Research Report

ISG-RR-95-1

Compiling The Typed-Polymorphic
Label-Selective A-Calculus

Denys Duchier

May 1995

|

‘i

Copyright © Intelligent Software Group, Simon Fraser University.

This work may not be copied or reproduced in whole or in partaisy commercial purpose. Permission
to copy in whole or in part without payment of fee is grantedrion-profit educational and research pur-
poses provided that all such whole or partial copies incthédollowing: a notice that such copying is by
permission of the Intelligent Software Group (ISG) of Simenaser University (SFU), in Burnaby, British

Columbia (Canada); an acknowledgement of the authors aliddual contributors to the work; and all ap-

plicable portions of the copyright notice. Copying, reprotion, or republishing for any other purpose shall
require a license with payment of fee to the Intelligent ®afe Group. All rights reserved.

Abstract

In the label selective-calculus, arguments are passed by name rather than byoposibstractions{¢ =

z} M and applicationd/ {¢ = N} are parametrized by an explicit labehnd arbitrary commutations in-
volving distinct labels are allowed. Is such an expressawgliage amenable to efficient execution? We show
that, whenA< is equipped with an ML like type system the answeyds every well-typed\® program can

be transformed into an observationally equivalent ML paogivhere all labels have been erased. Traditional
compilation methods can then be applied.

Contents
Introduction
Embedding the A-Calculus in A®
A Record Calculus on N

A With Generalized Labels

1

2

3

4

5 The Compilation Challenge
6 The Typed Polymorphic A
7 Compiling A®

8 Example

9 Interpretation Trick

10 Conclusion

g o A W W W N N PR

Compiling The Typed-Polymorphic Label-Selective A-Calculus 1

1 Introduction

The prime innovation introduced by the label-selectivealculusA® is to pass arguments by name rather
than by position, as is normally the case is most programiainguages. Common Lisp keywords afford
an intermediate capability that permit arguments to be naamel supplied in arbitrary order; however, this
syntactic extension does not commute with curryifg, on the other hand, is predicated on the commutation
of named abstraction and application.

Positional Arguments: makebox(300,200)

Common Lisp Keywords: (makebox :width 300 :height 200)
(makebox :height 200 :width 300)

L abel-Selective A-Calculus: makebox {width =- 300} {height=- 200}
makebox {height=- 200} {width = 300}

The syntax ofA® is that of theA-calculus extended so that both abstraction and applitatie augmented
with an explicitlabel:
M = 2| M=ot M| M{{=M}

Congruences. Named applications are allowed to commute, and so are nabstchetions, provided the
labels involved are distinct:

f {fl = 61} {fz = 62}
A{El = l‘l}A{Ez = 1‘2} M

f {fz = 62} {fl = 61}
A{Ez = l‘z}A{El = 1‘1} M

wherel; # (5 andzy # z2.
Garrigue and Ait-Kaci [1, 2] introduce the additional comgnce:

(/\{El :>$1}M) {Ez :>62} = A{El :>l‘1} (M {Ezjez})
if /1 # ¢; andz; is not free ine;. They define a rewrite system based on these equations &vgyeitin

B-reduction and show its confluence.

Quotient Notation. In this paper, we will put forward a view based on congrueatiear than one based on
rewriting and normal forms. The syntax introduced earlamn be naturally extended to denote expressions
in the quotient space:
Fllo=en. ta=en E flli=ea). Al =en)
MO =, b= b M E NG =2} M, =2, M

where the/; are all distinct.

2 Embedding the A-Calculus in A

The most natural way to embed thecalculus inA¢ is to use natural numbers as labels. Thus we define the
syntactic equivalence:

f6162 dIef f{1:>61,2:>62}

Research Report ISG-RR-95-1

2 Denys Duchier

However, a look at currying shows that we must contend witingeresting new complication. Consider a
function f of 2 curried arguments. A partial applicationpto its first argument returns a new function that
expectsf’s second argument as its first argument: in other words it éxpects that argument on label 1.
Therefore, we must have the congruence:

f{1:>61,2:>62}
f{2:>62} {1:>61}
f{1:>61} {1:>61}

In other words, it is necessary to renumber the labels.

