
Version Control with Subversion

For Subversion 1.4

(Compiled from r2639)

Ben Collins-Sussman
Brian W. Fitzpatrick

C. Michael Pilato

Version Control with Subversion: For Subversion 1.4:
(Compiled from r2639)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato

Published (TBA)
Copyright © 2002, 2003, 2004, 2005, 2006, 2007 Ben Collins-SussmanBrian W. FitzpatrickC.
Michael Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit ht-
tp://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents
Foreword .. xi
Preface ..xiii

Audience ..xiii
How to Read this Book ..xiv
Conventions Used in This Book ...xiv

Typographic Conventions ..xiv
Icons .. xv

Organization of This Book ... xv
This Book is Free ..xvi
Acknowledgments ...xvi

From Ben Collins-Sussman ..xvii
From Brian W. Fitzpatrick ...xvii
From C. Michael Pilato .. xviii

What is Subversion? ... xviii
Subversion's History ... xviii
Subversion's Features ...xix
Subversion's Architecture .. xx
Subversion's Components ...xxi

1. Fundamental Concepts ...1
The Repository ...1
Versioning Models ..2

The Problem of File-Sharing ..2
The Lock-Modify-Unlock Solution ...3
The Copy-Modify-Merge Solution ...5

Subversion in Action ...7
Subversion Repository URLs ...7
Working Copies ..8
Revisions ... 11
How Working Copies Track the Repository ... 12
Mixed Revision Working Copies ... 13

Summary ... 14
2. Basic Usage ... 16

Help! .. 16
Import .. 16
Time Travel with Subversion .. 16
Initial Checkout ... 17
Basic Work Cycle ... 19

Update Your Working Copy ... 19
Make Changes to Your Working Copy .. 20
Examine Your Changes .. 22
Resolve Conflicts (Merging Others' Changes) ... 28
Commit Your Changes .. 31

Examining History ... 32
svn log .. 33
svn diff .. 34
svn cat .. 36
svn list .. 36
A Final Word on History .. 37

Other Useful Commands ... 37
svn cleanup .. 37
svn import ... 38

iv

Summary ... 38
3. Advanced Topics .. 39

Revision Specifiers ... 39
Revision Keywords ... 39
Revision Dates ... 40

Properties .. 41
Why Properties? ... 42
Manipulating Properties ... 43
Properties and the Subversion Workflow .. 46
Automatic Property Setting .. 47

File Portability ... 48
File Content Type ... 48
File Executability ... 49
End-of-Line Character Sequences ... 50

Ignoring Unversioned Items ... 51
Keyword Substitution .. 54
Locking .. 57

Creating locks .. 59
Discovering locks .. 61
Breaking and stealing locks ... 62
Lock Communication .. 64

Externals Definitions ... 65
Peg and Operative Revisions .. 68

4. Branching and Merging ... 72
What's a Branch? ... 72
Using Branches .. 72

Creating a Branch ... 74
Working with Your Branch ... 76
The Key Concepts Behind Branches .. 79

Copying Changes Between Branches .. 79
Copying Specific Changes .. 79
The Key Concept Behind Merging .. 82
Best Practices for Merging .. 83

Common Use-Cases ... 85
Merging a Whole Branch to Another ... 85
Undoing Changes ... 88
Resurrecting Deleted Items ... 89
Common Branching Patterns ... 90

Switching a Working Copy ... 92
Tags .. 94

Creating a Simple Tag .. 94
Creating a Complex Tag ... 95

Branch Maintenance ... 96
Repository Layout ... 96
Data Lifetimes .. 96

Vendor branches .. 97
General Vendor Branch Management Procedure 98
svn_load_dirs.pl ... 100

Summary ... 101
5. Repository Administration .. 103

Repository Basics ... 103
Understanding Transactions and Revisions .. 103
Unversioned Properties ... 104
Repository Data Stores ... 104

