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ABSTRACT: Trees with labeled edges have widespread abjiigafor example for the representation
of dependency syntax trees. Given a fixed number of nodesoasttaints on how edges may be drawn
between them, the task of finding solution trees is known amfigtiration problem. In this paper, we
formalize the configuration problem of labeled trees anduarghat it can be regarded as a constraint
satisfaction problem which can be solved directly and eiffidy by constraint propagation. In particular,
we derive and prove correct a formulation of dependencyipgras a constraint satisfaction problem.

Our approach, based on constraints on finite sets and a neviyfafrselection’ constraints, is especially
well-suited for the compact representation and efficientpssing of ambiguity. We address various issues
of interest to the computational linguist such as lexicabaguity, structural ambiguity, valency constraints,
grammatical principles, and linear precedence. Finallytwen to the challenge of efficient processing and
characterize the services expected of a constraint programg system: we define a formal constraint
language and specify its operational semantics with infegerules of propagation and distribution.

This framework generalizes our presentation of immediatéestic dependence for dependency parsing
[4] and extends naturally to our corresponding treatmentinéar precedence [6] based on a notion of
topological rather than syntactic dependencies.

KEYWORDSIabeled trees, configuration, constraint satisfactiomstoaint propagation, set constraints,
parsing, dependency grammar
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1 Introduction

This article presents a formalization of finite trees withdked edges: well-formedness
is characterized by a small number of equations and treessgnd precisely to the
solutions of these equations. The advantage of our appiiedhht all our equations
can be interpreted as constraints and can be solved diresitly constraint program-
ming technology. The constraint-based approach is edpewill-suited for the com-
pact representation and efficient processing of ambigaitgl, constraint propagation
is very effective in pruning the search space.

We begin with a characterization of the legal trees whichlmaassembled from a
finite setV of nodes and a finite set of edge labels. Arranging the nod&sinto a
tree requires choosing, from the set of all possible labebigks, a subset such that
the resulting graph is a tree. This task may be regarded a¥igaration problem and
can be formulated as constraint satisfaction problem sugted to a constraint-based
approach. We then entertain various refinements, especgdélvant to linguistics,
where admissibility is further restricted either by gem@rinciples or through lexi-
calized constraints. Finally, we address the issue of efftgirocessing: it is achieved
by effective model elimination through constraint propgéga For this reason, we
give precise operational semantics to all our constraimtise form of inference rules.
The search for solutions of a constraint satisfaction gnob|CSP) is defined formally
as the derivation of consistent saturations under theseeinte rules.

The objects described by modern linguistic theories sudhR&G [21, 22] or LFG
[15] are typed features structures (TFS) and the theorexadklves consist primarily
in the formulation of general structural principles of widlrmedness that determine
which of these objects are licensed. These theories arardége and constraint-
based and remain uncommitted to any particular processetgad. While TFS are
appealing and easily integrated in unification-based cdatjomal frameworks, they
result in grammatical formalisms which are hard to procéfssiently. The process-
ing challenge is further exacerbated when attempting towdcfor languages, such
as German, where free word order and discontinuous coastgwiolate the assump-
tions of linearity and adjacency underlying many parsirupteques.

In [4], we described an alternative approach based on Depeydsrammar (DG).
An advantage of DG is that it allows syntax trees with cragdiranches, and thus
does not fall prey to the difficulties we just mentioned plagugrammatical for-
malisms that have traditionally assumed and required gtiggeanalyses. We showed
how parsing could be formulated succinctly as a constraiigfaction problem (CSP)
solvable efficiently by constraint programming. One nagveltour approach was the
central importance given to sets and constraints on sethias.

Our purpose in the present article is twofold. Firstly, wetadct the approach of
[4] away from the details specific to dependency grammar. atklé the more gen-
eral problem of configuring trees with labeled edges and deinate how it can be
formulated as a CSP. In this manner, our techniques gainrwcepe, for example
extending naturally to the treatment of linear precedersseiibed in [6]. Secondly,
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we give a formal account of constraint programming suffictersolve the aforemen-
tioned CSPs: we define an abstract constraint language,letatypspecify its oper-
ational semantics by means of inference rules for propagathd distribution, and
prove that solutions precisely correspond to the condisi&turations. It is our hope
that, by providing formally precise blueprints of the caasit propagation mecha-
nisms required, we may both promote an understanding arilitafecthe adoption
of our constraints in other systems, not necessarily basedurs, on the concurrent
constraint programming language Oz [19].

We begin the article, in Section 2, with an example of depeoganalysis for
German taken from [4]: it provides a concrete illustratibatthelps understand the
abstractions which follow. Section 3 lays down the fourmtaiin the form of a for-
malization of labeled trees. To a great extent, the coneseof our formulation and
the effectiveness of our treatment of ambiguity rely onéséibn constraints’: first
introduced in [4], they are presented intuitively in Seatiband further extended to
an entire family of aggregative selection constraints.

We then consider various refinements of interest to the ctatipnal linguist: in
Section 5 we tackle the problem of lexical ambiguity; in $@tb we further extend it
to the treatment of lexicalized valency constraints; int®ac/ we describe how fami-
lies of well-formedness principles can be expressed aediated into our framework
to further restrict admissibility of edges, e.g. for reasoh‘agreement’; in Section 8
we introduce ‘disjunctive attributes’ for a treatment oftaguity that helps improve
lexical economy; then in Section 9 we propose an extensiopdially ordered trees
which permits the characterization of projective analys®sthe formulation of linear
precedence constraints.

Finally in Section 11 we address the issue of efficient preiogsand describe what
we expect from the constraint programming services. We dogramit to any partic-
ular implementation technique, rather we describe coimstpgogramming at a very
abstract level as a formal system with deterministic infegerules of ‘propagation’
and non-deterministic rules of ‘distribution’. In this frework, the search for solu-
tions is precisely the derivation of consistent inferdraiturations. We believe that
we offer the right level of abstraction to permit instaribatto a variety of constraint
programming and constraint logic programming systems thadight level of detail
for the practical implementation of our constraints shahky not already exist in the
target system.

