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Abstract—In the cellular automata (CA) literature, discrete
lines in discrete space-time diagrams are often idealized as
Euclidean lines in order to design CA or analyze their dy-
namic behavior. In this paper, we present a parallel model of
computation corresponding to this idealization: dimensionless
particles move uniformely at fixed velocities along the real line
and are transformed when they collide. Like CA, this model
is parallel, uniform in space-time and uses local updating. The
main difference is the use of the continuity of space and time,
which we proceed to illustrate with a construction to solve Q-
SAT, the satisfiability problem for quantified boolean formulae,
in bounded space and time, and quadratic collision depth.

Index Terms—Abstract geometrical computation; Signal ma-
chine; Continuous space-time; Cellular automata; Massive par-
allelism; Model of computation.

I. INTRODUCTION

Since the introduction of cellular automata (CA) by J. Von
Neumann in the forties, CA have been used as a model of
computation [Kari, 2005], self-reproduction [Von Neumann,
1966], dynamical systems [Hedlund, 1969] and biological
and physical phenomenae. CA are composed of identical and
elementary cells. Each cell can exchange information only
with its close neighbors and update its state according to
a local rule of transition. Space and time are discrete, and
information travels with a bounded speed. The evolution of
the system is parallel and synchronous, and the local rule is
applied uniformly to each cell. Different points of view are
usually considered: we can focus on only one cell, a complete
configuration of cells or the whole space-time diagram. An
alternate point of view exists and explains diagrams by signals,
particles and collisions. In this approach, the cells are just a
substrata on which information travels. Signals become the
basic objects and allow to implement computations in CA
[Mazoyer and Terrier, 1999, Mazoyer, 1996].

In this paper, we consider signal machines, an abstract and
geometrical model of computation, first introduced in [Durand-
Lose, 2003], which extends CA into continuous space and time
following the intuition outlined above. In this model, dimen-
sionless particles move uniformly on the real axis. When a set
of particles collide, they are replaced by a new set of particles
according to a chosen collection of collision rules. We consider
the temporal evolution of these systems through their space-
time diagram, in which traces of the particles are materialized
by line segments that we call signals. The space-time diagram
of a signal machine constitutes a geometrical computation.
Like CA, in which signal machines have their origins (see

Fig. 1), the model of signal machines is massively parallel,
uniform and admits a strong geometrical interpretation. The
spatial aspect of this model is essential since computations
are carried out by bits of information travelling and interacting
when they meet.
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Fig. 1. From cellular automata to signal machines.

It is possible to do Turing-computation with signal machines
[Durand-Lose, 2005] and even to do analog computation
by a systematic use of the continuity of space and time
[Durand-Lose, 2008, 2009a,b]. Of course, there are other
geometrical models of computation: colored universe [Jacopini
and Sontacchi, 1990], geometric machines [Huckenbeck, 1989,
1991], piece-wise constant derivative systems [Asarin and
Maler, 1995, Bournez, 1997], optical machines [Naughton and
Woods, 2001] . . .

Most of the work to date in this domain, called abstract
geometrical computation (AGC), has dealt with the simula-
tion of sequential computations even though the model, as
a continuous extension of cellular automata, is inherently
parallel. In the present paper, we propose signal machines
as a theoretical foundation for studying (certain classes of)
massively parallel, spatially distributed algorithms, and the
implications that potentially unbounded parallelism may have
on the nature and structure of complexity classes. Our ap-
proach is based on distributing work across space following a
fractal pattern. We illustrate this proposal with an example
of how the continuity of space and time can be used to
solve Q-SAT, the classical PSPACE problem of satisfiability
of quantified boolean formulae, in bounded space and time.
Since the amount of space and time used for a computation is
no longer particularly meaningful in our model, we offer new
measures of complexity based on the maximal length of chains
and anti-chains in the space-time diagram of a computation



Meta-Signals Speed
w 0

−→
div,
−→
lo 3
−→
hi 1

←−−
back -3

Collision rules
{ w,

−→
div } → { w,

−→
hi ,
−→
lo }

{
−→
lo , w } → {

←−−
back, w }

{
−→
hi ,
←−−
back } → { w }

−→
div w

−→
lo

w

−→hi

←−−backw

w
w

Fig. 2. Geometrically computing the middle.

regarded as directed graph.
The model of signal machines is introduced in Sect. II.

Section III presents a solution of Q-SAT on signal machines.
Discussions and remarks about the model and complexities are
gathered in Sect. IV.

II. DEFINITIONS

In this section, we introduce the model of signal machines
and illustrate it with an example for geometrically computing
the middle.