Repository Creation and Configuration ... 107
Hook Scripts ... 108
Berkeley DB Configuration .. 112

Version Control with Subversion

v

Repository Maintenance .. 112
An Administrator's Toolkit .. 112
Repository Cleanup .. 120
Managing Disk Space ... 123
Repository Recovery ... 124
Migrating a Repository .. 125
Repository Backup .. 129

Adding Projects .. 131
Choosing a Repository Layout ... 131
Creating the Layout, and Importing Initial Data .. 132

Summary ... 133
6. Server Configuration ... 134

Overview .. 134
The Apache HTTP Server ... 135
The svnserve Server .. 135
svnserve over SSH .. 136
Choosing the Best Server Configuration ... 136

Network Model ... 137
Requests and Responses ... 137
Client Credentials Caching .. 138

svnserve, a custom server ... 140
Invoking the Server ... 140
Built-in authentication and authorization ... 143
SSH authentication and authorization ... 145
SSH configuration tricks .. 146

httpd, the Apache HTTP server .. 148
Prerequisites .. 149
Basic Apache Configuration .. 149
Authentication Options .. 151
Authorization Options .. 154
Extra Goodies .. 158

Path-Based Authorization .. 162
Supporting Multiple Repository Access Methods ... 165

7. Customizing Your Subversion Experience .. 167
Runtime Configuration Area .. 167

Configuration Area Layout ... 167
Configuration and the Windows Registry .. 168
Configuration Options ... 169

Localization .. 173
Understanding locales ... 173
Subversion's use of locales ... 174

Using External Differencing Tools .. 175
External diff .. 176
External diff3 .. 177

8. Developer Information ... 179
Layered Library Design ... 179

Repository Layer .. 180
Repository Access Layer ... 185
Client Layer .. 187

Using the APIs .. 188
The Apache Portable Runtime Library .. 188
URL and Path Requirements ... 189
Using Languages Other than C and C++ .. 189

Inside the Working Copy Administration Area ... 193
The Entries File .. 193
Pristine Copies and Property Files ... 195

WebDAV .. 195

Version Control with Subversion

vi

9. Subversion Complete Reference .. 197
The Subversion Command Line Client: svn .. 197

svn Switches .. 197
svn Subcommands ... 201

svnadmin .. 263
svnadmin Switches .. 263
svnadmin Subcommands ... 264

svnlook ... 281
svnlook Switches ... 281
svnlook ... 282

svnserve ... 298
svnserve Switches ... 298

svnversion .. 299
mod_dav_svn ... 301
Subversion properties ... 303

A. Subversion Quick-Start Guide ... 306
Installing Subversion ... 306
High-speed Tutorial .. 307

B. Subversion for CVS Users ... 310
Revision Numbers Are Different Now ... 310
Directory Versions .. 310
More Disconnected Operations .. 311
Distinction Between Status and Update .. 311

Status .. 312
Update ... 313

Branches and Tags ... 313
Metadata Properties .. 313
Conflict Resolution .. 313
Binary Files and Translation .. 314
Versioned Modules ... 314
Authentication .. 314
Converting a Repository from CVS to Subversion ... 315

C. WebDAV and Autoversioning .. 316
Basic WebDAV Concepts .. 316

Original WebDAV ... 316
DeltaV Extensions .. 317

Subversion and DeltaV ... 318
Autoversioning .. 318
Client Interoperability .. 320

Standalone WebDAV applications .. 321
File-explorer WebDAV extensions .. 322
WebDAV filesystem implementation ... 323