3 A Record Calculus on N

We now take a closer look at currying it with integer labels. Since, in the quotient space, a fundso
applied to a record of arguments, the result of applying atfon to several curried records must be the same
as applying it to the combination of these records. Theegfare shall now elucidate the rules governing
record combination, also callencatenation

Consider a functiorf of 4 arguments. The partial application pto its 1st and 3rd arguments returns a
function which expectg’s 2nd and 4th arguments as its 1st and 2nd:

f{1:>61,2:>62,3:>63,4:>64} = f{1:>61,3:>63}{1:>62,2:>64}

In the first partial application: the 2nd argument is the lissing and the 4th argument is the 2nd missing.

Record Concatenation. We shall writer x r’ for the concatenation of recordsndr’, and it is defined as
follows:

rrt = {hi=en, . in et x {0, > e}
= {i1:>el,...,in:>en,¢r(i/1):>e/1,...,¢T(i;,):>e;,}

whereg, (1) = ith position not used in.

4 AS With Generalized Labels

We may now combine the ideas of symbolic labels and intedpeidaa generalized label is defined as a pair
(s,7) of a symbols and an integet. A particularly interesting interpretation of such labedgardss as a
channel name andas a message number.

The natural embedding of thecalculus is now achieved by means of a distinguished charame..
Thus, integer labet is now represented by generalized lapek).

Generalized Congruence. The commutation congruences that take into account thessagerenumber-
ing of labels can be expressed in the quotient space by tloevialy equations:

rr’ = frxr
f

Arar’ M Arxr M

wherex is the natural extension to paits, ;) where renumbering is carried out separately for each cthanne
names as described earlier.

Simon Fraser University Intelligent Software Group

Compiling The Typed-Polymorphic Label-Selective A-Calculus 3

5 The Compilation Challenge

The question we shall consider in the remainder of the papar what cost does the expressiveness of
come? Consider these difficulties: arguments may be supplieof order, as irf {{s = ea} {¢1 = e1}.
More generally, a function can be partially applied to aruargnt out of order, e.gf {¢s = e5}. It can
even be applied to an argument that is not meant for itselfdo@n eventual resultf {¢s = e3}. Finally, a
function may be passed around as an argument and then invokanown ways:f {¢; = g}.

CanA< be compiled and executed efficiently? In the following wevshiaat, if we equipA® with a type
system, then the answer is a surprisingly simple yes.

6 The Typed Polymorphic A€

First, we extend\® with alet construct to obtain an ML-like language:
M = z|Ml=ae}M|M{{=M}|lde=MinM
We equip this language with an ML-like type system:
= clv| =T —1
o = TI|VoT
and the usual inference rules:

r-M:{{=rt—-7TEN:T
reEM{{=N}: .7

Fe:7HM: 7 @) '-M:7T,e:YorEN:7
TEMl= et M {{=T1—1 F-letz=MinN:7/

wherev are the free vars af not free inl’

(1) Te:Vorka:[7/o)r 2

3)

Congruence on Types. The congruence on terms induces a congruence on types: teofuaicerm must
have all types corresponding to every permutation of itaents.

Uh=nt—.. .. ={h=>mt—-7 = {L=antx.. . x{lh=>m}—T

Rule(2) must be applied modulo this congruence so thit the first premise can always be identified with
7 in the second premise.

Type Inference Algorithm. It is sufficient to modify the usual algorithm so that it maiims functional
types in canonical form¢; = n, ..., ¢, = 7,} — 7 wherer is not functional.

7 Compiling A®

We are going to show that every typalll€ program can be converted to the ordinasgalculus where labels
have been erased. Traditional methods of compilation cam e applied.

The basis of this transformation is that for evexy program typable modulo the congruence on types,
there exists an equivalent program typable without the neerce. The constructive proof is by transfor-
mation of the type inference proof tree. The notion of ederee between programs that we consider is
observational equivalence

The only problematic rule i€) for typing applications:

Research Report ISG-RR-95-1

4 Denys Duchier

Mismatch between actual and formal parameters. Notice thatr appears in both premises &). Con-
gruence may be required to identify the occurrenceiafthe left premise (i.e. the type of the formal argument
on label¢ of abstraction\/) with its occurrence in the right premise (i.e. the type @& #dctual argumeny).

Argument out of order. Notice that left premise and conclusion share the same falttahay well be that
the type inferred forl/ does not naturally take its first argument on labbut requires congruence to bring
the argument o to the front.

