z = G−1

c Y = G−1
vc XFu. From G−1

v XFuVq = Y Vq ⊆
Uc we get XFuVq ⊆ GvUc, and therefore XFuVq ⊆
Uv ∩ GvUc = Uvc. Moreover, FuVq ⊆ Vp ∩ Wu, so the
statement holds for (X, p) u/vc

−→ (Z, q). If u/v ∈ AN × CN



is the label of an infinite path with source (M,p0), then
for each m there exists n such that u[0,n)/v[0,m) is the
label of a finite path and ∅ ≠ Fu[0,n)

Vpn ⊆ Wu[0,n)
,

∅ ̸= MFu[0,n)
Vpn ⊆ Uv[0,m)

, so u ∈ SW , v ∈ SV . The
intersections

{Φ(u)} =
∩
n

Fu[0,n)
Vpn ⊆

∩
n

Wu[0,n)∩
n

MFu[0,n)
Vpn ⊆

∩
m

Uv[0,m)

are nonempty by compactness and have zero diameter, so
they are singletons and {MΦF (u)} = {ΦG(v)}.

Lemma 8: Set β = max{1, |sz(G−1
c Uc)| : c ∈ C}.

1. If (X, p) a/λ
−→ (XFa, q), then sz(XFaVq) < sz(XVp).

2. If (X, p) λ/c
−→ (G−1

c X, p), then

β > sz(G−1
c XVp) > sz(XVp) < 0,

|G−1
c XVp| > |XVp| ·Q1(G,U),

||G−1
c XVp|| ≤ ||XVp|| ·

√
det(Gc).

Proof: The first claim follows from XFaVq ⊆ XVp. If
(X, p) λ/c

−→ (G−1
c X, p) is an emission edge, then XVp ⊆

Uc ⊆ V(Gc), so sz(XVp) < sz(V(Gc)) < 0. Since
G−1

c XVp ⊆ G−1
c Uc, we get sz(G−1

c XVp) < β. Since G−1
c

is an expansion on Uc, we get sz(XVp) < sz(G−1
c XVp).

Since (G−1
c )•(x) > Q1(G,U) for any x ∈ Uc, we have

|G−1
c XVp| > |XVp| ·Q1(G,U). For each x ∈ XVp we have

det(Gc) · ||x||2

||G−1
c (x)||2

= (G−1
c )•(x) ≥ 1.

Applying this inequality to x = l(XVp) and to x = r(XVp),
we get ||G−1

c XVp||2 ≤ ||XVp||2 · det(Gc).

VIII. SELECTORS

To find a suitable path in the unary graph, we use a
selector which chooses one of the emissions possible or
an absorption if no emission is convenient. This latter
possibility is indicated by the output λ.

Definition 9: A selector from (F,W,V) over A × B to
(G,U) over C is a function s : M(Z)×B → C ∪ {λ} such
that if s(X, p) = c ∈ C then XVp ⊆ Uc. We say that s has
a threshold τ < 0 if s(X, p) = λ ⇔ sz(XVp) > τ for all
(X, p) ∈ M(Z)×B.

The least norm selector in Table I works for any redun-
dant MNS (G,U). It selects c ∈ C(X, p) which gives the
smallest norm of G−1

c X , provided the size of XVp does not
exceed a given parameter τ . If U is a cover and τ ≤ L(U),
then τ is the threshold of the selector. If U is not a cover,
then a selector with a threshold need not exist.