D. Third Party Tools .. 325
E. Copyright ... 326
Index ... 331

Version Control with Subversion

vii

List of Figures
1. Subversion's Architecture .. xx
1.1. A typical client/server system ..1
1.2. The problem to avoid ..2
1.3. The lock-modify-unlock solution ..3
1.4. The copy-modify-merge solution ...5
1.5. The copy-modify-merge solution (continued) ..5
1.6. The repository's filesystem ..8
1.7. The repository .. 11
4.1. Branches of development ... 72
4.2. Starting repository layout .. 73
4.3. Repository with new copy ... 75
4.4. The branching of one file's history ... 77
8.1. Files and directories in two dimensions .. 181
8.2. Versioning time—the third dimension! .. 182

viii

List of Tables
1.1. Repository Access URLs .. 10
5.1. Repository Data Store Comparison ... 105
6.1. Network Server Comparison ... 134
8.1. A Brief Inventory of the Subversion Libraries .. 179
C.1. Common WebDAV Clients ... 320

ix

List of Examples
5.1. txn-info.sh (Reporting Outstanding Transactions) ... 122
6.1. A sample configuration for anonymous access. .. 156
6.2. A sample configuration for authenticated access. ... 156
6.3. A sample configuration for mixed authenticated/anonymous access. 157
6.4. Disabling path checks altogether ... 158
7.1. Sample Registration Entries (.reg) File. .. 168
7.2. diffwrap.sh ... 176
7.3. diffwrap.bat .. 177
7.4. diff3wrap.sh ... 177
7.5. diff3wrap.bat .. 178
8.1. Using the Repository Layer ... 183
8.2. Using the Repository Layer with Python ... 190
8.3. A Python Status Crawler ... 191
8.4. Contents of a Typical .svn/entries File ... 194

x

Foreword
Karl Fogel
Chicago, March 14, 2004

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions
people actually asked, but of the questions the FAQ's author wished people had asked. Per-
haps you've seen the type before:

Q: How can I use Glorbosoft XYZ to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity
through our patented office groupware innovations. The answer is simple: first,
click on the “File” menu, scroll down to “Increase Productivity”,
then…

The problem with such FAQs is that they are not, in a literal sense, FAQs at all. No one ever
called the tech support line and asked, “How can we maximize productivity?”. Rather, people
asked highly specific questions, like, “How can we change the calendaring system to send re-
minders two days in advance instead of one?” and so on. But it's a lot easier to make up ima-
ginary Frequently Asked Questions than it is to discover the real ones. Compiling a true FAQ
sheet requires a sustained, organized effort: over the lifetime of the software, incoming ques-
tions must be tracked, responses monitored, and all gathered into a coherent, searchable
whole that reflects the collective experience of users in the wild. It calls for the patient, observ-
ant attitude of a field naturalist. No grand hypothesizing, no visionary pronouncements
here—open eyes and accurate note-taking are what's needed most.

What I love about this book is that it grew out of just such a process, and shows it on every
page. It is the direct result of the authors' encounters with users. It began with Ben Collins-
Sussman's observation that people were asking the same basic questions over and over on
the Subversion mailing lists: What are the standard workflows to use with Subversion? Do
branches and tags work the same way as in other version control systems? How can I find out
who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in
the summer of 2002 to write The Subversion Handbook, a sixty page manual that covered all
the basics of using Subversion. The manual made no pretense of being complete, but it was
distributed with Subversion and got users over that initial hump in the learning curve. When
O'Reilly and Associates decided to publish a full-length Subversion book, the path of least res-
istance was obvious: just expand the Subversion handbook.

The three co-authors of the new book were thus presented with an unusual opportunity. Offi-
cially, their task was to write a book top-down, starting from a table of contents and an initial
draft. But they also had access to a steady stream—indeed, an uncontrollable geyser—of bot-
tom-up source material. Subversion was already in the hands of thousands of early adopters,
and those users were giving tons of feedback, not only about Subversion, but about its existing
documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mail-
ing lists and chat rooms incessantly, carefully noting the problems users were having in real-
life situations. Monitoring such feedback was part of their job descriptions at CollabNet any-
way, and it gave them a huge advantage when they set out to document Subversion. The book
they produced is grounded firmly in the bedrock of experience, not in the shifting sands of
wishful thinking; it combines the best aspects of user manual and FAQ sheet. This duality
might not be noticeable on a first reading. Taken in order, front to back, the book is simply a

xi

straightforward description of a piece of software. There's the overview, the obligatory guided
tour, the chapter on administrative configuration, some advanced topics, and of course a com-
mand reference and troubleshooting guide. Only when you come back to it later, seeking the
solution to some specific problem, does its authenticity shine out: the telling details that can
only result from encounters with the unexpected, the examples honed from genuine use cases,
and most of all the sensitivity to the user's needs and the user's point of view.

