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Abstract5

The generic limit set of a cellular automaton is a topologically defined set of configurations that6

intends to capture the asymptotic behaviours while avoiding atypical ones. It was defined by Milnor7

then studied by Djenaoui and Guillon first, and by Törmä later. They gave properties of this set8

related to the dynamics of the cellular automaton, and the maximal complexity of its language. In9

this paper, we prove that every non trivial property of these generic limit sets of cellular automata10

is undecidable.11
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1 Introduction16

Cellular automata (CA) are discrete dynamical systems defined by a local rule, introduced17

in the 40s by John von Neumann [13]. Given a finite alphabet A, the global rule on AZ
18

is given by the synchronous application of the local one at every coordinate. They can be19

seen as models of computation, dynamical systems or many phenomena from different fields,20

providing links between all of these [5, 9].21

The asymptotic behaviour of CA has been studied a lot, mainly using the definition22

of limit set: the set of points that can be observed arbitrarily far in time. In particular23

concerning the complexity of this set: it can be non-recursive, the nilpotency problem is24

undecidable and there is Rice’s theorem on properties of the limit set of CA [6, 7, 8]. Rice’s25

theorem states that every nontrivial property of the limit set of CA is undecidable. Other26

definitions were introduced in order to restrain to typical asymptotic behaviour. Milnor27

proposed the definition of likely limit set and generic limit set in [11] in the more general28

context of dynamical systems. While the likely limit set is defined in the measure-theoretical29

world, the generic limit set is a topological variant. Djenaoui and Guillon proved in [4] that30

both are equal for full-support σ-ergodic measures in the case of CA.31

The generic limit set is the smallest closed subset of the fullshift ΣZ containing all limit32

points of all configurations taken in a comeager subset of ΣZ. Djenaoui and Guillon studied33

the generic limit set in [4], proving results on the structure of generic limit sets related34

to the directional dynamics of CA. They also provide a combinatorial characterization of35

the language of the generic limit sets and examples of CA with different limit, generic36

limit and µ-limit sets. The latter was introduced in [10] by Kůrka and Maass as another37

measure-theoretical version of limit set.38

The µ-limit set is determined by its language which is the set of words that do not39

disappear in time, relatively to the measure µ. Amongst the results on the µ-limit set, it40

was proved in [1] that the complexity of the language is at the level 3 of the arithmetical41

hierarchy (Σ0
3), with a complete example, it was also proved that the nilpotency problem is42

Π0
3-complete. Rice’s theorem also holds stating that each nontrivial property has at least Π0
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complexity. A slightly different approach led Hellouin and Sablik to similar results on the44
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limit probability measure in [2].45

In [12], Törmä proved computational complexity results on the generic limit sets, in46

particular an example of a CA with a Σ0
3-complete generic limit set, and constraints on the47

complexity when the dynamics of the CA is too simple on the generic limit set.48

In this paper, we prove Rice’s theorem on generic limit sets combining ideas from [8] and49

[1].50

2 Definitions51

In this paper, we consider the countable set Q = {q0, q1, q2, . . . }. Every finite alphabet will52

be a finite subset of Q. Given a finite alphabet Σ ⊆ Q and a radius r ∈ N, a local rule is a53

map δ : Σ2r+1 → Σ and a cellular automaton F : ΣZ → ΣZ is the global function associated54

with some local rule δ: for every c ∈ ΣZ and every i ∈ Z, F(c)i = δ(ci−r, ci−r+1, . . . , ci+r).55

We call configurations the elements of ΣZ. The orbit of an initial configuration c under F is56

called a space-time diagram. Time goes upward in the illustrations of this paper.57

Define the Cantor topology on ΣZ using the distance d(c, c′) = 1
2i where i = min{j ∈58