A selector defines a deterministic unary algorithm (see
Table II), whose input is a matrix M ∈ M(Z) and a finite
or infinite path (p, u) ∈ S(W,V) ∪ L(W,V). The output is a
finite or infinite word v ∈ CN∪C∗. The algorithm computes
a path in the unary graph with source vertex (M,p0) and

threshold parameter: τ < L(U);
input: X ∈ M(Z), p ∈ B;
output: s ∈ C ∪ {λ};
begin

if sz(XVp) > τ then begin s := λ; exit; end
r := ||X|| ·max{||Gc|| : c ∈ C};
for c ∈ C(X, p) do

if ||G−1
c X|| ≤ r then begin s := c; r := ||G−1

c X||; end;
end;

Table I
THE LEAST NORM SELECTOR FROM (F,W,V) TO (G,U).

input: M ∈ M(Z), (p, u) ∈ S(W,V) ∪ L(W,V);
output: v ∈ SU ∪ LU ;
variables X ∈ M(Z) (state), n,m ∈ N (input and output pointers);
begin

X := M ; n := 0; m := 0;
while n < |p| repeat

if s(X, pn) = λ then begin
X := XFun ; n := n+ 1; end;

else begin
vm := s(X, pn); X := G−1

vmX; m := m+ 1; end;
end;

end;

Table II
THE UNARY ALGORITHM WITH A SELECTOR s.

label u/v. The algorithm works properly, if on infinite input
(p, u) it gives an infinite output v ∈ SU , which satisfies
ΦG(v) = MΦF (u). To show that the algorithm works, we
need the following Lemma whose proof is trivial.

Lemma 10: Let M be an MT, which is not a rotation, so
V(M) ̸= ∅. Then for each δ > 0 there exists C > 1 such
that if I ⊆ V(M) and |I| > δ, then |M−1I| ≥ C · |I|.

Theorem 11: If s is a selector with a threshold, then the
unary algorithm computes for each M ∈ M(Z) a continuous
mapping ΘM : S(W,V) → SU such that ΦGΘM (p, u) =
MΦF (u) for each path (p, u) ∈ S(W,V).

Proof: We show that each infinite path computed
by the algorithm contains an infinite number of both
absorptions and emissions. Assume by contradiction that
(Xi, pi) is an infinite path which consists of absorp-
tions, so its label is u/λ with u ∈ SW . Since
Fu[0,n)

Vpn ⊆ Wu[0,n)
and limn→∞ |Wu[0,n)

| = 0, we
get limn→∞ |X0Fu[0,n)

Vpn | = 0 by the continuity of
X0, and therefore limn→∞ sz(X0Fu[0,n)

Vpn) = −∞. Thus
sz(X0Fu[0,n)

Vpn) ≤ τ for some n, which is a contradiction.
Assume now that there exists an infinite path consisting
only of emissions. Then by Lemma 10 the intervals XiVpi

grow until they exceed the length of any Uc, and this is a
contradiction. The rest of the proof follows from Proposition
7.

If the entries of the state matrix X are expressed in the po-
sitional binary system, then the length of this representation
(the bit length of X) is of the order log2 ||X||. A multipli-
cation of X with a matrix Fa requires log2 ||X|| · log2 ||Fa||



elementary operations on their binary representations. The
comparison I ⊆ Uc requires log2 ||I||·log2 ||Uc|| elementary
operations. Thus there exists a constant C > 0 such that
each step of the algorithm requires at most C · log2 ||X||
elementary operations. If (Xi, pi) are vertices of a path
computed by the unary algorithm, then the average time of
the computation per step is of the order C

n

∑n−1
i=0 log2 ||Xi||.

Using the methods of ergodic theory, Kůrka [9] shows
that log2 ||Xn|| is of the order n log2 T, where T ≥ 1 is
a statistically defined transaction quotient. Delacourt and
Kůrka show that for modular systems, the norm of the state
matrix is bounded. This means that the unary algorithm can
be performed by a finite state transducer and has linear time
complexity.

IX. MODULAR SYSTEMS

A transformation M ∈ M(Z) is modular, if det(M) = 1.
A MNS is modular, if all its transformations are modular.

Theorem 12: A modular MNS is neither redundant nor
expansive.