Of course, no one can promise that this book will answer every question you have about Sub-
version. Sometimes, the precision with which it anticipates your questions will seem eerily tele-
pathic; yet occasionally, you will stumble into a hole in the community's knowledge, and come
away empty-handed. When this happens, the best thing you can do is email
<users@subversion.tigris.org> and present your problem. The authors are still there,
still watching, and they include not just the three listed on the cover, but many others who con-
tributed corrections and original material. From the community's point of view, solving your
problem is merely a pleasant side effect of a much larger project—namely, slowly adjusting
this book, and ultimately Subversion itself, to more closely match the way people actually use
it. They are eager to hear from you not merely because they can help you, but because you
can help them. With Subversion as with all active free software projects, you are not alone.

Let this book be your first companion.

Foreword

xii

Preface
“It is important not to let the perfect become the enemy of the good, even
when you can agree on what perfect is. Doubly so when you can't. As un-
pleasant as it is to be trapped by past mistakes, you can't make any progress
by being afraid of your own shadow during design.”

—Greg Hudson

In the world of open-source software, the Concurrent Versions System (CVS) was the tool of
choice for version control for many years. And rightly so. CVS was open-source software itself,
and its non-restrictive modus operandi and support for networked operation allowed dozens of
geographically dispersed programmers to share their work. It fit the collaborative nature of the
open-source world very well. CVS and its semi-chaotic development model have since be-
come cornerstones of open-source culture.

But CVS was not without its flaws, and simply fixing those flaws promised to be an enormous
effort. Enter Subversion. Designed to be a successor to CVS, Subversion's originators set out
to win the hearts of CVS users in two ways—by creating an open-source system with a design
(and “look and feel”) similar to CVS, and by attempting to avoid most of CVS's noticeable
flaws. While the result isn't necessarily the next great evolution in version control design, Sub-
version is very powerful, very usable, and very flexible. And for the most part, almost all newly-
started open-source projects now choose Subversion instead of CVS.

This book is written to document the 1.4 series of the Subversion version control system. We
have made every attempt to be thorough in our coverage. However, Subversion has a thriving
and energetic development community, so there are already a number of features and im-
provements planned for future versions of Subversion that may change some of the com-
mands and specific notes in this book.

Audience
This book is written for computer-literate folk who want to use Subversion to manage their
data. While Subversion runs on a number of different operating systems, its primary user inter-
face is command-line based. That command-line tool (svn) and auxiliary program are the fo-
cus of this book.

For consistency, the examples in this book assume the reader is using a Unix-like operating
system and relatively comfortable with Unix and command-line interfaces. That said, the svn
program also runs on non-Unix platforms like Microsoft Windows. With a few minor exceptions,
such as the use of backward slashes (\) instead of forward slashes (/) for path separators, the
input to and output from this tool when run on Windows are identical to its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changes
to source code. This is the most common use for Subversion, and therefore it is the scenario
underlying all of the book's examples. But Subversion can be used to manage changes to any
sort of information—images, music, databases, documentation, and so on. To Subversion, all
data is just data.

While this book is written with the assumption that the reader has never used a version control
system, we've also tried to make it easy for users of CVS (and other systems) to make a pain-
less leap into Subversion. Special sidebars may mention other version control systems from
time to time, and a special appendix summarizes many of the differences between CVS and
Subversion.

xiii

Note also that the source code examples used throughout the book are only examples. While
they will compile with the proper compiler incantations, they are intended to illustrate a particu-
lar scenario, not necessarily serve as examples of good programming style or practices.