A. Signals

Each signal is an instance of a meta-signal. The associated
meta-signal defines its velocity and what happens when signals
meet. Figure 2 presents a very simple space-time diagram.
Time is increasing upwards and the meta-signals are indicated
as labels on the signals. Existing meta-signals are listed on the
left of Fig. 2.

Generally, we use over-line arrows to indicate the direction
of propagation of a meta-signal. For example, ←−a and −→a
denotes two different meta-signals; but as can be expected,
they have similar uses and behaviors. No over-line arrow
indicates a stationary signal e.g. w in Fig. 2.

B. Collision rules

When a set of signals collide, they are replaced by a new
set of signals according to a matching collision rule. A rule
has the form:

{σ1, . . . , σn} → {σ′
1, . . . , σ

′
p}

where all σi and σ′
j are meta-signals. A rule matches a set of

colliding signals if its left-hand side is equal to the set of their
meta-signals. By default, if there is no exactly matching rule
for a collision, the behavior is defined to regenerate exactly
the same meta-signals. In such a case, the collision is called
blank. Collision rules can be deduced from space-time diagram
as on Fig. 2. They are also explicitly listed on the left of this
diagram.

C. Signal machine

A signal machine is defined by a set of meta-signals, a
set of collision rules, and an initial configuration, i.e. a finite
set of particles placed on the real line. The evolution of a
signal machine can be represented geometrically as a space-
time diagram: space is always represented horizontally, and
time vertically, growing upwards.

The example of Fig. 2 computes the middle: the new w
is located exactly half way between the initial two w. This
process does not depend on the initial location of the two
walls, neither on the distance between them. Since the space
is continuous, this geometrical algorithm always works and
spatially marks the middle by a stationary signal.

III. Q-SAT IN BOUNDED SPACE-TIME

As an illustration of massively parallel computations with
signal machines, we outline a construction for solving Q-
SAT, the satisfiability problem for quantified boolean formulae
(QBF), in bounded space-time.1 Combinatorial computations
self-distribute across space following a fractal pattern and
information travels at fixed velocities.

A QBF is a closed formula of the form:

φ = Qx1Qx2 . . . Qxn ψ(x1, x2, . . . , xn)

where Q ∈ {∃,∀} and ψ is a quantifier-free formula of
propositional logic. A recursive algorithm for solving Q-SAT
is:

qsat(∃x φ) = qsat(φ[x← false]) ∨ qsat(φ[x← true])
qsat(∀x φ) = qsat(φ[x← false]) ∧ qsat(φ[x← true])

qsat(β) = eval(β)

where β is a ground boolean formula. This is exactly the
structure of our construction: each quantified variable splits
the computation in 2, qsat(φ[x ← false]) is sent to the left
and qsat(φ[x ← true]) to the right, and subsequently the
recursively computed results that come back are combined
(with ∨ for ∃ and ∧ for ∀) to yield the result for the
quantified formula. This process can be viewed as an instance
of Map/Reduce, where the Map phase distributes the com-
binatorial exploration of all possible valuations across space
using a binary decision tree, and the Reduce phase collects
the results and aggregates them using quantifier-appropriate
boolean operations. As our running example, we will use
φ = ∃x1∀x2∀x3 x1 ∧ (¬x2 ∨ x3).

A. Combinatorial comb

The first step of our construction is to put into place
the decision points for constructing the binary decision tree.
The intuition is that the decision for variable xi will be
represented by a stationary signal: the space to the left should

1We do not go into the details both for lack of space and because the formal
details of this construction have been submitted elsewhere.
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Fig. 3. Combinatorial comb.

be interpreted as xi = false and the space to the right
as xi = true. The resulting set of stationary signals form
what we call the combinatorial comb and its construction for
our example is shown in Fig 3. Everywhere, in our entire
construction (here and later), signal velocities have absolute
values 0, 1, or 3.

B. Compilation into a beam

The intuition for this next phase is that a formula of
propositional logic can be viewed as a tree (Fig 4(a)) whose
nodes are labeled by symbols (connectives and variables). One
signal is generated for each node in this tree. In order to
facilitate the naming of these signals, we decorate each node
with the unique path to it from the root. The signals for all
subformulae are generated and sent along parallel trajectories
to form a beam (Fig 4(b)). The beam is then propagated
through the binary decision tree to explore in parallel all
possible valuations (Fig 4(c)).

C. Propagation

The beam is propagated down the decision tree. For each
decision point (a stationary signal for a quantified variable
xi), the beam is duplicated: one part goes through, the other
is reflected. Except for the sign of their velocity, most signals
remain identical in both branches; most, except those corre-
sponding to occurences of xi: those become false in the left
branch, and true in the right branch (Fig 5(a)).

