Research Note

Draft (do not distribute)

Reconciling Finite Domains And
Constrained Sorts

Denys Duchier

Draft of 23 November 1995

|

‘i

Copyright © Intelligent Software Group, Simon Fraser University.

This work may not be copied or reproduced in whole or in partaiey commercial purpose. Permission
to copy in whole or in part without payment of fee is grantedrion-profit educational and research pur-
poses provided that all such whole or partial copies incthédollowing: a notice that such copying is by
permission of the Intelligent Software Group (ISG) of Simenaser University (SFU), in Burnaby, British

Columbia (Canada); an acknowledgement of the authors aliddual contributors to the work; and all ap-

plicable portions of the copyright notice. Copying, reprotion, or republishing for any other purpose shall
require a license with payment of fee to the Intelligent ®afe Group. All rights reserved.

Contents
Introduction
Finite Domains And Sort Hierarchies
Constrained Sorts

1
2
3
4 A Calculus With Entailment
5 Constraint Propagation

6

Efficient Implementation

A W N N PP

Reconciling Finite Domains And Constrained Sorts 1

1 Introduction

Logic programming derives much of its appeal from the faet ihallows computation over incompletely
specified objects where the missing parts are filled in asssacg as the computation proceeds. This is what
terms containing logic variables are about. Constraintlpgogramming extends this approach and allows
constraints to be imposed on the missing parts. The desiredes is thus incrementally approximated by
constraining the shape and domain of the missing parts.

In Life, this view of logic programming as operating on appnoations is at the very foundation of the
language and is reflected in the notion of:derm. A i-term is asorted extensible record (see e.g. [2]).
The sort hierarchy generalizes the distinction betweemtd@nd unbound variables: in Life, there are no
variables, only more or less specializegerms; what used to be an unbound variable is now an instzince
the top sort (with no features).

Constraint logic programming over finite domains also enages the user to think of certain variables
(namely finite domain variables) as incremental approxionatof integer values. My purpose in the rest of
the paper is to take a look at the correspondance betweea diorhains and sort hierarchies, to identify a
technical difficulty with this view when constraints (inteanal filters) are attached to sorts, and to propose a
resolution of that problem which in turn suggests a gereatitin of the finite domain perspective.

2 Finite Domains And Sort Hierarchies

A finite domain variable X is an approximation of a value by $le¢ of values which are consistent with all
current constraints on X. For example, CLP(FD) [3] impleisdimite domains over small natural numbers
and all constraints have the forknin » wherer is a range expression.

A hierarchy of sorts is a richer structure than a set of grotaides. Each sort may be regarded as an
approximation of its subsorts. However, unlike a finite domariable whose range can, in principle, be
any subset of values, a sorted variable can only range owse tilistinguished subsets corresponding to the
elements of the sort lattice.

Unless we have a complete lattice, in order to recover a fléyibf range similar to that of finite domain
variables, it is necessary to introduce the notion dfspunctive sort, i.e. a finite disjunction of elements of
the sort lattice. Thugs, ;.. .;s,}! approximates all the sorts in the union of their downsets.

Unifying sorted variables requires computing the GLB ofitiserts. Efficient lattice operations can be
supported using e.g. a bit vector encoding of sorts. As nbyedlit-Kaci etal. [1], disjunctive sorts can be
naturally captured by such an encoding and require no matit of the GLB operation (typically bitwise-
and).

Therefore, in principle, we can lift the idea of computingiwiinite domains to that of computing with
disjunctive sorts.

Example: Consider the sort hierarchy: d e J and consider the sorted variabte: {b; ¢}
whose disjunctive sort approximates the union of the dotens®b andc i.e. {b,¢,d, e, f}. If we add the
further constrainX : «, then the consistent domain &f shrinks down tq(d; e}.

For the purpose of illustration, we will choose to repressmts using the straightforward bit-vector
encoding of their downset. The necessary computationseaaried out efficiently on this representation:

1This is Life syntax for the disjunction of sorts throughs,.

Research Note Draft (do not distribute) Draft of 23 November 1995

Reconciling Finite Domains And Constrained Sorts 2

disjunction is bitwise-or and conjunction is bitwise-ahd.

| a b ¢ d e f

a 10 0 1 1 0

b 0101 1 0

c 0 01 0 1 1

(e} |0 1 1 1 1 1
ake{b;e} |0 0 0 1 1 0 ={d;e}

3 Constrained Sorts

In a language such as Life, however, every saran be equipped with a set of constrai(t®’) which must
be satisfied by every instancé of s. Without loss of generality, we can assume that there istigxane
constraint(X') per sorts.

Sort constraints are mainly used in two complementary ¢aesicfirst, to filter out certain refinements
which do not satisfy a coherence requirement; second, asaasv@ adding sort specific information to a
i-term (e.g.all men have male gender

Let us writeX : {s;;...;s,} for a variableX ranging over a disjunctive soft;; . ..; s, }, ande;(X)
for the constraint associated with seyt It may well be that; (X) is inconsistent with the current context,
in which case we would like; to be removed fronk'’s range, e.g. by adding the constraint: —s;.

In fact, all s; may similarly be incompatible with the context, in which ease should like (indeed
require) that the computation fail immediately.

Consider the earlier example: now suppose thatposes the constraiti.£ = 1 that X's feature/ must
be 1, and thatf imposesX ./ = 2. Now, if X ./ is sofar undetermined, both refinements remain possible. If
X .£ is known to bel, thenX is inconsistent with the constraint gh thereforef must be removed from
its range and we conclude that : e. Finally, if X.Z is known to be, say3, then it is incompatible with
bothe and f; as a consequence, its range is reduced to the empty disiniactd the computation fails and
backtracks.