2 Informal Introduction to Dependency Parsing

In [4] we described a constraint-based approach for coctitigidependency tree an-
alyses of German sentences: it serves as the starting jpoitttef more general and
abstract formulation developed in the remainder of thegirearticle. In this section,

we begin with an example taken from that earlier work to pdevihe reader with a

concrete illustration of what we propose to generalize.
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das Buch hat mir Peter versprochen zu lesen

str : "Buch" str : "hat"
cat:n cat :v_fin

agr : (neut sing 3 acc) agr : (neut sing 3 nom)
val : {det} val : {subject, vpast}

FiG. 1. Example of Dependency Tree

Consider the German senteritias Buch hat mir Peter versprochen zu lesén”
Figure 1 shows a corresponding dependency analysis asttdtes the fact that the
relative freeness of word order often requires analysds eviissing branches. Char-
acteristic of the dependency approach, there is exactlynode per word, displayed
here as a box labeled with the linear position of the word engéntence, and edges
are labeled with syntactic roles such asbject’ or ‘zuvinf’. Furthermore each
node is assigned a lexical entry from a lexicon: Figure lldispthe lexical entries
assigned by the parser tBuch’ and ‘hat’ identified respectively b and. Each
entry stipulates phonology, category, agreement and elém Section 6, we propose
an alternative approach to lexicalized valency constsaint

Dependency Grammar.We now briefly review the formal framework for depen-
dency grammar proposed in [4]. For simplicity, we omit treatment of modifiers
and of linear precedenéeA dependency grammar is given by:

(Strs Cats Agrs, Roles Lexicon Ruleg

whereStrsis a finite set of strings, such d8uch" or "hat", notating the fully in-
flected forms of wordsCatsis a finite set of categories such agor noun, d for

1Stripped of intonation and of modifiers, for the sake of sigipl, the example does not sound convincing to the Germanbes the
following sentence due to Joachim Niehren exhibits the sstnueture and sounds perfectly natur@enau diese Flasche Wein hat mir mein
Kommissionér versprochen auf der Auktion zu ersteigern”

2e shall see in Section 6 that modifiers do not actually reqegparate treatment in our approach.

Swe consider it again in Section 9 and more extensively in [6].
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determiner, ox_f in for finite verb. Assuming the following sets for gender, n&@mb
person and case:

Gender= {masc, fem, neut} Number= {sing, plur}
Person= {1, 2, 3} Case= {nom, acc, dat, gen}

we poseAgrs = Gendex Numbelix Personx Casefor the set of agreement tuples such
as(masc sing 3 nom). Rolesis a finite set of grammatical functions suchsa®ject

or zuvinf for an infinitive with ‘zu’ which serve as edge labels in thepdadency
tree. A lexical entry is an attribute value matrix with sityne:

str : Strs
cat : Cats
agr : Agrs
val : oRoles

and specifies phonology, category, agreement and valeheléxiconis a finite set
of lexical entries. We use functional notation and wie(w) for the category of the
lexical entry assigned to node: Finally, Rulesis a family (I',,) of binary predicates,
indexed by grammatical functiopsc Roles expressing local grammatical principles:
for an edge labeled from motherw, to daughtervs to be admissible, the condition
I' (w1, w2) Must be satisfied; for example, fax, to serve as the determiner of noun
wy it must (1) be a determiner, (2) agree with the noun, i.e.:

Cger (w1, we) = cat(we) =d A agr(wy) = agr(ws)

Dependency Trees.We assume an infinite sétodesof nodes and define a labeled
directed edge as an elementifdes<Nodes<Roles A dependency tre@/, E, entry)
consists of a finite set’” C Nodesof nodes, a finite seE C V x V' x Rolesof
labeled edges between these nodes, and a funaiien : V' — Lexiconassigning a
lexical entry to each node. A dependency tree is admisdib(&)iit forms a tree in
the classical graph theoretical sense, (2) every node leassply the outgoing edges
required by its valency, (3) for every edge, , ws, p) € E, the condition", (w1, w2)

is satisfied.

Of course, the lexicon typically contains several lexiagties for each word which
results in considerable lexical ambiguity. Our approacteiy effective in handling
both lexical and structural ambiguity and achieves thigdgrthrough the use of ‘se-
lection constraints’ (Section 4). Figure 2 illustrates precessing achieved for our
example by the parser of [4]. On the left is displayed theerefl reading, while on
the right we see the complete search tree where a circlesamiea choice point, a
diamond leaf a solution, and a square leaf a failure. Whatésésting is that there are
no failures: constraint propagation is very effective; veed exactly 1 choice in order
to enumerate the two possible analyses. Why are there 2sms&lySimply because
both ‘Buch’ and ‘Peter’ can indifferently be assigned eitheminative or accusative
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case, therefore either one can be subject while the othdijésto Constraint propa-
gation is sufficient to resolve all other ambiguities, bakital (what lexical entry to
choose for each word), and structural (what edges to draweeet nodes).
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FiG. 2. Parser Demo

3 Formalization of Valid Labeled Trees

We begin with a precise characterization of all well-forntesses which can be assem-
bled from a fixed finite set of nodés and edges with labels drawn from a finite get
These trees correspond precisely to the solutions of theti@nt satisfaction problem
on set variables articulated below.

Finite Labeled Graphs. We assume given an infinite sgtof nodes and a finite set
L of labels. A directed labeled edge is an elemen?of V x £. We writeG(V, £)
for the set of finite graph& = (V, E)) formed from a finite set of noddé C V and a
finite set of labeled edgds C V' x V' x L. Note that, since we assunieto be a set,
we only consider graphs without duplicate edges. We vBit&, £) for the graphs in
G(V, £) whose node set .

Finite Labeled Trees. A finite graph is a tree if and only if it satisfies the following
“treeness conditions”:

(a) Each node has at most one incoming edge
(b) There is precisely one node with no incoming edge (on8 roo
(c) There are no cycles

We write T (V, £) for the subset 06(V, £) satisfying conditions (a), (b) and (c). In
the following, we are going to formulate a constradat, (V, £) which a finite graph
G = (V,E) € G(V, £) must satisfy in order to be i (V, £).

We writew—¢—w' for a labeled edgéw, v', ¢) andw—¢—gw’ for w—f—w' € E.
We define the successor relatien;= U{—¢—¢|¢ € L} and write—/, and—, for
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its transitive and reflexive transitive closures. Givenlatren R C V' x V, we define
R :V — 2V and the overloading : 2" — 2" as follows:

R(x) ={y | (z,y) € R} R(S) = U{R(x) | = € S}
In this manner, the edges of a gra@gtinduce the following functions:

lg = —l—g downg = Hg rootsg = V \ —¢(V)
daughters = —¢ eqdowns = —¢&
Given these definitions, we can reformulate the treenesditimms more formally.
Condition (a) states that each node has at most one incordijgy ee. that for any

nodew”, there exists at most orfec £ and onew € V, such thatw” € ¢ (w); or,
equivalently, that:

Vel e L Yw,w' €V (A0 VvV w#w) = lgw) || lg(w) (3.1)
where|| represents disjointness. Condition (b) requires thagtberone unique root:
[rootsg| =1 (3.2)
Finally, condition (c) forbids cycles, i.e. it must nevertbe case thab — ¢, w:
Yw eV w & downg(w) (3.3)

Our formalization so far assumes that the edges are givesudls, it is appropriate
for deciding whether a graph is a tree. On the other handpidsly suited for parsing
where the edges are unknown and the task is precisely to feglpe edges licensed
by the grammar. To overcome this difficulty, instead of udimg edges as a starting
point, we are going to use the functions defined above whiepitihduce.