Type driven syntactic transform. In either of the cases we just described, we have an expresdiose
inferred type is congruent but notidentical to its desisgret We now define a type driven syntactic transform
that maps an expressian of typer to an equivalent expressidm:l of typer’. The transformation uses
conversion to take arguments in the order in which they arengiand supply them in the order in which they
are expected.

N|: = N
NBZT T RS T o A 2 e} M = e NG = DY A = T
{timzm}——={l,z>Tmn}—17 T 1 Lig.-- n Ln 1 Y1 T/ Yn T

wherey; andr/’ are defined by the congruences:

W= mx*{l, =1} = s {l, =1}
W =aitx - x{l, =2, = {L=ytx o x{l =y}

8 Example

Consider the following program wheter = M meansh = Ar M:

Ai= v}
letgla = z}{b=y} =yin
let f{c = 2}{d =y} =x{b=y}in
fla = v}H{d = v}{c =g}

We will not explicitate the whole typing tree; instead we hjiist look at the program’s last line. 1t is
clear thatf andg have the following type schemes:

g:Vaf{a=a}—-{b=>8} =0
fVaple={b=>al -6 —={d=a}—p

Furthermore the inferred type for the occurrence ah the last line is:
{ez{b=zal—{a=zal—al—={d=al—{aza}l—a
whereas its desired type is:
{lazat—={d=zal—={c=z{a=zal—={b=za}l—a}—a
Therefore, we must replace the last line with its transform:

f|{a:>oz}—»{d:>oz}—>{c:>{a:>oz}—»{b:>oz}—»oz}—»oz
{ez{bza}l—{aza}l—a}l—{d=za}—{aza}—a

= Ma= s} {d = yIMe= 2} He= 028702070 d = yHa = o}

=Maz zIMd=ylMe= 2} fles Mb= 2 IMa= o) 2{a = ' Hb = 2} Hd = y}H{a = 2}

Thus we obtain the observationally equivalent program:

Simon Fraser University Intelligent Software Group

Compiling The Typed-Polymorphic Label-Selective A-Calculus 5

Mi= v} =
let f{la = «}{b =y} =yin
let g{c = 2} {d = y} =x{b =y} in
Ma= 2t Md = ytMe= 2}
fle=AMb=2IMa=z ¢} 2{a= Yy Hb= 2} {d = yHa = 2})
{a = vH{d = v}{c=g}

9 Interpretation Trick

We are now going to show that labels can be erased. First wgoamg to plunge\® into Standard ML. The
trick is to interpret a label both as a type and a data constructor as if defined by:

datatype’a of £ = [of 'a

Now {¢ = ¢} in an application}/ {¢ = e} is interpreted as an application of the data construttor
expressior, and{¢ = z} in an abstraction{¢ = z} M is interpreted as pattern matching.

This interpretation yields an ordinary ML program whichypable with the ordinary ML type system.
This program is observationally equivalent to the origih@lprogram and can be compiled using traditional
techniques.

Erasing labels. Sum types with only one alternative can be erased. Valuepaaieed by an application
of a constructo¥ before being handed to the receiving function which then édiately unpacks them by
pattern matching. Therefore we can simply erase all labels.

10 Conclusion

We have shown that whea® is equipped with a ML-like type system every program typaiseng the
congruence on types can be transformed into an equivalegtam typable without the congruence. The
transformation relies on-conversion:

f=At=z} flt =z}

which preserves observational equivalence: only valuéseé types can be compared; functions are obser-
vationally equivalent iff they produce the same values dbmplts.

Finally, we described a mapping 4f into Standard ML that allowed us to erase all labels and gegchi
the application of standard method of compilation.

Our transformation method introduces many abstractionmaly be remarked, however, that many of
them arenon-escaping because they occur only in functional position and do notireqgclosures to be
created on the heap. In fact, since they often just rearrtirggerder of arguments, they may sometimes be
completely eliminated by the compiler.

References

[1] Hassan Ait-Kaci, Jacques Garrigue. Label-selecthaalculus. Digital PRL Research Report 31, Paris,
May 1993.

[2] Hassan Ait-Kaci, Jacques Garrigue. Label-selecthgalculus: Syntax and Confluence.

[3] Hassan Ait-Kaci, Jacques Garrigue. The Typed Polymicrpabel-selectiver-calculus. Digital PRL
Research Report 35, Paris, Oct 1993.

Research Report ISG-RR-95-1