N, cj ̸= c′
j or c−j ̸= c′

−j}. For any word w ∈ Σ∗, denote |w| the length of w and [w]i = {c ∈59

ΣZ : ∀k < |w|, ci+k = wk} the associated cylinder set, which is a clopen set.60

Denote σ the shift on ΣZ, which is the CA such that ∀c ∈ ΣZ, ∀i ∈ Z, σ(c)i = ci+1. A61

subshift is a closed σ-invariant subset of ΣZ. A subshift can be equivalently defined by the62

set of forbidden words, in this case a subshift is the set of configurations that do not belong63

to any [w]i where w is forbidden.64

In this paper, a Turing machine works on a semi-infinite (to the right) tape, with a finite65

alphabet A containing a blank symbol ⊥. It has one initial state q0 and one final state qf .66

At each step of the computation, the head of the machine reads the symbol at the position67

on the tape to which it points, and decides the new symbol that is written on the tape, the68

new state it enters, and its move (one cell at most). It can be simulated by a CA using states69

that can contain the head of the machine and the tape alphabet. We will here only simulate70

machines in a finite space in which there is only one head.71

2.1 Limit sets of cellular automata72

Different definitions of the asymptotic behavior of a CA have been given. The most classical73

one is the limit set ΩF =
⋂

t∈N F t(ΣZ) of a CA F , that is the set of configurations that can74

be seen arbitrarily late in time. For any subset X ⊆ ΣZ, define ω(X) as the set of limit75

points of orbits of configurations in X: c ∈ ω(X) ⇔ ∃c′ ∈ X, lim inft→∞ d(F t(c′), c) = 0.76

The set ω(ΣZ) is called the asymptotic set of F .77

A subset X ⊆ ΣZ is said to be comeager if it contains a countable intersection of dense78

open sets. It implies in particular that X is dense (Baire property).79

For X ⊆ ΣZ, define the realm of attraction D(X) = {c ∈ ΣZ : ω(c) ⊆ X}. The generic80

limit set ω̃(F) of F is then defined as the intersection of all closed subsets of ΣZ whose realms81

of attraction are comeager.82

The following two examples show differences between all these sets, they were already83

presented in [4].84

▶ Example 1 (The Min CA). Consider the CA F of radius 1 on alphabet {0, 1} whose local85

rule is (x, y, z) 7→ min (x, y, z). The state 0 is spreading, that is, every cell that sees this86

state will enter it too. A space-time diagram of the MIN CA is represented in Figure 1.87

We have:88
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Figure 1 Some part of a space-time diagram of the Min CA, 0 is represented by the white state
and 1 by the black state.
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Figure 2 The < and > states of the Gliders CA are particles going in different directions and
annihilating each other when they cross.

ΩF = {c ∈ {0, 1}Z : ∀i ∈ Z, k ∈ N∗, c /∈ [10k1]i]};89

ω̃(F) = {0Z} and it is equal to the µ-limit set for a large set of measures containing every90

non degenerate Markov measure.91

▶ Example 2 (Gliders). Consider the CA F of radius 1 on alphabet {0, >, <}. The states <92

and > are respectively speed −1 and 1 signals over a background of 0s. When a < and a >93

cross, they both disappear. A space-time diagram of this CA is represented in Figure 2. For94

a complete description of the rule, see for example [10, Example 3].95

We have:96

ΩF = {c ∈ {0, <, >}Z : ∀i ∈ Z, k ∈ N, c /∈ [< 0k >]i]};97

ω̃(F) = ΩF ;98

the µ-limit set depends here of µ. With µ the uniform Bernoulli measure, it is {0Z}. If µ99

is Bernoulli with a bigger probability for < than for >, then the µ-limit set is {{0, <}Z}.100

2.2 Preliminary properties of generic limit sets of CA101

Many properties of generic limit sets were proved either in [11] or in [4] for the particular102

case of CA.103

▶ Proposition 3 (Prop 4.2 of [4]). Given a CA F , the realm of attraction of ω̃(F) is comeager.104