In a tree, these functions satisfy additional propertiexiwvive state below! (w)
are the/-daughters ofv. By definition of — and condition (a) restated as (3.1), the
daughters ofv satisfy the equation:

daughtersq(w) = W{lg(w) | £ € L} (3.4)

wherew denotes disjoint union. By definition eéots; and condition (a), a node is
either a root or is the daughter of precisely one node:

V =rootsg W W{daughters,(w) | w € V'} (3.5)

By definition of transitive closurei~}, = —¢ o —%. In other words, the nodes
strictly beloww are those equal to or strictly below its daughters:

downg (w) = U{eqdown (w’) | w" € daughters,(w)} (3.6)
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(I)|D(V, ,C) =
V = roots W W{daughters(w) | w € V}
A Jroots| =1
AN YweV
eqdown(w) = {w} W down(w)
A down(w) = U{eqdown(w’) | w’ € daughters(w)}
A daughters(w) = W{l(w) | £ € L}

Fic. 3. well-formedness condition of labeled trees

By definition of reflexive transitive closures, (w) = {w} U —&(w). Additionally
the acyclicity condition (c) requires thatdoes not occur ir-{;(w). Therefore:

eqdown;(w) = {w} W downg(w) (3.7)

These properties lead us to formulate a constr®iptV, £) (see Figure 3) in terms
of variableroots of type2" and functional variablegaughters, down, eqdown and/
(for all ¢ € £) of typeV — 2V. A solution of ®5(V, £) is an assignment to these
variables such tha®|p(V, £) is satisfied; in other words, posing = {¢1,...,¢,}
and writing I for the typeV — 2V, a solution of®5(V, £) is a tuple:

(roots, daughters, down, eqdown, ¢1,...,4,) : 2V X Fx Fx Fx Fx ---x F

that satisfie®p (V, £). We writeSol® 5 (V, £)) for the set of solutions b p (V, £).
Every solutiono of @p(V, £) defines a grapfo]ip = (V, E) where:

E={w—t—w'|weV,leLl, welw)}
Overloading the notation, for each e G(V, £) we also define:
[Glio = (rootsg, daughters,, downg, eqdowng, l1, - - -, bni)

THEOREM 3.1
T(V, L) is in bijection with the solutions @b (V, £). More precisely a grapld- is a
tree iff [G]p satisfies®p(V, £):

VG e G(V, E) G e T(V, [,) = [[G]]”) S SOlE((IHD(V, E))
and every solutiom of ®,5(V, £) defines a tree:
Vo € SO|E{<I’|D(V7 [:)) [[U]]ID S T(V7 E)

The first claim follows from properties (3.4—3.7), while fbe second one it is straight-
forward to establislr = [[o]ip]ip. ®in(V, £) can be interpreted as a constraint satis-
faction problem (CSP) and Theorem 3.1 establishes thespwnelence between the
solutions of this CSP and the formal objects of interest, elgrthe treesT (V, £).
Throughout this article, we state similar theorems to \&édhe constraint-based ap-
proach.
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4 Set Constraints And Selection Constraints

Equation (3.6) while mathematically elegant poses a psicgshallenge: when solv-
ing the CSP, (1) we don’t know the elementsletighters(w), (2) we don’t know what
set valuesqdown takes at these elements, and yet we must compute their cethbin
union. In this section, we introduce the constraint-basetepts that will allow us to
achieve it simply and efficiently.

4.1 Set Constraints

Finite domain (FD) constraints have become a reasonahtglatd tool of the trade
and are routinely used in computational linguistics agtians. Set constraints, on
the other hand, have remained largely unexploited evergththey are available and
well supported by modern constraint technology [12, 20, 18]

In our work, constraints on finite sets (FS) of integers hawmerged as an especially
elegant and computationally effective tool for such lirgjigis applications as parsing
with a dependency grammar [4, 6] or solving dominance camgs [5, 8], for the
treatment of discourse [7], parsing with tree descripti®@sand underspecified rep-
resentations of semantics [10].

We will elaborate on constraint programming at greater lemg Section 11. For
the moment, we shall simply say that the partial informatiout a FD variabld
can be represented in the forme D where D is a set of integers, and the partial
information about a FS variablé can be expressed by a lower boumd and an
upper boundDs in the formD; C S C D,. The role of constraint propagation is
to improve this partial information. Whehe {k} we say thatl is ‘determined’ and
write I = k. WhenD C S C D, we say thafS is ‘determined’ and write&5 = D.

4.2 Selection Constraints

An essential contribution of [4] was the ‘selection conistfavhich permits the com-
pact representation and effective processing of many farfhs&lectional ambiguity
such as lexical ambiguity (i.e. the selection of a lexicahefrom those available for a
particular word in the lexicon). Consider a variabfevhich may be equated with one
of n variables(V;). We can explicitly represent this choice using an integeatse /,
also called a finite domain (FD) variable, taking valuegin..n} and the selection
constraint below:

X =(Vi,..., V)]

where(V1,...,V,,) represents the sequence of varialifeshroughV;, and the nota-
tion (V1, ..., V,,)[I] was chosen for its similarity to the subscripting notatibfacray
lookup’ in many programming languages, and indicates seleof the Ith element
out of the sequence. Thus the declarative semantics of theeatonstraint is simply
X =V
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The origins of this powerful idea are to be found in CHIP'sf@lent’ constraint
[2] which related two finite domain variabldsand K and a sequencgy, . . ., j,) Of
integer values:

In [4], we extended it in two directions: first we allowed thegsence to consist of
variables rather than constants; second, we supportedsblEttion out of sequences
of finite domain variables:

I={(J1,...,Jn) K]

as well as out of sequences of finite set (FS) variables:
S =(S1,...,S.)[K]

wheresS, S; are FS variables denoting finite sets of integers.

4.3 Propagation And Constructive Disjunction

One advantage of the selection constraint is that it is ablenplement simply and

efficiently a form of constructive disjunction (lifting ohformation common to all

alternatives not yet ruled out). Here is an example thastilates the propagation
which may be expected from the selection constraint:

S = (81,5, 85)[K] {1,3}C 8 C{1,2,3} Sp={2.4} {1}CS5C{1,4}
From the above, constraint propagation infers:
Ke{1,2,3} SC{1,23,4}
If we further assert ¢ S, thenS; becomes incompatible since it contains
Ke{1,3} {1}CS5c{1,2,3}

Note thatl was inferred to be a necessary element'cfince it is a known element
of both alternativess; and.Ss, one of which must eventually be chosen. If we now
assert € 9, thenSs becomes incompatible since it cannot contain

K=1 S=5 ={1,2,3}

4.4 Dependent Disjunction

The fact that the selection constraints makes the choickcéxjprough a selector
variable K permits dependent selections. Consider for example:

I={(J,....J)K] (4.1)
I'=(Ji, ..., J)K] (4.2)
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the choice of whichJ; to equate with/ and which.J to equate with/” are mutually
dependent since they must be effected by the same seléct@.1) and (4.2) can be
viewed as contexted constraints sharing the same conteabla/’, or equivalently
as realizing the following dependent (or named) disjumsiooth labeled with name
[17, 3, 11, 13]:

I =0V ... VI=J);
(I'=Jjv ... vI=J);

Notational variations on dependent disjunctions have lused to concisely express
covariant assignment of values to different features itufeastructures. The selec-
tion constraint provides the same notational conveniencedgzclarative semantics,
but additionally enjoys a computational reading with aé tienefits that accrue from
state-of-the-art constraint technology.