Proof: Let Fp(x) = (ax + b)/(cx + d) be a trans-
formation of a modular MNS (F,W). Then (F−1

p )•(0) =
1

a2+b2 ≤ 1 and (F−1
p )•(∞) = 1

c2+d2 ≤ 1, so neither 0 nor
∞ belongs to V(Fp). Since Wp ⊆ V(Fp), W cannot be a
cover. Since W is an almost-cover, there exists p ∈ A with
0 ∈ Wp. Then F−1

p (0) = −b
a , (F−1

p )•(0) = 1
a2+b2 = 1, so

F−1
p (0) ∈ {0,∞}. For the same reason F−1

q (∞) ∈ {0,∞}
if ∞ ∈ Wq . Thus for each u ∈ LW with 0 ∈ Wu we have
(F−1

u )•(0) = 1 and therefore Q(F,W) = 1.
Although modular systems are not redundant and do not

have selectors with thresholds, the unary algorithm works
for them. In fact the unary algorithm can work with a local
threshold, whose value depends on the input matrix M .

Theorem 13: Let (F,W,V) and (G,U) be modular sys-
tems. For each M ∈ M(Z) there exists a threshold τM < 0
such that the unary algorithm with threshold τM computes
a continuous mapping ΘM : S(W,V) → SU such that
ΦGΘM (p, u) = MΦF (u). Moreover, there exists a constant
CM > 0, such that for each computed path with vertices
(Xi, pi) there exists k > 0 such that ||Xi|| < CM · det(M)
for all i ≥ k.

Proof: Set γ = max{||V −1
p FaVq|| : p

a→ q}, ν =
max{||Vp|| : p ∈ B}, δ = max{| det(Vp)| : p ∈ B}, τM =
−max{ 5

2 ||x||
2 : x ∈ E(U)}δ det(M), CM = 2γνδ|τM |. If

XiVpi ∩ E(U) ̸= ∅, then |sz(XiVpi)| < |τM | by Lemma
5. Thus if sz(XiVpi) ≤ τM , then |sz(XiVpi)| ≥ |τM |
and C(X, p) ̸= ∅. By Proposition 11 the unary algorithm
computes a continuous function ΘM : S(W,V) → SU . Let k
be an absorption step. Then sz(XkVpk

) > τM , so by Lemma
5, ||XkVpk

|| ≤ 2|τM | · | det(XkVpk
)| ≤ CM

ν det(M).
Moreover,

||Xk+1Vpk+1
|| ≤ ||XkVpk

|| · ||V −1
pk

Fuk
Vpk+1

||

≤ 2|τM | · det(X) · δγ =
CM

ν
det(M).

By Lemma 8, ||Xk+iVpk+i
|| < CM

ν det(M) for all sub-
sequent emissions, so if k is the first absorption, then
||Xi|| < CM · det(M) for all i ≥ k.

X. MARKOV CHAINS

To analyze the fluctuations of det(Xi) during the compu-
tation of a nonmodular system, we consider Markov chains
with countable state spaces S. A state j ∈ S is accessible
from i ∈ S (i → j), if the transition probability Rt(i, j)
from i to j in some time t > 0 is positive. States i, j
communicate (i ↔ j), if i → j and j → i. A state
i is recurrent if j → i whenever i → j, otherwise
it is called transient. The communication relation is an
equivalence on the set of recurrent states and its equivalence
classes are called communication classes. A recurrent state
i ∈ S is positively recurrent if the process returns to i
infinitely often almost surely. Otherwise it is null recurrent.
Positive recurrence is a property of whole communication
classes. On each positively recurrent communication class
there exists an invariant stationary distribution P with∑

i∈S P (i) ·R(i, j) = P (j) (see e.g., Kai Lai Chung [1]).

Figure 1. A random walk on N with parameter 0 < p < 1.