▶ Proposition 4 (Prop 4.4 of [4]). Given a CA F , ω̃(F) is a subshift.105

Note that the limit set of a CA is also a subshift whereas the asymptotic limit set may not106

be.107

▶ Proposition 5 (Cor 4.7 of [4]). Given a CA F on alphabet Σ, ω̃(F) = ΣZ ⇔ F is surjective.108
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The last result of this section comes from Remark 4.3 of [4] and is reformulated as Lemma109

2 of [12]:110

▶ Lemma 6. Let F be a CA on ΣZ. A word s ∈ Σ∗ occurs in ω̃(F) if and only if there111

exists a word v ∈ Σ∗ and i ∈ Z such that for all u, w ∈ Σ∗, there exist infinitely many t ∈ N112

with F t([uvw]i−|u|) ∩ [s] ̸= ∅.113

The word v is said to enable s.114

3 General structure of the construction115

The proof of the main result of this paper relies on a construction already presented in [3, 1, 2].116

The present section contains the description of this tool. The idea is to erase most of the117

content of the initial configuration and start a protected (hence controled) and synchronized118

evolution. Of course, to ensure that this property holds for any configuration, one needs119

strong constraints on the dynamics of the CA. Here, we also want to allow a wide variety120

of dynamics, hence this property shall hold for almost every initial configuration. In the121

above-cited articles, it was true for µ-almost every configuration, and here we will use a122

topological variant.123

A brief description of this CA F follows. Its radius should be at least 2.124

3.1 Overview125

Some particular state * ∈ Σ can only appear in the initial configuration: there is no rule that126

produces it. The states * will trigger the desired evolution. In order to avoid having to deal127

with anything unwanted on the initial configuration (like words produced by the evolution128

of the CA placed in a wrong context), we add a mechanism that cleans the configuration129

from anything that is not produced by * . This is achieved through the propagation of large130

signals that have the information of the time passed since a * state produced it, that is131

their age. Then, when two such signals going in opposite directions meet, they compare their132

ages and only the younger survives.133

With this trick, any configuration that contains infinitely many * on both sides will134

ultimately be covered by protected areas. The * states also transform into # ∈ Σ states,135

and we consider the words in the space-time diagram that are delimited by # states produced136

by * states, we call them segments. The dynamics of the CA inside a segment only depends137

on its size. In particular, the simulation of the computation of a given Turing machine can138

be started on each # state when it appears.139

A close construction with a more precise and complete description can be found in [1,140

Section 3.1].141

3.2 Initialization and counters142

The state * can only appear in the initial configuration: it is not produced by any rule143

and it disappears immediately. Consider a cell at coordinate i that contains a * state in144

the initial configuration. On each side of the * state, two signals are sent at speed sf and145

sb to the right and symmetrically to the left. The fastest one (speed sf ) erases everything146

it encounters except for its symmetrical counterpart. Each couple of signals is seen as one147

counter whose value is encoded by the distance ⌊k(sf − sb)⌋ after k steps of the CA. The key148

point is that, at any time, the value of a counter is minimal exactly for counters generated149

by a * state.150
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Figure 3 When counters meet in O, signals move at speed 1 towards the borders of the counters
that they reach at points C and C′. They bounce back until they cross the sign left at point O. The
one that arrives first has crossed the most narrow (hence youngest) one. It bounces once again to
erase the opposite counter whose border is reached at point E.