4.5 Selection Union Constraint
A novel contribution of the present article is the ‘selestimion’ constraint:
S =U(S1,...,S)[9]
where the selectas’ is now a set. Its declarative semantics are given by thevialig
equation:
S=U{Sk | keS}
Thus we empower an essential mathematical instrument vaidimgoutational reading
based on very effective constraint propagation. Posing {wy,...,w,} and iden-
tifying w; with the integer representing its position in the input sentefi@guation
(3.6) can now be rewritten:
down(w) = U{eqdown(wy), ..., eqdown(w;,))[daughters(w)]

A family of aggregative selection constraintsThe selection union constraint selects
a subset specified by of the elements of sequen¢§, .. ., S,,) and combines them
using union. Clearly, other modes of combination are péssihich opens up a whole
family of aggregative selection constraints. For example:

S =n(S1,...,S)[9]

S =w(S1,...,S.)[9]

I=+{(J1,..., Jn)[9"]
In Section 11 we take the ‘selection union’ and ‘selectideiigection’ constraints as
primitives and fully specify their operational semantigsibference rules of propa-

gation. The simpler selection constraints of Section 4e2d&fined in terms of the
selection union constraint.

4This identification of a node with the linear position of theresponding word in the input sentence will remain in effecthe remainder
of the article.



12 Language and Computation, Vol. 0 — No. 0, 0000

5 Lexical Ambiguity

For the application to dependency parsing, each node igreessi lexical entry from
a lexicon. A lexical entry supplies a number of attributeteinms of which additional
constraints may be formulated. In this section, we fornegtli'ese notions and demon-
strate how the selection constraint elegantly addressdsghe of lexical ambiguity.

A lexicon (&€, .A) consists of a finite sef of objects called ‘lexical entries’ and a
finite setA of functions called ‘attributes’, where eache A is of typea : £ — N
ora: & — 2V, Foreache € £ anda € A, a(e) is the value of attributer in lexical
entrye. An attribute might specify such things as category, agesgnor valency.

Given alexicon&, A), agraphV, E) € G(V, £), and an assignmeat. V' — & of
lexical entries to nodes, we cdW, E, ¢) anattributed graph We writeG(V, L, £, A)
for the set of attributed graphs aidV, £, £, A) for the subset which are trees. For
eacha € A with typea : £ — T, whereT is N or 2%, we introduce the overloaded
functiona : V' — T called anode attributeand defined byx(w) = a(e(w)) for all
wevV.

For parsing, the choice afis not free: in particular, only a subset®fs applicable
to each word. This we model by means of a restriction fundéen V' — 2¢. For
example, ifw corresponds to the word ‘versprochen’, thex(w) should be the set of
lexical entries for ‘versprochen’. We say thaf, E, ) is lex-attributed if:

YVw €V e(w) € lex(w) (5.1)

and writeT(V, £, £, A, lex) for the set oflex attributed treegV, E, ¢) over (€, A).
During parsinge is not given but must be chosen. The degree of freedom in this
choice (see 5.1) is called lexical ambiguity. In order tosup efficient parsing, it
should be possible to constrain a node attribute)) while leaving the choice(w)
of lexical entry underspecified.

Thus we are confronted with the problem of computing a fuomcét a point which
is only partially known. Supposinigx(w) = {ei, ..., e,}, the idea is to introduce an
FD variableentry(w) € {1,...,n} to represent the index of the selected entry and to
obtaina(w) with the following selection constraint:

a(w) = <a(61)’ R a(en)>[entry(w)] (52)

In this equation, the sequence consists of elements horaogsly of typeN or 2V
and thus is in the domain of applicability of the selectiongtoaint. Forw € V, we
have one equation (5.2) for eaahe A, but they all share the same selectotry(w).
In this fashion, as explained in Section 4.4, all attribwgtestions for the same node
are forced to be covariant. This is an additional sourcefeté¥e propagation: if any
constraint affects one selection, it affects them all.
It is this intuition which we now proceed to formalize. Witltdoss of generality,
we revise the type déx : V — £* to map each node to a sequence rather than a set
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of lexical entries, and assume that each sequence contathgaticates. We define:
e={ep,..en)k] = 1<k<nAe=eg

We writee € lex(w) whene occurs in sequendex(w) and denote byQlex(w) its
position in this sequence, or more generally the smallegth thae = lex(w)[i]. An
assignment : V' — £ is lex-restricted iff:

Yw eV e(w) € lex(w) (5.3)
¢ induces functionentry, : V' — Nanda;. : V — T foreacha; : £ = T; € A:

entry, (w) = (w)@lex(w)

aie(w) = a;(e(w))
Given a sequencg; . ..e,) € £*, we define:
(al{er-..en)) = (aler)...alen))
The functions induced by satisfy the following property:
Yw eV, Vo, € A aie = (a; | lex(w))[entry, (w)] (5.4)

PosingA = {a; : € —» T1,...,a, : € — T,} (whereT; is N or 2%), we now
formulate a constrain® gx(V, £, A, lex) (Figure 4) in terms of functional variables
entry : V — Nanda; : V — Ty fora; : € — T; € A ®ex(V,E, A, lex)
characterizes alex-restricted assignments: V- — & over (€, A).

D ex(V,E, A lex) =
Yw eV é\Aa(w) = (a | lex(w))[entry(w)]

FiG. 4. Well-formedness condition fdex-restricted assignments

A solution of @ gx(V, £, A, lex) is a tuple:
(entry,aq,..., ) : (VoN)x (VT x - x (V—=>1T,)

that satisfie® gx(V, £, A, lex). Every solutiorr of @ gx(V, £, A, lex) defines dex-
restricted assignmeft ] ex:

[o]Lex (w) = lex(w)[entry(w)]
Furthermore, for eaclex-restricted assignment we also define:
[elLex = (entry,, cue, - -+ s Qe

Writing A(V, €, A, lex) for the set oflex-restricted assignments: V. — & over
(€,A), we have:
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THEOREM5.1
A(V,E, A, lex) is in bijection with Sol6® gx(V, &, A, lex)).

Vo € Solg® ex(V, €, A, lex)) [o]ex € A(V,E, A, lex)
Ve e A(V,E, A, lex) [e]Lex € Sol @ ex(V, E, A, lex))

6 Structural Ambiguity and Valency Constraints

In the constraint formulatio®,(V, £) of Figure 3, for eachv € V and/? € L,
¢(w) is a set variable. During parsing, this variable is typicalrtially known. For
example it might be constrained by the following bounds:

{wy,we} Cl(w) C {wy, ws, w3}

indicating thatv’s only possible outgoing edges labeled witlrew—£¢—wq, w—{—wo
andw—/¢—ws, that the first two have been accepted, but that the case tdghene
hasn't been decided yet. Thus, with set variables, we are tablepresent an am-
biguous tree structure. All possible edges are simultasigaepresented, initially
() C ¢(w) C V, and parsing is a process of disambiguation: candidateseatgeeither
accepted or rejected. When evéfy) is determined, the tree is fully disambiguated.

Disambiguation is to a large extent driven by grammaticalst@ints for subcate-
gorization embodied in lexicalized valency constraints.