How to Read this Book
This book aims to be useful to people of widely different backgrounds—from people with no
previous experience in version control to experienced system administrators. Depending on
your own background, certain chapters may be more or less important to you. The following
can be considered a “recommended reading list” for various types of readers:

Experienced System Administrators
The assumption here is that you've probably used version control before before, and are
dying to get a Subversion server up and running ASAP. Chapter 5, Repository Administra-
tion and Chapter 6, Server Configuration will show you how to create your first repository
and make it available over the network. After that's done, Chapter 2, Basic Usage and Ap-
pendix B, Subversion for CVS Users are the fastest routes to learning the Subversion cli-
ent.

New users
Your administrator has probably set up Subversion already, and you need to learn how to
use the client. If you've never used a version control system, then Chapter 1, Fundamental
Concepts is a vital introduction to the ideas behind version control. Chapter 2, Basic Usage
is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. You're go-
ing to want to learn how to do more advanced things with Subversion, such as how to use
branches and perform merges (Chapter 4, Branching and Merging), how to use Subver-
sion's property support ((Chapter 3, Advanced Topics), how to configure runtime options
(Chapter 7, Customizing Your Subversion Experience), and other things. These chapters
aren't critical at first, but be sure to read them once you're comfortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or
build new software on top of its many APIs. Chapter 8, Developer Information is just for
you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a refer-
ence guide for all Subversion commands, and the appendices cover a number of useful topics.
These are the chapters you're mostly likely to come back to after you've finished the book.

Conventions Used in This Book
This section covers the various conventions used in this book.

Typographic Conventions

Constant width
Used for commands, command output, and switches

Constant width italic

Preface

xiv

Used for replaceable items in code and text

Italic
Used for file and directory names

Icons

Note

This icon designates a note relating to the surrounding text.

Tip

This icon designates a helpful tip relating to the surrounding text.

Warning

This icon designates a warning relating to the surrounding text.

Organization of This Book
The chapters that follow and their contents are listed here:

Preface
Covers the history of Subversion as well as its features, architecture, and components.

Chapter 1, Fundamental Concepts
Explains the basics of version control and different versioning models, along with Subver-
sion's repository, working copies, and revisions.

Chapter 2, Basic Usage
Walks you through a day in the life of a Subversion user. It demonstrates how to use a
Subversion client to obtain, modify, and commit data.

Chapter 3, Advanced Topics
Covers more complex features that regular users will eventually come into contact with,
such as versioned metadata, file locking, and peg revisions.

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and mer-
ging, common use cases, how to undo changes, and how to easily swing from one branch
to the next.

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain
a repository, and the tools you can use to do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and the three ways to access your re-
pository: HTTP, the svn protocol, and local disk access. It also covers the details of au-
thentication, authorization and anonymous access.

Preface

xv

Chapter 7, Customizing Your Subversion Experience
Explores the Subversion client configuration files, the handling of internationalized text,
and how to make external tools cooperate with Subversion.

Chapter 8, Developer Information
Describes the internals of Subversion, the Subversion filesystem, and the working copy
administrative areas from a programmer's point of view. Demonstrates how to use the pub-
lic APIs to write a program that uses Subversion, and most importantly, how to contribute
to the development of Subversion.

Chapter 9, Subversion Complete Reference
Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of
examples for the whole family!

Appendix A, Subversion Quick-Start Guide
For the impatient, a whirlwind explanation of how to install Subversion and start using it im-
mediately. You have been warned.

Appendix B, Subversion for CVS Users
Covers the similarities and differences between Subversion and CVS, with numerous sug-
gestions on how to break all the bad habits you picked up from years of using CVS. In-
cluded are descriptions of Subversion revision numbers, versioned directories, offline oper-
ations, update vs. status, branches, tags, metadata, conflict resolution, and authentica-
tion.