When two counters meet, they compare their values without being affected until the151

comparison is done. The comparison process is done via signals bouncing on the borders152

of the counters. The speed of these inner signals is greater than the speeds (sf and sb) of153

the border signals. As the value is encoded by the distance between border signals, it is a154

geometric comparison illustrated in Figure 3. If one counter is younger than the other one,155

the older one is deleted (the right one in Figure 3). If they are equal, both counters, that is156

the 4 signals, are deleted.157

▷ Claim 7. For any configuration c where * occurs, and any coordinate i ∈ Z, denote158

di = min{|i − j| : cj = * }. Then for any t > sbdi (where sb is the speed of the inner border159

of the counter), F t(c)i does not contain a counter state.160

Proof. Each sequence of consecutive * states creates a left counter at its left extremity and161

a right counter at its right extremity. They all share a common age which is the minimal162

one, hence they cannot be crossed by another counter. Thus, at most one of the youngest163

counters can cross cell i. And due to the speed of the inner border of the counters, this is164

done after sbdi steps. ◁165

Last rule of this construction: every * state that is not surrounded by other * states166

on both sides is replaced by a # state after it gave birth to the counters. Figure 4 shows167

how a typical initial configuration evolves.168

For any time t ∈ N and any configuration c, we call segment a set of consecutive cells169

from coordinate i to j in F t(c) with i, j ∈ Z such that:170

F t(c)i = # = F t(c)j171

for every i < k < j, F t(c)k ̸= #172

ci = * and cj = * .173

Note that if the radius of the CA can be arbitrarily large, any choice of speeds sf > sb174

can be made.175
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∗#∗#∗#∗#∗#∗#

Figure 4 Starting from a configuration containing infinitely many * states on the left and on
the right, the * states generate counters (filled in grey) on both sides that erase everything but
another counter going in the opposite direction. These counters eventually meet their opposite and
disappear after comparing their ages, hence remain an immaculate configuration with # states in
some positions.

▷ Claim 8. For any s ∈ Q, there exists a CA implementing such a construction with speed176

sb > s (and hence sf ).177

Proof. A big enough radius allows fast enough signals to perform the comparison of counters178

in due time. ◁179

4 Rice’s theorem180

Following the steps of the historical proof of Rice and concerning CA, the theorems on limit181

sets in [8] and µ-limit sets in [3], we first define properties of generic limit sets of CA, then182

prove that every non trivial such property is undecidable.183

The CA used in [3] to prove Rice’s theorem for µ-limit sets also has the general structure184

presented in the previous section. The difference lies in what is done inside segments. In the185

case of µ-limit sets (regardless of the choice of µ), it is possible to dedicate a small technical186

space inside segments to any activity that shouldn’t appear in the µ-limit set, as long as this187

space tends to disappear in density. This is achieved through larger and larger segments.188

Nothing prevents the states of this technical space to appear in the generic limit set.189

4.1 Properties of generic limit sets of CA190

A property of the generic limit set of CA is a set of subshifts and we say that a generic limit191

set have this property if it belongs to this set. This way, it depends only on the generic limit192

set: if two CA have the same generic limit set, this common generic limit set either has or193

not the property. As mentionned earlier, we consider the countable set Q = {q0, q1, . . . }, and194

every alphabet is a finite subset of Q = {q0, q1, . . . }.195

▶ Definition 9. A property P of generic limit sets of cellular automata is a subset of the196

powerset P(QZ). A generic limit set of some cellular automaton is said to have property P197

if it is in P.198

Note that many sets that are not subshifts can belong to a property P, as every generic199

limit set is a subshift, they do not matter. In particular, every property that does not contain200

a subshift is equivalent to the empty property that no generic limit set has. A property is201

said to be trivial when either it contains all generic limit sets or none. The most natural202

example of a non trivial property is the generic nilpotency, which is given by the family203

{{qZi }, i ∈ N}.204
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This definition prevents confusions between properties of generic limit sets and properties205

concerning generic limit sets. For example the property containing every fullshift on finite206

alphabets is not surjectivity, since the generic limit set of a CA on alphabet Σ could be a207

fullshift on a strictly smaller alphabet. Hence surjectivity is not a property of generic limit208

sets even if being surjective is equivalent to having a full generic limit set. .209

4.2 The theorem210

▶ Theorem 10. Every non trivial property of the generic limit sets of CA is undecidable.211