As an example consider a random walk on N with increase
probability p and decrease probabability 1− p (see Fig. 1).
The chain is positively recurrent iff p < 1

2 . In this case the
stationary distribution is

P = 1−2p
2−2p (1,

1
1−p ,

p
(1−p)2 ,

p2

(1−p)3 , . . .)

with mean
∑∞

i=1 iP (i) = 1
2(1−2p) . If Zn ∈ N is a sample

path of the chain (a sequence of random variables), then for
the mean of the first n elements we have

lim
n→∞

µn = lim
n→∞

1

n

n−1∑
i=0

Zi =
1

2(1− 2p)

almost surely. If p > 1
2 then the chain can be approximated

by the sum of independent random variables which take
values 1 and −1 with probabilities p and 1 − p. The
expectation of this random variable is 2p− 1, so

lim
n→∞

Zn

n
= 2p− 1

almost surely. The statistics Zn and µn thus indicate whether
the random walk is positively recurrent and give an estimate
of the parameter p:

p =

{ 1
2 − limn→∞

1
4µn

if Zn

n → 0, µn < ∞
1
2 + limn→∞

Zn

2n if Zn

n > 0, µn → ∞
(1)

Consider the unary algorithm with a selector s from a sofic
system (F,W,V) over A×B to a redundant system (F,U)



a Fa Wa R(Fa) V(Fa)

0 [ 11 ,
0
2 ] (−a0

a1
, b0
b1
) ( 01 ,

1
2 ) (−1

3 , 1
1 )

1 [ 10 ,
1
2 ] (−b0+b1

b0+b1
, a0+a1

−a0+a1
) ( 13 ,

1
1 ) ( 01 ,

2
1 )

2 [ 21 ,
0
1 ] (−a0+a1

a0+a1
, b0+b1
−b0+b1

) ( 11 ,
3
1 ) ( 12 ,

1
0 )

3 [ 20 ,
1
1 ] ( b1b0 ,

a1

−a0
) ( 21 ,

1
0 ) ( 11 ,

3
−1 )

4 [ 20 ,
−1
1 ] (a1

a0
, b1
−b0

) (−1
0 , −2

1 ) ( 31 ,
1
−1 )

5 [ 2
−1 ,

0
1 ] ( b0+b1

b0−b1
, −a0+a1

−a0−a1
) (−3

1 , −1
1 ) (−1

0 , −1
2 )

6 [ 10 ,
−1
2 ] (a0+a1

a0−a1
, −b0+b1
−b0−b1

) (−1
1 , −1

3 ) (−2
1 , 0

1 )

7 [ 1
−1 ,

0
2 ] (−b0

b1
, a0

a1
) (−1

2 , 0
1 ) (−1

1 , 1
3 )

Figure 2. The Bimodular system: transformations, intervals parametrized
by 0 ≤ a ≤ 1

3
,
√
2 − 1 < b ≤ 1, rational expansion intervals and the

expansion intervals.

over C. If we assume that the input (p, u) is generated by
a Markov measure on S(W,V), we obtain a Markov chain
with the state space S = M(Z) × B. From a vertex (X, p)
there leads either a unique emission edge determined by the
selector or several absorption edges determined by the base
graph G(W,V). We assume that at absorptions, the letters a ∈
Ap are chosen with uniform probabilities and the vertices
q ∈ Bp,a are chosen with probabilities proportional to the
lengths of the intervals Vq .

Definition 14: The unary Markov chain from (F,W,V)
to (G,U) with selector s has vertices (states) (X, p) ∈
M(Z)×B and transition probabilities

R(X, p,G−1
c X, p) = 1, if s(X, p) = c ∈ C,

R(X, p,XFa, q) =
|Vq|

#Ap·|F−1
a Vp|

, if s(X, p) = λ,

a ∈ Ap, q ∈ Bp,a.