Appendix C, WebDAV and Autoversioning
Describes the details of WebDAV and DeltaV, and how you can configure your Subversion
repository to be mounted read/write as a DAV share.

Appendix D, Third Party Tools
Discusses tools that support or use Subversion, including alternative client programs, re-
pository browser tools, and so on.

This Book is Free
This book started out as bits of documentation written by Subversion project developers, which
were then coalesced into a single work and rewritten. As such, it has always been under a free
license. (See Appendix E, Copyright.) In fact, the book was written in the public eye, as a part
of Subversion. This means two things:

• You will always find the latest version of this book in the book's own Subversion repository.

• You can make changes to this book and redistribute it however you wish—it's under a free li-
cense. Your only obligation is to maintain proper attribution to the original authors. Of
course, rather than distribute your own private version of this book, we'd much rather you
send feedback and patches to the Subversion developer community.

A relatively recent online version of this book can be found at http://svnbook.red-bean.com.

Acknowledgments
This book would not be possible (nor very useful) if Subversion did not exist. For that, the au-
thors would like to thank Brian Behlendorf and CollabNet for the vision to fund such a risky and

Preface

xvi

http://svnbook.red-bean.com

1Oh, and thanks, Karl, for being too overworked to write this book yourself.

ambitious new Open Source project; Jim Blandy for the original Subversion name and
design—we love you, Jim; Karl Fogel for being such a good friend and a great community
leader, in that order.1

Thanks to O'Reilly and our editors, Linda Mui and Tatiana Diaz for their patience and support.

Finally, we thank the countless people who contributed to this book with informal reviews, sug-
gestions, and fixes: While this is undoubtedly not a complete list, this book would be incom-
plete and incorrect without the help of: David Anderson, Jani Averbach, Ryan Barrett, Francois
Beausoleil, Jennifer Bevan, Matt Blais, Zack Brown, Martin Buchholz, Brane Cibej, John R.
Daily, Peter Davis, Olivier Davy, Robert P. J. Day, Mo DeJong, Brian Denny, Joe Drew, Nick
Duffek, Ben Elliston, Justin Erenkrantz, Shlomi Fish, Julian Foad, Chris Foote, Martin Furter,
Dave Gilbert, Eric Gillespie, David Glasser, Matthew Gregan, Art Haas, Eric Hanchrow, Greg
Hudson, Alexis Huxley, Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto
King, Andreas J. Koenig, Nuutti Kotivuori, Matt Kraai, Scott Lamb, Vincent Lefevre, Morten
Ludvigsen, Paul Lussier, Bruce A. Mah, Philip Martin, Feliciano Matias, Patrick Mayweg,
Gareth McCaughan, Jon Middleton, Tim Moloney, Christopher Ness, Mats Nilsson, Joe Orton,
Amy Lyn Pilato, Kevin Pilch-Bisson, Dmitriy Popkov, Michael Price, Mark Proctor, Steffen Pro-
haska, Daniel Rall, Jack Repenning, Tobias Ringstrom, Garrett Rooney, Joel Rosdahl, Christi-
an Sauer, Larry Shatzer, Russell Steicke, Sander Striker, Erik Sjoelund, Johan Sundstroem,
John Szakmeister, Mason Thomas, Eric Wadsworth, Colin Watson, Alex Waugh, Chad
Whitacre, Josef Wolf, Blair Zajac, and the entire Subversion community.

From Ben Collins-Sussman
Thanks to my wife Frances, who, for many months, got to hear, “But honey, I'm still working on
the book”, rather than the usual, “But honey, I'm still doing email.” I don't know where she gets
all that patience! She's my perfect counterbalance.

Thanks to my extended family and friends for their sincere encouragement, despite having no
actual interest in the subject. (You know, the ones who say, “Ooh, you wrote a book?”, and
then when you tell them it's a computer book, sort of glaze over.)