This section is dedicated to the proof of Rice’s theorem. It is a many-one (actually212

one-one) reduction from the Halting problem on empty input for Turing machines. Take a213

non trivial property P of generic limit sets of CA. Assume for example that P ∩{{qZk }, k ∈ N}214

is infinite (the other case leads to a symmetric proof). As P is non trivial, it is possible to215

choose qn ∈ Q and a CA F1 such that ω̃(F1) /∈ P and qn /∈ Σ1 where Σ1 is the alphabet of216

F1. Denote now F0 the CA on alphabet {qn} whose local rule always produces {qn}. Hence217

ω̃(F0) = {qZn} ∈ P.218

For any Turing machine M , we produce a CA FM such that:219

if M eventually halts on empty input, the generic limit set of FM is {qZn};220

if M never halts on empty input, then the generic limit set of FM is ω̃(F1).221

4.2.1 Construction of FM222

The CA FM contains two layers, one for each of the main tasks. Denote π1 and π2 the223

projections on the first and second layer. The first layer uses alphabet Σ0 and it implements224

the construction described in Section 3. Denote _ the blank state of Σ0. The second layer225

simulates the CA F1. In some cases, the first layer can be erased, we also add a state qn,226

hence the alphabet of FM is Σ = (Σ0 × Σ1) ∪ {qn} ∪ Σ1.227

The set Σ0 × Σ1 can be mapped to a subset of Q \ ({qn} ∪ Σ1) to ensure that Σ ⊂ Q.228

For the clarity of the presentation, we will denote the elements of Σ0 × Σ1 as couples.229

The idea is to let F1 compute on the second layer (or by itself if the first layer has been230

erased), while computation on the first layer will either lead to erase this layer or generate a231

qn state that will be spreading (erasing everything but counters) over the whole configuration.232

On the first layer, once a # state appears (from a * state), a simulation of M is started233

on its right. In the general case, another # state exists further on the right, in which case234

this simulation takes place in a segment. We will show later that the other case is irrelevant235

when considering the generic limit set. The simulation evolves freely except if it is blocked236

by the inner border of a counter, if this happens the simulated Turing head waits until it has237

enough space to make one more step. A binary counter is started in parallel to the right of238

the # state.239

The simulation inside a segment should always be finite, it can be interrupted for one of240

the following reasons.241

The simulation of M halts (because M reaches a final state). Then the state qn is242

written, erasing both layers of FM . This state spreads to both of its neighbors erasing243

everything, even the # states, except for the inner and outer borders of the counters of244

the construction of Section 3.245

It reaches a # on its right. That is there is not enough space inside the segment and the246

simulation is aborted. The first layer content of the segment will be erased as explained247

later.248
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Figure 5 Starting from the cells in state * in the initial configuration, the counters (grey
areas) protect everything above them. Segments are delimited by # states and in each of them a
simulation of the computation of a Turing machine takes place (the red curve gives the position of
the head). The green curve represents the extension of the binary counter used to limit the time of
the simulation. In segment a⃝, the counter reaches the limit and an abortion signal is sent (blue).
In segment b⃝, the head reaches the right of counter and the simulation is stopped with an abortion
signal sent to the left. In segment c⃝, the Turing machine halts and the spreading state qn is written.

The counter reaches another # state. The time allowed for the simulation is over and249

the simulation is aborted. This third case is necessary to avoid problems due to a loop of250

the Turing machine in a finite space.251

The states used for the simulation should not appear in the generic limit set, hence they252

have to be erased once the simulation halts or is aborted. In the first case, the state qn is253

written in every cell. In the second case, the first layer only is erased. For the same reason,254

the # state has to be erased when the simulation is over in both the segments it delimits.255

If the simulation is aborted (due to lack of space or end of the allowed time in the256

segment), an abortion signal is sent in both directions that erases everything of the first layer257