In general, to determine that a constraint is inconsisteétit the current context requires showing that
none of its instances (specializations) can be derivedttisreason, in WILD Life, the decision was made
to always enumerate disjunctive sorts: thus, having cotethib an alternative; we can simply add; (X)
to the goal expression to enforce the satisfaction of ite@ated constraint. Unfortunately, this approach
nullifies our attempt to use disjunctive sorts a la finite dors.

In this paper, | propose a way of reconciling constrainedssaith the finite domain view of disjunc-
tion. My approach is both semantically sound and lendsfiteedn efficient implementation that preserves
incrementality.

4 A Calculus With Entailment

In [7] Gert Smolka describes a calculus for concurrent gairgis with deep guards. It is parametrized by a
constraint theonA and includes a conditional:

if Fthen F dse ¢

or, more generally:
if 3z(E then F) dse ¢

?Negation is bitwise-complement.

Research Note Draft (do not distribute) Draft of 23 November 1995

Reconciling Finite Domains And Constrained Sorts 3

We are not concerned with the specifics of the calculus hezenerely wish to make use of the conditional
construct and its semantics.
In particular, constraints can be propagated into the goBadconditional:

7 Aif Ethen FeseG=rAifr A Fthen Fesed
The reduction rules for the conditional capture the notibarailmentanddisentailment

if LALEthen FdseG 1— G
if T thenFdseG 1l—-F

More precisely, for entailment:
if 3z(E then F)dse G L— 3z (E A F) whendzE =T

Given a variableX ranging over a disjunctive soft ;. . .; s, }, we wish to filter out as soon as possible
thoses; whose associated constraintX') becomes inconsistent with the current context. We achtggéy
posing constraints of the fornif ¢;(X) then T else X : —s; which simultaneously check for entailment or
disentailment of;(X). In case the constrainf(X) becomes inconsistent with the store, we further impose
that X cannot be a specialization ef — whether there is an efficient way of representing the comptd
of a sort entirely depends on the encoding method used arsdbaffect the present argument.

Unfortunately, if X suddenly becomes a specializationspbeforec; (X) is entailed by the context, we
must add-; (X) to the goal toenforce its satisfaction, thereby redoing much of the work alredtisceed by
incremental simplification of the conditionidle;(X) then T else X : —s;.

Instead, we would rather somehow switch from passively ldhgcfor entailment or disentailment of
¢;(X) to actively searching for a resolution-based proof. Toaghthis objective, | propose a small extension
of Smolka’s calculus for CCP where guards now have the fbfimn:

if E7z then F dse G

x can be interpreted as indicating whetliémustbe true.”T can be regarded as a kind of modal operator
must be trugwhereas | is an identity. We replace Smolka'’s reduction rules for theditional by the ones

below:
if (LAE)xthen FeseG 11— 2= 1LAG

if T?zthen F dse G 11— F
if E7T then I dse ¢ 1l— EAF

Every sort constraint;(X') can now be attached tojaterm X using two conditionals:

if ;(X)7tthen T dse X : —s;
A ifX :s;thent=Tédset =L

This technique is related to the notionreffied constraintsliscussed e.g. by Henz and Witz in §4].

5 Constraint Propagation

A legitimate question is, when we consider a disjunctive,samd in fact any sort at all (since individual
sorts can be regarded as singleton disjunctions), shoulgostonly the conditionals corresponding to the
maximal sorts or should we just go ahead and post thera fsubsorts as well.

Our view of disjunctive sorts as a generalization of finitenéins suggests that this choice may be re-
garded as the distinction betwepartial lookaheadndfull lookahead

3Thanks to Serge Le Huitouze for pointing out this connediiome.

Research Note Draft (do not distribute) Draft of 23 November 1995

Reconciling Finite Domains And Constrained Sorts 4

Partial Lookahead: only propagates when the bounds are modified. In the casesjoindtive sorts, the
bounds are the maximal sorts (maximal elements of the dajvnse

Full Lookahead: propagates for every modification of the domain. In the cdsdispunctive sorts, this
means the complete downset, i.e. all the subsorts. In defidtdookahead is obviously a great deal more
expensive than partial lookahead.

6 Efficient Implementation

We presuppose a system which performs incremental checkiagtailment and disentailment simultane-
ously, e.g. usingelative or situated simplificatio5, 6]. = in £7x can be viewed as a status racessity
associated with the store in whichis being simplified. When this status is setToall local bindings are
promoted to the top level and all suspended guards in the aterpromoted as top level goals.

References

[1] Hassan Ait-Kaci, Robert Boyer, Patrick Lincoln, anddeo Nasr. Efficient implementation of lattice
operations. Technical report, MCC, Jul 1988.

[2] Hassan Ait-Kaci and Andreas Podelski. Towards a mepafiife. Technical Report PRL-RR-11, DEC
PRL, May 1993.

[3] Philippe Codognet and Daniel Diaz. Compiling consttsiim clp(fd). Journal of Logic Programming.
To appear.

[4] Martin Henz and Jorg Wurtz. Using oz for college timbltag. In International Conference on Practice
and Theory of Automated Timetabling. DFKI, 1995.

[5] Andreas Podelski and Peter Van Roy. The beauty and thst ladgorithm: Quasi-linear incremental
tests of entailment and disentailment. In Maurice Bruyrnangeditor,Proceedings of the international
Symposium on Logic Programming (ILPS), pages 359-374. MIT Press, Nov 1994.

[6] Andreas Podelski and Gert Smolka. Situated simpliftoatin Proceedings of CP95, 1995.

[7] Gert Smolka. A calculus for higher-order concurrentstaint programming with deep guards. Research
Report RR-94-03, DFKI, February 1994.

Research Note Draft (do not distribute) Draft of 23 November 1995