Thanks to all my close friends, who make me a rich, rich man. Don't look at me that way—you
know who you are.

Thanks to my parents for the perfect low-level formatting, and being unbelievable role models.
Thanks to my son for the opportunity to pass that on.

From Brian W. Fitzpatrick
Huge thanks to my wife Marie for being incredibly understanding, supportive, and most of all,
patient. Thank you to my brother Eric who first introduced me to UNIX programming way back
when. Thanks to my Mom and Grandmother for all their support, not to mention enduring a
Christmas holiday where I came home and promptly buried my head in my laptop to work on
the book.

To Mike and Ben: It was a pleasure working with you on the book. Heck, it's a pleasure work-
ing with you at work!

To everyone in the Subversion community and the Apache Software Foundation, thanks for
having me. Not a day goes by where I don't learn something from at least one of you.

Lastly, thanks to my Grandfather who always told me that “freedom equals responsibility.” I

Preface

xvii

2There's also a CollabNet Team Edition (CTE) offering aimed at smaller groups.

couldn't agree more.

From C. Michael Pilato
Special thanks to my wife, Amy, for her love and patient support, for putting up with late nights,
and for even reviewing entire sections of this book—you always go the extra mile, and do so
with incredible grace. Gavin, when you're old enough to read, I hope you're as proud of your
Daddy as he is of you. Mom and Dad (and the rest of the family), thanks for your constant sup-
port and enthusiasm.

Hats off to Shep Kendall, through whom the world of computers was first opened to me; Ben
Collins-Sussman, my tour-guide through the open-source world; Karl Fogel—you are my
.emacs; Greg Stein, for oozing practical programming know-how; Brian Fitzpatrick—for shar-
ing this writing experience with me. To the many folks from whom I am constantly picking up
new knowledge—keep dropping it!

Finally, to the One who perfectly demonstrates creative excellence—thank you.

What is Subversion?
Subversion is a free/open-source version control system. That is, Subversion manages files
and directories, and the changes made to them, over time. This allows you to recover older
versions of your data, or examine the history of how your data changed. In this regard, many
people think of a version control system as a sort of “time machine”.

Subversion can operate across networks, which allows it to be used by people on different
computers. At some level, the ability for various people to modify and manage the same set of
data from their respective locations fosters collaboration. Progress can occur more quickly
without a single conduit through which all modifications must occur. And because the work is
versioned, you need not fear that quality is the trade-off for losing that conduit—if some incor-
rect change is made to the data, just undo that change.

Some version control systems are also software configuration management (SCM) systems.
These systems are specifically tailored to manage trees of source code, and have many fea-
tures that are specific to software development—such as natively understanding programming
languages, or supplying tools for building software. Subversion, however, is not one of these
systems. It is a general system that can be used to manage any collection of files. For you,
those files might be source code—for others, anything from grocery shopping lists to digital
video mixdowns and beyond.

Subversion's History
In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a re-
placement for CVS. CollabNet offers a collaboration software suite called CollabNet Enterprise
Edition (CEE) 2 of which one component is version control. Although CEE used CVS as its ini-
tial version control system, CVS's limitations were obvious from the beginning, and CollabNet
knew it would eventually have to find something better. Unfortunately, CVS had become the de
facto standard in the open source world largely because there wasn't anything better, at least
not under a free license. So CollabNet determined to write a new version control system from
scratch, retaining the basic ideas of CVS, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with
CVS (Coriolis, 1999), and asked if he'd like to work on this new project. Coincidentally, at the