XI. BIMODULAR SYSTEMS

The bimodular iterative system introduced in Kůrka [6]
consists of the only eight transformations with determi-
nant 2, norm

√
6 and trace 3. Its alphabet is A =

{0, 1, 2, 3, 4, 5, 6, 7}, the transformations are given in Fig. 2
and their graphs in Fig. 3. The transformations are mutually
conjugated. Denote by R(x) = (x+1)/(−x+1) the rotation
by π/2. We have Fa+2(x) = RFaR

−1(x) (the addition is
modulo 8), and F7−a(x) = −Fa(−x). Thus the system
has many symmetries and all its circle derivations have
the same shape (see Fig. 3). We consider almost-covers
which respect these symmetries, so we set W2a = RaW0,
W2a+1 = −W6−2a, where −(x0

x1
, y0

y1
) = (−y0

y1
, −x0

x1
). Thus

the almost-cover is determined by W0 = (−a, b) with two
rational parameters 0 ≤ a ≤ 1

3 ,
√
2− 1 < b ≤ 1. If a > 0,

then W is a cover. If a < 1
3 and b < 1, then (F,W) is

expansive. For a = 1
3 , b = 1 we get the maximal cover

with Wa = V(Fa) which we denote by V(F ). For a = 0,
b = 1

2 we get the rational expansion almost-cover R(F )
with

Wa = R(Fa) = {x ∈ R : (F−1
a )•(x) > det(Fa)}.

Figure 3. The Bimodular systems: graphs of F−1
a in V(Fa) (top), graphs

of (F−1
a )• (middle) and almost-covers R(F ), V(F ) (bottom).

This almost-cover plays a role in the expansion of ratio-
nal numbers; see Kůrka [7]. Both systems (F,V(F )) and
(F,R(F )) are sofic with the same SFT refinement with
endpoints 0, 1

3 , 1
2 , 1, 2, 3, ∞, −3, −2, −1, −1

2 , −1
3 .

XII. THE LEAST NORM SELECTOR

Consider the unary algorithm with the least norm selector
from the maximal bimodular system (F,V(F )) to a redun-
dant bimodular system (F,U) such that R(Fc) ⊆ Uc for
each c ∈ A. We are going to show that there exists a constant
C such that ||Xi|| < C · det(Xi) for all sufficiently large i.
We assume that the unary algorithm works with a threshold
τ < min{−7,L(U)} (note that −7 = sz( 13 ,

1
2 )).

Lemma 15: If Y is an interval with sz(Y ) ≤ −7, then
there exists c ∈ A such that (F−1

c )•(y) > 2 − 13|Y | for
each y ∈ Y .

Proof: For x > 0 and F−1
7 (x) = 2x/(x + 1) we have

(F−1
7 )•(x) = 2(x2+1)

5x2+2x+1 > 2− 4x. For I = (0, x) ⊆ (0,∞)

we have sz(I) = −1/x, and if 0 < x < 1
4 , then 4x/13 <



|I| < x/π. For any interval Y with sz(Y ) ≤ −7 we get:
If 0, y ∈ Y then (F−1

c )•(y) > 2− 13|Y | for c ∈ {7, 0}.
If 1, y ∈ Y then (F−1

c )•(y) > 2− 13|Y | for c ∈ {1, 2}.
If y ∈ Y ⊆ (0, 1) then (F−1

c )•(y) > 2 for either c = 0
or c = 1. This follows from the fact that (F−1

0 )•(x) > 2
for x ∈ (0, 1

2 ) and (F−1
1 )•(x) > 2 for x ∈ ( 13 , 1). Similar

arguments can be used in other quadrants.
Lemma 16: If sz(Y ) < min{−7,L(U)}, then there exists

c ∈ A such that Y ⊆ Uc, |F−1
c Y | ≥ |Y |(2− 13|Y |),

||F−1
c Y ||

|det(F−1
c Y )|

≤ ||Y ||

|det(Y )| ·
√
1− 13

2 |Y |
.