Lexicalized Valency Constraints When parsing with a dependency grammar [4], we
are not free to draw arbitrary edges between nodes. The iogtgdges of a node
represent the complements and modifiers of the correspgmeind. The nature and
number of these edges are restricted by grammatical valeapecified in the lexicon.
We formalize this as follows:

For every! € L, there is a corresponding attributé, € A with type|-|, : £ — 2.
Thus each lexical entrystipulates a set|, of licensed cardinalities for thedaughter
set: the number of outgoing edgeswfabeled with? must be one ifw|,:

[6(w)| € |w] (6.1)

|w|, depends on the choice of lexical entry and, following equma(b.2), is given by
the selection constraint:

lwle = (] - |e [ lex(w))[entry(w)] (6.2)

In order to specify a requirettargument, a lexical entry need only fixje|, = {1}.
For an optional argumente|, = {0, 1}. For a modifier which may appear 0 or any
number of timesje|, = {0,1,..., 1} whereyu is some arbitrarily large integer—for
any particular sentence of length it is sufficient to choose. = n — 1 since for
any one word, there are at most- 1 arguments to be had. For an illegal argument:

lele = {0}
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We say that an attributed grapgh= (V, E, ¢) fulfills its valencies iff:
Vi-le€e A Yw eV [g(w)] € |e(w)|e (6.3)

and formulate a corresponding constrainia (V, £, £, A) in Figure 5.

SuaL(V.L,E,A) = YweV N Jlw) € wl
el

FiG. 5. Well-formedness constraint of valency-fulfilling gresp

Writing TvaL(V,, £, €, A, lex) for the set ofiex-attributed trees that fulfill their valen-
cies, we have:

THEOREMG6.1
TvaL(V, L, E, A, lex) is in bijection with the solutions of:

’~I>||;)(V7 E) A q)LEX(V, 5, A, Iex) A q)VAL(V, E, 5, .A)

Partial Functions. In passing, it may be useful to mention a related and gewerall
useful transformation for the constraint-based treatroépértial functions. A partial
function f : A — B is especially vexing for a constraint-based approach tsecau
constraint abouf is not meaningful everywhere, but only at points whgie defined.
Frequently, the problem can be solved by replacing theglduimction f by the total
function ' : A — 25 such thatf’(z) = {f(x)} if f is defined atr, andf’(z) = 0
otherwise. For example, we might in this fashion convehyemiodel the notion of
‘mother’: every node has a unique mother except the roothwhis none.

7 Grammatical Principles Licensing Edges

While valency constraints restrict the number of edges dmhegrammatical function
¢ € L, grammatical principles express additional local condgifor the admissibility
of edges. For example, abject complement is required to be an accusative In
[4] (see Section 2) we proposed that a dependency gramrpatagé a family(T')
of binary predicates indexed by edge labels and sucHtat, w’) characterizes the
grammatical admissibility of an edge-/—w’. In this section, we develop the frame-
work for expressing these predicates and formalize theespanding restrictions.

For our purposes, it suffices to consider the language wHusteaat syntax is given
in Figure 6 wherex, y are variables ranging over nodeéslenotes an arbitrary integer,
D an arbitrary finite set of integers{z) an attribute of node, andFE || E’ expresses
the disjointness of the sets denotedgnd E'.

For each?/ € L there is a binary predicaté, of the form Az,y - C (i.e. a P)
which must be a closed abstraction of our language. We sathattributed graph



16 Language and Computation, Vol. 0 — No. 0, 0000

P = JAx,y-C
FiG. 6. Constraint Language For Principles

G = (V, E, ¢) satisfies the grammatical principlds,) if for all w,w’ € V andl € L:
w € lw) = G ETy(w,w) (7.2)

whereG | T'¢(w,w’) means thati satisfiesI'y(w,w’) and is defined in the usual
Tarskian way. For example, the grammatical principlesdading an object comple-
ment or an adjective edge might be expressed as follows:

Iobject = Az,y - cat(y) € NP A agr(y) € ACC
Az,y - cat(y) = a A agr(z) = agr(y)

1—‘adj

wherenp represents the set of noun phrase categories{e,gro}), Acc the set of
all agreements with accusative case, artde category of adjectives. (7.1) gives rise
to a quadratic number of implicational constraints whiolexpected to work in both
direction, i.e. whe,(w, w") becomes inconsistent; ¢ ¢(w) should be inferred.

We formulate in Figure 7 the constrai(V, £, £, A, (T';)) which characterizes
the attributed graphs that satisfy the grammatical priesif;).

Dp(V,L,E,A(Ty) = VYww eV, Vel wellw)=T(ww)

FiG. 7. well-formedness constraint for the satisfaction ohgraatical principles

8 Disjunctive Attributes

Often it is convenient to use a set valued attribute) to indicate a disjunction: any
value ina(w) is licensed. We calkv a disjunctive attribute. For example, distinct
agreement values are frequently not morphologically mtigtishable: while we could
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nonetheless create many otherwise identical lexicalesthiat differed only in agree-
ment, in the interest of lexical economy it is convenient$e an attributegrs(e) to
represent the set of possible agreement values for lexital €

For example, the German articleen” is either masculine singular accusative or
any gender plural dative. However, only one value from tkisnsay be assigned to
the corresponding node. We formalize this notion as follows

Let A; C A be a distinguished subset of so called ‘disjunctive’ attiéls. They
must be set-valued, i.e. for eache Ay, the lexical attribute has type : £ — 2.
For eacha € A,, there must exist a corresponding node attriltitg, : V' — N

defined as follows:

theq (w) € a(w) (8.1)
For example, writingigr instead ofthe,4,s, we have:

agr(w) € agrs(w)

which ensures that node is assigned precisely one agreement value from the set of
agreements licensed by its selected lexical entry. In jpe&gt is frequently legal for a
parser to leave an attributee,, underspecified. It is sound to so when it can be guar-
anteed that every partial solution that leaves, underspecified can be consistently
extended to a complete solution that determittes,. The conditions under which
propagation is complete in this sense are outside the sddpis article.

9 Partially Ordered Projective Labeled Trees

The labeled trees considered so far are unordered anddheietnnot naturally ex-
press word order. In this section, we consider an extensiaut formalization of
labeled trees which overcomes this limitation.

Unordered labeled trees are adequate for the representdtisyntactic’ depen-
dencies and sufficed for the treatment of immediate deperdamesented in [4]. For
a corresponding treatment of linear precedence, we prdposgs] to introduce a
second tree to represent ‘topological’ dependencies.

In the topological tree, both edges and nodes are labeledhanset of labels is
totally ordered. As we shall see, thanks to this total oritlés, possible to define the
linearizations licensed by the tree. For concreteness ragept now an example:

dassMaria einenMannwird liebenkdnner?
that Maria a man will love can

Figure 8 displays its unordered non-projective syntax, tvelgle Figure 9 presents
one possible topological tree. In the topological tree,eclddpels are intended to
correspond to the notion dieldsin the classical topological sentence model [1], e.g.