(except outer or inner border of counters) until it reaches a # state. A # state that receives258

such an abortion signal transforms into a #’ state. If a #’ state receives an abortion signal, it259

disappears. The point is to ensure that the abortion signals do not travel too far: if the first260

abortion signal deletes the # state on the side of the segment, then the one arriving from261

the other side will cross. This could lead to the presence of abortion signals in the generic262

limit set.263

Figure 5 is a schematic view of the evolution of CA FM on an ordinary initial configuration.264

▷ Claim 11. There exists an increasing function f : N → N such that the computation of M265

simulated in a segment of length n either halts or is aborted before time f(n).266

Proof. In a segment of length n, due to the binary counter, if the simulation of M has not267

reached a final state after 2n steps, the computation is aborted. ◁268

4.2.2 Ensuring a sound computation on the second layer269

The proof relies on the fact that, with most initial configurations:270
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
q q′

Figure 6 Partial representation of a space-time diagram of FM . The red cells are where the
counters rewrite the second layer assuming that what does not come from a * state is x0. The blue
cells are where the computation of F1 happens normally on the second layer. The yellow lines are
the outer borders of counters, we assume here they have speed 1 for the illustration. Denote δ1 the
local rule of F1. Then q′ = δ1(x, y, z) which are its state (y) and the ones of its neighbors (x and z)
at time 0. And q = δ1(x0, x, y).

if M halts, there will exist a large enough segment in which the computation has enough271

space and time to reach its end, thus producing state qn that erases everything.272

if M does not halt, the computation will be eventually aborted in every segment and273

only the second layer will remain with a computation of F1.274

In order to ensure the second point, we need to deal with the case of qn states existing275

before the counters of Section 3 clean the configuration on the first layer. It can for example276

happen due to qn states on the initial configuration. In this case, the content of the second277

layer is lost. As it is impossible to control what happens outside the area protected by278

counters, the counters will not only stop the spreading of qn but also write a possible279

configuration for F1, thus deleting all data that does not descend from the cells containing280

* in the first layer of the initial configuration.281

Let us assume for simplicity that the radius of F1 is 1. For the rest of the proof of the282

theorem, denote x0 some state of Σ1. The space-time diagram of F1 with initial configuration283

xZ
0 is ultimately periodic, contains only uniform configurations and is entirely described by a284

finite sequence of distinct states (x0, x1, . . . , xp, . . . , xp+T , xp). The counters will write the285

second layer of the configuration as if every information coming from outside the protected286

area (between counters) was obtained from the uniform initial configuration xZ
0 :287

xt at step t ≤ p;288

xp+(t−p) mod T at step t ≥ p.289

As a finite amount of information is needed, the local rule of the CA FM can be designed290

to do so. This is illustrated in Figure 6. As said in Claim 8, it is possible to use that291

construction with outer borders of counters moving at speed 1.292

If the first layer contains * , the state on the second layer is not rewritten and is used for293

the simulation of F1.294

To any initial configuration x ∈ ΣZ, corresponds a configuration in ΣZ
1 where all the295

deleted data is replaced by x0. Denote ϕ : Σ → Σ1 such that:296

ϕ( * , x) = x;297

ϕ(s, x) = x0 when s ̸= * ;298

ϕ(x) = x0 when x ∈ Σ1 ∪ {qn}.299

It can be extended to words in Σ∗ and configurations in ΣZ.300

▷ Claim 12. Let c be a configuration in ΣZ and i ∈ Z a coordinate such that there exists301

j < i < k with cj = * = ck. Then for any t > sbdi (as in Claim 7),302

π2
(
F t

M (c)i

)
∈

{
F t

1(ϕ(c))i, qn

}
303
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∗∗

qn

##

u v
↑
i

↑
0

Figure 7 The word v (in blue) is supposed to enable state s. Then for a good choice of u (in
red), a segment will simulate a computation of M that eventually halts and produces qn. This state
spreads (in yellow) and eventually reaches coordinate 0.