Proof: By Lemma 15 there exists c ∈ A such that Y ⊆
Uc and for each y ∈ Y we have 2||y||2/||F−1

c · y||2 =
(F−1

c )•(y) ≥ 2 − 13|Y |. Applying this inequality to l(Y )

and r(Y ) we get ||Y || ≥ ||F−1
c ·Y ||·

√
1− 13

2 |Y |. Moreover,
|F−1

c ·Y | ≥ |Y |·(2−13|Y |). For Z = F−1
c Y we have either

||Z||/| det(Z)| = ||F−1
a ·Y ||/2| det(Y )| if Z = F−1

c ·Y , or
||Z||/| det(Z)| = ||F−1

a · Y ||/| det(Y )| if Z = 1
2F

−1
c · Y .

In both cases we get the result.

Lemma 17: Let (X0, p0)
λ/v0−→ · · · λ/vk−1−→ (Xk, pk) be a

sequence of emission steps. Then for each j ≤ k we have

||XjVpj ||
| det(XjVpj )|

≤ 2 · ||X0Vp0
||

| det(X0Vp0)|
.

Proof: Set Yi = XiVpi . By Lemma 16 we have
|Yi+1| ≥ |Yi|(2 − 13|Yi|). Solving this quadratic inequality
we get |Yi| < h(|Yi+1|), where h(x) = (1−

√
1− 13x)/13.

Since sz(Yj−1) < −7, we get |Yj−1| < ε = 0.05, and

||Yj ||
| det(Yj)|

≤ ||Y0||
|det(Y0)|

·
j−1∏
i=0

1√
1− 13

2 |Yi|

≤ ||Y0||
|det(Y0)|

·
∞∏
i=0

1√
1− hi(ε)

≤ 2 · ||Y0||
| det(Y0)|

.

The last inequality is obtained from h(x) ≈ x/2 using the
inequality (1 + ε) · (1 + ε

2 ) · (1 +
ε
4 ) · · · < 2.

Theorem 18: For the least norm selector with threshold
τ ≤ −max{−7,L(U)} there exists a constant C > 0 such
that for any infinite path with vertices (Xi, pi) there exists
k ≥ 0 such that ||Xi|| ≤ C · det(Xi) for all i ≥ k.

Proof: Let k be the first index such that the step
k − 1 is an emission and the step k is an absorption. Then
sz(Yk−1) ≤ τ . Since (F−1

a )•(x) < 3 for each a ∈ A, we get
τ < sz(Yk) < τ/3, so ||Yk|| ≤ |τ | · | det(Yk)| by Lemma 5.
By Lemma 17, for each subsequent emission step i > k we
have ||Yi|| ≤ 2|τ | · | det(Yi)|. Set ν = max{||Vp|| : p ∈ B},
δ = max{| det(Vp)| : p ∈ B}|, C = 2|τ | · ν · δ. Then
||Xi|| ≤ ν · ||Yi|| ≤ C · det(Xi).

n m Z µ X pn
un→ pn+1 vm

0 0 3 3.000 ( 31 ,
1
3 ) B

0→ B

1 0 2 2.500 ( 22 ,
1
3 ) B

6→ 1

2 0 1 2.000 ( 11 ,
0
2 ) 1

0→ 3

3 0 2 2.000 ( 13 ,
0
4 ) 3

2→ 3

4 0 1 1.800 ( 15 ,
0
2 ) 3

1→ 3
5 0 2 1.833 ( 15 ,

1
9 ) 0

5 1 1 1.714 ( 12 ,
1
4 ) 3

2→ 4
6 1 2 1.750 ( 38 ,

1
4 ) 1

6 2 1 1.667 (−1
4 , −1

2 ) 6

6 3 0 1.500 ( 12 ,
0
1 ) 4

3→ 2

7 3 1 1.455 ( 24 ,
1
3 ) 2

1→ 0
8 3 0 1.333 ( 12 ,

2
5 ) 1

8 4 1 1.308 ( 02 ,
−1
5 ) 0

7→ 0
9 4 2 1.357 ( 1

−3 ,
−2
10 ) 7

9 5 1 1.333 ( 1
−1 ,

−2
4 ) 0

0→ 0

10 5 2 1.375 (−1
3 , −4

8 ) 7

10 6 1 1.353 (−1
1 , −4

2 ) 0
7→ 1

11 6 2 1.389 ( 3
−1 ,

−8
4 ) 4

Figure 4. A computation of the unary algorithm with input matrix M =
( 3
1
, 1
3
), threshold τ = −50, input word 06021231707 and output word