Sthat Maria will be able to love a man
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ubject vinf.
D/ E) \/D
; w7
ob-S:ed
ae‘/l?/ : :

o

(dass) Maria einen Mann wird lieberbknen

FIG. 8. Syntax tree

mf/«\‘?l?\xf
= =
: d : : v :

(dass) Mzaria einen Mann :wird Iieberblﬁnen

FiG. 9. Topological tree

mf represents the Mittelfeld and the extraposition field. Nodes are also labeled: in
Figure 9 these labels are displayed on the vertical dotteg$ ljoining a node to the
word it stands for in the sentence. The total order assum#ttiaxample is:

d=<df <n<mf<vc=<v=<xf

Order on edge labels induces a partial order on the daugifteesch node and, by ex-
tension, on the subtrees rooted at these daughters. Fopexavann’ and ‘lkonnen’
have respectively edge labels andxf. Sincemf < xf, ‘einen Mann’ precedes ‘lieben
kdonnen’. The order is partial because siblings with the saiige &bel are not respec-
tively ordered: this is the basis for the account of scrangpin the Mittelfeld. The
label assigned to a node allows to position it with respeitstdaughters. For example
‘wird’ has node label and, sincenf < v < xf, it must occur between ‘einen Mann’
and ‘lieben bnnen’. Thus the topological tree licenses 2 linearization

1. (dass) Maria einen Mann wird liebedhnen
2. (dass) einen Mann Maria wird liebedrknen
We will now distinguish a sefg of edge labels and a séy of node labels, and

assume given a total ordet on £ = Lg W Ly. Given(V, E) € T(V, Lg), an as-
signment/ : V — Ly of node labels to nodes, and a total oreeon V', we say that
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G = (V,E,I,<)is awell-ordered tree if it satisfies the following conditio

w—li—gw; N w—la—gwey Al <l = w <ws (9.1)
wy oG W A we G wy A wy <ws = wi < wh 9.2)
w—l—gwy A I(w) =40l Nl <l = w <w (9.3)
w=l—gwy A I(w) =0l AN ls <l = w<w (9.4)

We define the additional functiongojt; : V' — 2" for £ € L:

projé =—go—l—¢ forl € Lg
y  J{w} i I(w)=4¢
proji (w) = { 0 otherwise for/ e Ly

projé(w) for ¢ € Lg is the set of nodes in the subtrees rooted’at/-daughters. We
overload< to obtain a partial order o2" as follows:

S1 < Sy = Vw1€S1, Yws € So wy < wo VSl,SQQV

It can be shown easily that the well-ordering conditiond4{9.4) are satisfied iff the
following property holds:

Vi, lo € L,Yw eV U1 <ly = projé% (w) < projé2 (w) (9.5)

Thus the well-ordering conditions can be simply realizegéguentiality constraints
between sets. The well-ordered labeled trees with nddesdge labels inCg, node
labels inLy, and respecting the total orderon Lg W Ly are in bijection with the
solutions of®p(V, Lg, Ly, <) shown in Figure 10.

®p(V,Le, Ly, <) = Pip(V, LE) A
Yw eV
{w} =w{l(w) | £ € Ln}

AYL e Ly projf(w) = L(w) A [l(w)] #0 = £ = T(w)
AL e Le  projf(w) = U{eqdown(w’) | w’ € £(w)}
AV, by € LEW Ly 01 < Ly = proj (w) < proj?(w)

Fic. 10. well-formedness condition for ordered labeled trees

It is possible, and in practice desirable, to improve prepag by formulating
stronger constraints. For example, the property that afleptions must be convex
(i.e. intervals without holes) may be written:

Yl e Lg, Yw eV convex(proj‘(w)) (9.6)

The declarative semantics aénvex(.S) is that for allw;, wy € S, if w1 < wy then
for all w such thatw; < w < wo, alsow € S.
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10 Constraint-Based Dependency Parsing Revisited

In this section, we revisit the treatment of dependencyipauaf [4] which we briefly
outlined in Section 2. We show how to instantiate the frantéwieveloped in the pre-
ceding sections to obtain a mathematical characterizati@dmissible dependency
syntax trees which also has a reading as a constraint prodviaculo issues of pro-
gramming language syntax, the result is a parser. As in@egtiwe define a depen-
dency grammag by a 6-tuple:

G = (Strs Cats Agrs, Roles Lexicon Ruleg

whereStrs= {"Buch", "hat", ...} is a finite set of strings notating the fully inflected
forms of words,Cats= {d,n,v_fin,...} is a finite set of categories which without
loss of generality we can identify with (i.e. encode as)dets,Agrs = Genderx
Numberx Persork Case= {(masc sing 1 nom), ...} is afinite set of agreement tuples
which again we can identify with integerRoles = {det,adj, subject, object,
dative,...,zuvinf} is a finite set of grammatical predicates to be used as edge
labels. A lexical entry is an attribute value matrix with fieowing signature:

str : Strs ]
cat : Cats

agrs . 2Agrs

| : |det : 2N

| : |Zuvinf . 2N

which specifies phonology, category, possible agreemant$,valency restrictions.
ThelLexiconis a finite set of lexical entries, and we choose a fundtokup : Strs—
Lexicori such that/'s € Strs lookup(s) is a sequence without duplicates formed from
the elements ofe | e € Lexicon A str(e) = s}, i.e. such that:

e € lookup(s) = str(e)=s

An example lexical entry for ‘Buch’ is:

str : "Buch"
cat 'n
agrs . {(masc sing 3 nom),

(masc sing 3 acc),
(masc sing 3 dat)}
| laee : {1}
|"adj {0,,M}
| : ‘subject . {0}
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It requires one determiner, permits any number of adjestif@bids a subject, etc. ..
Attribute agrs is identified as a disjunctive attribute and we weitg for the,gs. Fi-
nally, Rulesis a family (T';) of binary predicates indexed by roles ahg(w, w’)
must be satisfied to license a syntactic dependency lalfeiienin headw to argu-
mentw’. PosingNP = {n,pro} for the set of noun phrase categories aruv =
Genderx Numberx Personx {nom} for the set of agreements with case nominative,
we define these predicates using the language of Sectionrillustration, here are
the predicates for roleset andsubject:

Faer = w,w'- cat(w')=4d A agr(w) = agr(w’)
Powbject = Aw,w’ - cat(w') € NP A agr(w) = agr(w’) A agr(w') € NOM

Constraint Formulation. We now provide the translation scheme which transforms
an input sentence; ... s, into a constraintfs; ... s,] that precisely character-
izes its valid dependency analyses according to our grangmdihe translation fol-
lows the framework developed in the preceding sections. Mfeduce a seV =
{ws,...,w,} of nodes, one for each word of the input sentence. We fioseRoles

& = Lexicon A = {cat,agrs, | - aets -+ | - |zuving | Aa = {agrs}, andlex(w;) =
lookup(s;) for 1 < i < n. All valid analyses are given by the solutions of:

‘I’|D(V, ,C) A\ (I)LE)((V,S,A, Iex) AN ‘I’VAL(V,,C,g,.A) AN <I>p(V,£,5,A, (Pg))

thus we arrive at the translation shown in Figure 11.