We extend here π2 as the identity to Σ1 ∪ {qn}.304

Proof. As t > sbdi, the cell at coordinate i is in the protected area (above * states or305

counters) at time t. Then the second layer has been computed with the rule of F1 and the306

second layer of the configuration rewritten by counters into images of ϕ(c). The only way to307

interrupt the computation of F1 is to erase the cell and write qn, hence the claim. ◁308

4.2.3 Proof of the theorem309

It remains to prove the next 2 lemmas.310

▶ Lemma 13. If M eventually halts on the empy input, then ω̃(FM ) = ω̃(F0) ∈ P.311

Proof. Suppose that M eventually halts on the empty input. Then there exists a large312

enough size S such that the computation in any segment larger than S has enough time and313

space to reach its end. Then the state qn appears and spreads at speed 1 in both directions314

except if it encounters an inner or outer border of a counter.315

If some state s ∈ Σ occurs in ω̃(FM ) then according to Lemma 6, there exists a word v316

that enables it when placed at position i ∈ Z. Take now u = (_ * _S
* _, xS+4

0 ), w the empty317

word and some c ∈ [uvw]i−|u|. Counters are generated by the two * states at coordinates318

i − (S + 3) and i − 2, hence there exists t0 ∈ N such that at time t0, the cell 0 has been319

crossed by counters generated by * states. According to Claim 7, it will not contain any320

state of outer or inner border of a counter anymore. Moreover, a segment is created between321

coordinates i − (S + 3) and i − 2. As it is large enough, the state qn will be written at time322

t1 ∈ N. Then it will spread and reach cell 0 before time t1 + max(|i − (S + 2)|, |i − 2|) or t0323

if the inner border of a counter slows it down. This is illustrated by Figure 7. Hence there324

exists t2 ∈ N such that ∀t ≥ t2, F t
M (c) ∈ [s] ⇔ s = qn. Thus ω̃(FM ) ⊆ {qn}Z. As ω̃(FM )325

cannot be empty, we have ω̃(FM ) = {qn}Z = ω̃(F0) and ω̃(FM ) ∈ P.326

◀327

▶ Lemma 14. If M never halts on the empty input, then ω̃(FM ) = ω̃(F1) /∈ P.328

Proof. Suppose now that M never halts on the empty input. We will show that ω̃(F1) =329

ω̃(FM ).330

First, we show that:331
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▷ Claim 15. ω̃(FM ) ⊆ ω̃(F1)332

Proof. Let s be a word that occurs in ω̃(FM ). According to Lemma 6, there exists a word333

v that enables s when placed at coordinate i. As any word containing v as a factor also334

enables s, we can choose v such that i < 0 and i + |v| > |s|.335

We prove that v′ = ϕ(v) at coordinate i enables s for F1. To do so, we will use Lemma 6.336

Take u′, w′ ∈ Σ∗
1 and denote u = ( * _|u′|−1, u′) and w = (_|w′|−1

* , w′). Denote n = |uvw|,337

T ≥ max(sbn, f(n) + n) (where sb is the speed of inner borders of counters), z1 = i − |u|338

and z2 = i + |vw|. Apply Lemma 6 with FM , v, u and w. For infinitely many times t, there339

exist a configuration c ∈ [uvw]i−|u| such that F t
M (c) ∈ [s]. Using Claim 12 with cells at340

coordinates z1 and z2 containing state * , we get that for any t > T ,341

∀z1 ≤ j ≤ z2, π2
(
F t

M (c)j

)
∈

{
F t

1(ϕ(c))j , qn

}
342

That is : π2(s) = π2
(
F t

M (c)[0,|u|−1]
)