D. Evaluation

Eventually, the beam reaches the bottom of the decision tree
where stationary signals bl or br initiate the evaluation process
of the, by now, ground boolean formula (Fig 5(c)). When

−→
tll

reaches br, it gets reflected as
←−
Tll. The change from lowercase

to uppercase indicates that the subformula’s signal is now able
to interact with the signal of its parent connective. The stacking
order ensures that reflected signals of subformulae will interact
with the incoming signal of their parent connective before the
latter reaches br.

A connective is evaluated by colliding with the (uppercased)
boolean signals of its arguments. For example, when the
disjunction collides with its first argument, depending on the
value of the latter, it becomes either the one-argument identity
function or the constant true. This is the way the rules of
Fig. 5(b) should be understood.

Note how path decorations are essential to ensure that
the right subformulae interact with the right occurrences of
connectives. Conjunctions and negations are handled similarly.
Finally,

−−−→
store projects the truth value of the formula root

on br where it is temporarily stored until
−−−−→
collect starts the

aggregation of the results.

E. Collecting the results

Collection of the stored results is initiated by
−−−−→
collect, which

is top-most in the beam and, therefore, last. This phase folds
the tree back together, combining the two incoming results
with ∨ for ∃ and with ∧ for ∀ (Fig 6).

F. Size of the signal machine

The signal machine depends on the formula Compiling a
QBF into a signal machine can be done in quadratic time
by a Turing machine, and results in a signal machine with a
quadratic number of rules and an intial state with 3 signals.

IV. CONCLUSION

In this paper, we briefly illustrated how the propagation
of information – modeled by signals – and its interactions
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Fig. 4. Compilation of the formula into a beam of signals

– modeled by collisions – can be used methodically to
solve hard problems. We (geometrically) described a signal
machine that solves Q-SAT in bounded time and space. Similar
constructions can solve SAT (obviously, since a SAT formula
is a special instance of Q-SAT), MAX(SAT), #SAT.

The fact that signal machines can solve PSPACE and NP
problems in bounded time and space should not be understood
as a collapse of the classical complexity hierarchy, but illus-
trates the fact that complexity classes crucially depend on the
choice of a model of computation: classical classes such as P,
NP and PSPACE are defined in terms of Turing machines. It
also suggests that Turing machines are not well suited to the
study of massively parallel, spatially distributed computations.

While width and height are respectively the traditional
measures for space-complexity and time-complexity in the
discrete world of cellular automata, they clearly loose here all
pertinence. Indeed, considering the width and the height of our
construction as complexity measures does not take in account
the continuous nature of dimensions, resulting in a size of
execution independent of the size of the input. Furthermore,
the constant space and time used by a computation can be
made as small as desired because of the continuity of space-
time (it is enough to multiply all velocities by an appropriate
constant or to start with a smaller initial configuration).

Instead we should regard our construction as a
computational device transforming inputs into outputs.
The inputs are given by the initial state of the signal machine
at the bottom of the diagram. The output is the computed
result that comes out at the top. The transformation is
performed in parallel by many threads: a thread here is
an ascending path through the diagram from an input to

the output. The operations that are “performed” by the
thread are all the collisions found along the path. If we
view a space-time diagram of signal machine as a directed
acyclic graph (directed by the relation of causality between
collisions), then we can propose complexity notions adapted
to this construction. We define the time-complexity as the
maximal length of a chain and the space-complexity as
the maximal length of an antichain. It corresponds to the
maximal number of collisions along a path for the measure
of time-complexity, and to the maximal number of signals
simultaneously existing in the machine for the measure of
space-complexity. According to these new definitions, the
time-complexity of the construction of Sect. III is quadratic
in the size of the formula and the space-complexity is
exponential. It should also be pointed out that meta-signals
and rules (but not speeds) of the signal machine depends on
the formula but the compilation of a formula into a rational
signal machine can be done in quadratic time by a fixed
Turing machine.

Signal machines (and abstract geometrical computations)
remains a model of computation that is resolutely theoretical.
It illustrates the use of the continuous nature of space-time
to implement efficient solutions to hard problems. This is
achieved while keeping reasonable assumptions such as that
information has finite density everywhere and travels at
bounded (indeed, fixed) velocities. As in the discrete world
of CA, space is methodically used to propagate information
and signal machines are inherently parallel, providing a new
abstract model for parallel programming.
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All our research with abstract geometrical machines has
been carried out on rational machines i.e. machines with only
rational velocities and configurations, and all diagrams in this
paper were automatically generated by Durand-Lose’s Java-
based simulator for signal machines.

We are currently furthering this research along two axes.
First, we are considering how to tackle other complexity
classes such as EXPTIME using abstract geometrical com-
putation. Second, we would like to design a generic signal
machine for Q-SAT, i.e. a single machine solving any instance
of Q-SAT, where the formula is merely compiled into an initial
configuration.
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