In order to obtain a concrete parser, we must also stipulataech strategy. In
practice, the following strategy has proven quite sattsigc first, apply distribution
rules to determine all daughter séfsv) for w € V, ¢ € L, then apply distribution
rules to determine all other attributes.

The account of dependency parsing presented here is ontgrwd with syntactic
dependencies and ignores word-order. We have pursued evues of approach for
the treatment of linear precedence:

Statistically Preferred Reading.The first approach for the treatment of word-order
is based on statistical methods and was developed jointly Whorsten Brants. As-
suming the input sentence is a well-formed utterance, dahallanalyses which our
program is able to derive, some are more likely to corresporide actual lineariza-
tion than others. Thus, the idea is to inform the searchegjyatsing statistics derived
from a corpus. At each choice point where we need to decidelge, ave pick first
the one which the statistical oracle ranks as most likelyis Bpproach has proven
quite successful at deriving first the intended readingn @véhe presence of repeated
extrapositions.

Topological Dependency TreesThe second approach aims at formalizing the prin-
ciples of linear precedence and is the subject of currertarel with Ralph Debus-
mann. Corresponding to the non-ordered tree of syntacgiert#encies, we postulate
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[s1-..8n] =

V = roots W W{daughters(w) | w € V}
A Jroots| = 1

AN YweV
eqdown(w) = {w} W down(w)

A down(w) = (eqdown(wl) .,eqdown(w,, ))[daughters(w)]
A daughters(w) = ( JW... W zuvinf(w)
A cat(w) = ( | lex(w))[entry(w)]
A agrs(w) = (agrs | lex(w))[entry(w)]
A [wlaer = (| - laer | lex(w))entry(w)]
R TR —
A |det(w)| € |w]qet
/.\ |zuvinf (w)] E || uving
A agr(w) € agrs(w)
A

Yw' eV w' € det(w) = Tger(w, w’)
Aw' € zuvinf(w) = Toyyins(w, w')

Fic. 11. Translation into constraint

a tree of topological dependencies (see Figure 9) that tapgiordered and projec-
tive. These two structures are mutually constraining. Hpigroach instantiates the
framework developed in the present article including theeesion of Section 9 for
projective partially ordered analyses. In [6], we used provide an elegant account
of the challenging phenomena in the German verb complex.

11 Constraint Programming

In this section, we precisely describe the constraint @agning support necessary
and sufficient to express and solve the CSPs presentedreatlies article. We pro-
pose a formal system of constraints and inference rulesgafide constraint propa-
gation as deterministic inferential saturation.

Let A = {0,...,u} be an interval of integers for some sufficiently large piedti
limit 1. We assume an infinite set of FD variables writled’, I; with values inA and
an infinite set of FS variables writte$1 .S’, S; with values in2%. We write D, D', D;
for a ‘domain’, i.e. a fixed subset &, andi, j, k, n for particular integers id\.
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Initialization
— TeA
— (fCS
— SCA
Clash
Ied — false
Dy CSANSCDyANDy € Dy —  false
Strengthen
leDiANTeDy — TeD NDy
D1§S/\D2§S — D1UD2§S
Sng/\SgDQ — Sngng
Weaken
IeD — JTeD DCD' CA
DCcS — D CS D' CD
SCD — ScUD DCD CA

Fic. 12. Rules for basic constraints

11.1 Basic Constraints

Information about a satisfying assignment will be refineztémentally by alternating
steps of deterministic ‘propagation’ and non-determiaististribution’. Therefore
we need means to represent partial information about agramsint and this is real-
ized by ‘basic constraints’.

A basic constraint for a FD variabletakes the forml € D for a domainD. On
the other hand, the assignment to a FS varighkeapproximated by lower and upper
bounds, i.e. by basic constrainly C S andS C Ds.

Basic constraints are given by the following abstract synta

B == false | IeD | DCS|SCD | BiABy

and they are subject to the inference rules of Figure 12.r&&un under these rules
guarantees that a constraiBis either inconsistent (i.e. contaifidse) or that for each
FD variablel in B, there is a most specific basic constraint D, and that for each
FS variableS in B, there are most specific lower- and upperbound basic camstra
D, C SandS C D,. Posing:

1] = n{D|(eD)eB)

S| = U{D|(DCS)e B}

[S] = n{D|(SCD)e B}
]

whenB is saturated, all of € |I], resp.|S| C S andS C [S] are inB and are the
most specific bounds on variablésresp.S. Indeed, we should usB as a subscript
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ieS = {i}CS S=D = DCSASCD
igS = SCA\{i} I<n = Te{n,...,u}
I=i = Te{i} n<I = T1€{0,...,n}
I#£i = TeA\{i}

FiG. 13. Abbreviations

and write| Iz, | S| and[S] 5, but, since this is never ambiguous, we will omit it
to avoid notational clutter. All inference rules given iretfollowing are motonously
increasing in their premises: more specific premises yigdemspecific conclusions.
For this reason, it is sufficient and simpler to express theterims of| I], | S| and

[S1.

11.2 Non-Basic Constraints

We now extend our constraint language with ‘non-basic’ t@imsts, also known as
‘propagators’, and express their semantics in the formfef@nce rules.

C == B|CiANCy | TS | I¢S|S={I}]|S|=1|
L <Iy | S C 8 | S1 <82 | convex(S) |
S =081, SIS [ S =10(S1, -, 5n)[9]

To increase legibility, we adopt the abbreviations of FgiB. For example the se-
mantics of the membership constraint S is given by the following inference rules:

— IE|—S-|
I=i — eS8

Figure 14 lists all primitive binary constraints and Figd&our two primitive selec-
tion constraints. We can further extend our constraint agg with the following
derived constraints defined in Figure 16:

C = ...| L= |8 =5/]S51]5]
S=8U---US, | S=81N---NS, | S1 <=8, |
S=(S1,.... ) | I=AI1,.... In)[I']

The curious reader will find in [18] a detailed account of geistraints in Oz [19].

11.3 Disjunctive Propagators
Finally, we extend our constraint language with ‘disjunetipropagators:

C = ...|010I’CQ
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IesS =
— IE’—S]
I=i — 1€8
1¢8 =
I=i — ¢S5
— TeA\|S]
11§I2 =
— Iy e{min(|11]),...,u}
— I, €{0,...,max(|I2])}
SlgSQ =
—  |S1] €85,
— 51 C[S)]
15| = =
— sl <1
— I <|[5]]
n<IA|[S]|l=n — [S]CS
I<nAllS]l=n — SC|S]
S1 < S =
|_51J7é(2) — SgQ{min(u,max(LSlJ)+1),...,u}
|S2] #0 —  S; C{0,...,max0,min([S2]) — 1)}
convex(S) =
S| #0 — {min(|S]),...,max|S|)} C S
S={I} =
IeSnAn|S|I=I'ANT=1
— SC|]

FiG. 14. Constraints as sets of inference rules

The declarative semantics©f or Cs is simply that of disjunction. In Logic Program-
ming, the only method for processing complex disjuncti@san-determinism. Thus

in Prolog, writingC ; Cs operationally results in first trying’;, and, if that fails,
backtracking and trying@’s instead. This has several drawbacks: (1) it is not sound
(failure to proveC is not the same as provingC), (2) it forces the computation to
commit immediately to exploring either one alternativela other.