∈
{

F t
1(ϕ(c))[0,|u|−1], q

|u|
n

}
.343

Due to the * states placed at coordinates z1 and z2, we can also apply Claim 11 and344

we get that the computation is finished in any segment between coordinates z1 and z2 at345

time f(n). After n more steps, the potential abortion signals have reached the borders and346

every cell between coordinates z1 and z2 contains a state in Σ1 ∪ {qn}. Moreover, as these347

cells belonged to a segment in the protected area, and since M never halts on the empty348

input, this state cannot be qn. Hence s ∈ Σ∗ and as π2 is the identity on Σ, necessarily349

s = π2(s) = F t
1(ϕ(c))[0,|u|−1].350

As ϕ(c) ∈ [u′v′w′]i−|u′| and as F t
1(ϕ(c))[0,|u|−1] = s for infinitely many times t, Lemma 6351

allows to conclude that v′ enables s that is v′ occurs in ω̃(F1).352

◁353

Then we prove the opposite:354

▷ Claim 16. ω̃(F1) ⊆ ω̃(FM )355

Proof. Let s be a word that occurs in ω̃(F1). According to Lemma 6, there exists a word v356

that enables it when placed at coordinate i. We prove that v′ = (_|i|
*

|v|_|i|+|s|, x
|i|
0 vx

|i|+|s|
0 )357

at coordinate i − |i| enables s for FM .358

For any u′, w′ ∈ Σ∗, denote n = |u′v′w′|. Let T ≥ max(sbn, f(n) + n) (where sb is still359

the speed of inner borders of counters) and denote360

u = ϕ(π2(u′))x|i|
0 ;361

w = x
|i|+|s|
0 ϕ(π2(w′)).362

As v enables s for F1, there exists c ∈ [uvw]i−|u| and t ≥ T such that F t
1(c) ∈ [s]. We363

can write c as c−uvwc+ where c− and c+ are semi-infinite configuration in ωΣ1 and Σω
1364

respectively. Define c′ = (ω
* , c−)u′v′w′( *

ω, c+) ∈ [u′v′w′]i−|i|−|u′|, we will prove that365

F t
M (c′) ∈ [s]. First, note that c = ϕ(π2(c′)). Then using Claim 12, we have that for every366

j ∈ [|i − |i|, i + |i| + |s|]:367

π2
(
F t

M (c′)j

)
∈

{
F t

1(c)j , qn

}
368

As t ≥ T ≥ sbn and M does not halt on the empty input, π2 (F t
M (c′))j ̸= qn. And as369

t ≥ T ≥ f(n) + n, the computation is aborted in every segment fully located between370

coordinates |i − |i| and i + |i| + |s| before step f(n). After n more steps, the first layer371

of these segments is erased, in particular for coordinates j with 0 ≤ j < |s|. Hence372

F t
M (c′)[0,|s|−1] = π2 (F t

M (c′))[0,|s|−1] = F t
1(c)[0,|s|−1] = s and s ∈ ω̃(FM ). ◁373

◀374



1:12 Rice’s theorem for generic limit sets of cellular automata

The last two lemmas show that M 7→ FM is a reduction from the Halting problem of375

Turing machines on empty input to the problem of decision of P.376

5 Conclusion and perspectives377

We proved Rice’s theorem for generic limit sets of CA, which means that for example generic378

nilpotency is undecidable. In the case of limit sets and µ-limit sets, the nilpotency problem379

has the lowest complexity in the arithmetical hierarchy amongst properties of limit or µ-limit380

sets (Σ0
1-complete for limit sets and Π0

3-complete for µ-limit sets). It may be the case once381

more for generic limit sets. Lemma 6 gives a Π0
3 upper bound on the complexity of generic382

nilpotency and Törmä suggests in [12] that the exact complexity could be obtained using a383

construction close to the one presented in [1] or in the present paper. One might think that384

another version of Rice’s theorem could be deduced where the lower bound of complexity on385

non trivial properties of generic limit sets is higher than Σ0
1.386

Using again constructions of [1], one can certainly prove properties similar to the ones387

obtained on µ-limit sets in the same paper, but also build examples to show that the languages388

of µ-limit set and generic limit set can have totally distinct complexities like Σ0
3-complete389

versus a full-shift.390
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