0161774.

n m Z µ pZ pµ
0 0 3 3.000 2.000 0.417
1 0 2 2.500 1.250 0.400
2 0 1 2.000 0.833 0.375
4 0 1 1.800 0.800 0.361
6 2 1 1.667 0.667 0.350
10 6 1 1.353 0.588 0.315
18 14 1 1.909 0.539 0.369
36 28 5 1.738 0.542 0.356
69 59 1 1.899 0.515 0.368
138 118 1 1.646 0.507 0.348
275 237 17 6.302 0.511 0.460
547 477 1 6.079 0.502 0.459
1099 949 1 3.975 0.501 0.437
2190 1906 3 3.020 0.500 0.417
4381 3811 11 4.116 0.501 0.439
8736 7648 5 3.886 0.500 0.436
17517 15251 1 3.538 0.500 0.429

Figure 5. Statistics of the unary algorithm: input matrix M = ( 3
1
, 1
3
),

threshold τ = −50. Only the steps for which n+m is a power of 2 are
shown.



XIII. PERFORMANCE OF THE ALGORITHM

We have tested the unary algorithm with the least norm
selector on many examples. To avoid too large numbers, we
have used the norm ||M(a,b,c,d)||1 = |a|+|b|+|c|+|d| instead
of the Euclidean norm. For a given input matrix M ∈ M(Z),
let k be the maximal integer such that 2k divides det(M).
If Xi is the state matrix at time i = n+m, then

Zi = log2 det(Xi)− log2 det(M) + k

performs a random walk on nonnegative integers and Zi+1 ∈
{Zi − 1, Zi + 1}. If each path from each vertex (M,p)
leads to a positively recurrent class, then the unary algorithm
computes ΨM (u) with average linear time complexity for
any (p, u) ∈ S(W,V).

Fig. 4 shows the computation of M(x) = 3x+1
x+3 by

the maximal bimodular system. The input is generated at
random using the transition probabilities of Definition 12 in
Section IX. Besides the logarithms of the determinant Zi we
give the values of µi =

1
i+1

∑i
j=0 Zj .

Fig. 5 shows the statistics of the same computation during
a larger time span. Besides Z and µ we give estimates of the
increase probabilities pZ and pµ from Formula (1) in Section
IX. We see that Z remains bounded, so Zi/i converges to
zero and the increase probability p can be estimated from
µi as p ≈ 0.429.

The maximal bimodular system is not expansive, we have
Q(F,V(F )) = 1. As a consequence, the unary algorithm
may do emissions for a single absorption, m may become
much larger than n and the output word v would converge
slowly to its value Φ(v). We have therefore considered
smaller output covers which are expansive. Fig. 6. shows
the statistics of the computation with the input system
(F,V(F )) and output system (F,U) for smaller interval
covers U satisfying the symmetry constraints of Section XI.
As the lengths of their intervals increase, their Lebesgue size
numbers increase, while their expansion quotients decrease.
The statistics Zi and µi are given for i = 215 and the last
column gives the estimate of the parameter p from either
Z or µ. There is a strong statistical evidence that the first
three systems are null recurrent while the last three are
positively recurrent. These results have been confirmed by
many simulations with different input matrices and different
parameters of the random number generator.

While a rigorous mathematical analysis of the unary
Markov chain seems to be untractable, our simulation results
suggest that there do exist bimodular systems whose unary
Markov chain is positively recurrent and therefore the unary
algorithm works with linear average time complexity.
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