Early commitment is a poor strategy. It is often preferablel¢lay a choice until
sufficient information is available to reject one of the aitgives. That is the intuition
underlying the disjunctive propagatar; or Cs is a propagator not a choice point. It
blocks until either”; or Cy becomes inconsistent with respect to the current store of
basic constraints: at that point, the propagator commésreduces to, the remaining
alternative. In this way, a disjunctive propagator has g@atative semantics of sound
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S= U5 .S =
— S C{1,...,n}
— SCU{ls;]]je S}
— US]ljelslrcs
LS;1 2151 — j¢5
LSINU{TS HJG[S'W\{’C}HM —
€ S"ALSINU{[S;] 4 € [ST\{k}} C Sk
S =n(S1,...,8.)[8] =
— S C{l,...,n}
- N{LS]1ie[srcs
191 #0 — SC{[S;]]jelY]}
S| Z 1551 — j¢5
LS 17 e [S'INARIN[ST#0 —
ke S NSk € AN(O{1S;] 7€ ST\ kI [ST])

FiG. 15. Selection constraints rules

I= <Il77-[’n>[Il]
S:U<Sl,...,5

11:[2 = I <12/\12§[1

51152 = S QSQ/\SQQSl
S=8U-US, = S=U(S1,....8)[SAS ={1,....n}
S=8nN--NS8 = S=n(S,....9) A ={1,....,n}

S <=8, = ANSi=<Sj|1<i<j<n}

51”5’2 = S:S ﬂSQ/\S @

S=(S1,....S)I" = S=U(S,....,S)[SAS ={I'}
n)

LIAS={I} ANS;j ={L;} |1 <j<n}
FiG. 16. Derived constraints

logical disjunction, unlike Prolog’s;” operator which implements merely negation-
as-failure. The operational semantics are given by thes togdow:

BACy —* false BACy —* false
B A (Cl or CQ) — Oy B A (Cl or CQ) -

where we writeC' —* false to mean thafalse is in the deterministic saturation 6f
under all propagation rules. In practice, disjunctive pggtors are frequently useful
for expressing implicational constraints such as (7.1):

w € lw) = Te(w,w') = w €l(w)ATiw,w") or w & L(w)

A precursor of disjunctive propagators was the idea of apagerd’, investigated for
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example in the Logic Programming language AKL [14]. Deeprdadave since been
generalized and subsumed by first class notions of encapdigpeculative compu-
tations, supported in the constraint programming lang@g§lL9] via ‘computation
spaces’ [23].

While disjunctive propagators are extremely powerful, ynanplicational con-
straints do not require their full power and may be adequarpressed by reified
constraints [16, 18] which are more widely supported.

11.4 Search By Propagation And Distribution

The operational semantics of a constrdihits given by a system of inference rules as
described above. Propagation is defined as inferentialaggtn under this system of
inference rules and we writ@* for the saturation of”. A FD variable! is said to be
‘determined’ inC* when | I'|¢~ is a singleton. A FS variablé is determined when
S|+ = [S]e+. WhenC* does not contaiffalse and all variables are determined,
we have found a satisfying assignmendefined as follows for all variables S'in C:

{6} = e p(S) = [Sle- (11.1)

Constraint propagation alone may not be sufficient to deterrall variables. In such
an eventuality, it is necessary to perform a non-determiénifioice: this is what we
call a ‘distribution’ step. We formalize this notion usingulibution rules. A distri-
bution rule has the formp — 17 V ¥y and non-deterministically infers either,

or ¢ when preconditiornp is satisfied. We extend the system of inference rules for
constraint”' with distribution rules as shown below for all variablgsS in C:

ielll] — i=IVitl
i€ [SI\|S] — icSVigs

A saturation ofC' under both propagation and distribution rules either dostalse
or determines all variables.

THEOREM11.1
C'is satisfiable iff it has a consistent saturation.

All rules given are valid implications, thereforfé is equivalent to the disjunction of
its saturations. Consequently(ifis satisfiable, at least one of its saturations does not
containfalse (Soundnegs Conversely, every consistent saturation defines anrassig
ments of values to variables as shown in (11.1). This assignméiriekea model of

C. We show this for the ‘selection union’ constraint whoselaestive semantics is
given by:

S=U{S1,....5.}9] = S=U{S;]1<j<n,jes}
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The first three propagations rules stipulating its openatisemantics are:
—  S'C{1,...,n}
- ScU{[s11jels}
- U{Si]lielsrcs

Therefore in a consistent saturation we have:

B(S) C{L...,n}p  B(S) =U{B(S;) | j € B}

which provesthat = S = U{S; | 1 < j <n, j € §’}. We can proceed similarly
for every constraint in our language and thus establish tydtion that, ifC has a
consistent saturation, it is satisfiab@ompletenegds

Search Strategies. The formal framework remains uncommitted as to when to apply
a non-deterministic distribution rule and which one to cdedt is clear that in order

to minimize search, distribution rules should be postpaaetbng as possible. Only
when propagation has reached a fixed point should we coregigéying a distribution
rule.

Which distribution rule to choose is the province of a seatcitegy. A well-known
traditional search strategy is ‘first-fail’: it chooses anrgetermined variable with the
smallest number of remaining possible values and enunseitatassignments. The
intent is to try to keep the branching factor low in the sedreb.

12 Conclusion

In this article, we developed a concise mathematical fazatbn of finite trees with
labeled edges. We have argued that this formulation candaeded as the specifica-
tion of a constraint satisfaction problem and that the tatéen be solved directly and
efficiently with constraint programming, provided we emgowur mathematical in-
struments with a computational reading which grants thesyofterational semantics
of constraint propagators.

We entertained various refinements of our framework of @geto the computa-
tional linguist: lexical attributes and the treatment ofiéal ambiguity, lexicalized
valency constraints, disjunctive attributes and the impnoent of lexical economy,
the formulation of grammatical principles, and a framewfwka class of partially
ordered projective trees.

A novelty of our approach is the central importance given nddisets and con-
straints expressed in terms of variables denoting finite. s&election constraints,
which we first proposed in [4], allow to give concise mathdo@texpressions a di-
rect computational reading and are the foundation for aacgffe treatment of ambi-
guity that takes full advantage of constraint propagatiwh @onstructive disjunction.
An important contribution of this article is the identifigat of a family of aggrega-
tive selection constraints. In particular, the ‘selectiomion’ constraint is revealed as
particularly expressive and versatile.
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Finally we addressed the issue of efficient processing aadhcterized the services
expected of a constraint programming system through a fosyséem of constraints
and inference rules of propagation and distribution. Wenstbthat the search for
solutions of a constraint satisfaction problem could bengefias the derivation of
consistent saturations. It is our hope that having provigetise formal blueprints
of the constraint propagation mechanisms required willifate their adoption and
integration in other systems.

The general framework presented here can be variouslynitistad. It underlies
both our treatment of immediate dependence [4] and of lipezgedence [6] for pars-
ing with a dependency grammar.
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