Preface

xviii

http://www.collab.net

time Karl was already discussing a design for a new version control system with his friend Jim
Blandy. In 1995, the two had started Cyclic Software, a company providing CVS support con-
tracts, and although they later sold the business, they still used CVS every day at their jobs.
Their frustration with CVS had led Jim to think carefully about better ways to manage ver-
sioned data, and he'd already come up with not only the name “Subversion”, but also with the
basic design of the Subversion data store. When CollabNet called, Karl immediately agreed to
work on the project, and Jim got his employer, Red Hat Software, to essentially donate him to
the project for an indefinite period of time. CollabNet hired Karl and Ben Collins-Sussman, and
detailed design work began in May. With the help of some well-placed prods from Brian
Behlendorf and Jason Robbins of CollabNet, and Greg Stein (at the time an independent de-
veloper active in the WebDAV/DeltaV specification process), Subversion quickly attracted a
community of active developers. It turned out that many people had had the same frustrating
experiences with CVS, and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground
in version control methodology, they just wanted to fix CVS. They decided that Subversion
would match CVS's features, and preserve the same development model, but not duplicate
CVS's most obvious flaws. And although it did not need to be a drop-in replacement for CVS, it
should be similar enough that any CVS user could make the switch with little effort.

After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That
is, Subversion developers stopped using CVS to manage Subversion's own source code, and
started using Subversion instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salar-
ies of a few full-time Subversion developers), Subversion is run like most open-source
projects, governed by a loose, transparent set of rules that encourage meritocracy. CollabNet's
copyright license is fully compliant with the Debian Free Software Guidelines. In other words,
anyone is free to download, modify, and redistribute Subversion as he pleases; no permission
from CollabNet or anyone else is required.

Subversion's Features
When discussing the features that Subversion brings to the version control table, it is often
helpful to speak of them in terms of how they improve upon CVS's design. If you're not familiar
with CVS, you may not understand all of these features. And if you're not familiar with version
control at all, your eyes may glaze over unless you first read Chapter 1, Fundamental Con-
cepts, in which we provide a gentle introduction to version control.

Subversion provides:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a “virtual” ver-
sioned filesystem that tracks changes to whole directory trees over time. Files and director-
ies are versioned.

True version history
Since CVS is limited to file versioning, operations such as copies and renames—which
might happen to files, but which are really changes to the contents of some containing dir-
ectory—aren't supported in CVS. Additionally, in CVS you cannot replace a versioned file
with some new thing of the same name without the new item inheriting the history of the
old—perhaps completely unrelated—file. With Subversion, you can add, delete, copy, and
rename both files and directories. And every newly added file begins with a fresh, clean
history all its own.

Atomic commits

Preface

xix

A collection of modifications either goes into the repository completely, or not at all. This al-
lows developers to construct and commit changes as logical chunks, and prevents prob-
lems that can occur when only a portion of a set of changes is successfully sent to the re-
pository.

Versioned metadata
Each file and directory has a set of properties—keys and their values—associated with it.
You can create and store any arbitrary key/value pairs you wish. Properties are versioned
over time, just like file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy for people to im-
plement new network mechanisms. Subversion can plug into the Apache HTTP Server as
an extension module. This gives Subversion a big advantage in stability and interoperabil-
ity, and instant access to existing features provided by that server—authentication, author-
ization, wire compression, and so on. A more lightweight, standalone Subversion server
process is also available. This server speaks a custom protocol which can be easily
tunneled over SSH.

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works
identically on both text (human-readable) and binary (human-unreadable) files. Both types
of files are stored equally compressed in the repository, and differences are transmitted in
both directions across the network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion
creates branches and tags by simply copying the project, using a mechanism similar to a
hard-link. Thus these operations take only a very small, constant amount of time.

Hackability
Subversion has no historical baggage; it is implemented as a collection of shared C librar-
ies with well-defined APIs. This makes Subversion extremely maintainable and usable by
other applications and languages.

Subversion's Architecture
Figure 1, “Subversion's Architecture” illustrates a “mile-high” view of Subversion's design.

Figure 1. Subversion's Architecture

Preface

xx

On one end is a Subversion repository that holds all of your versioned data. On the other end
is your Subversion client program, which manages local reflections of portions of that ver-
sioned data (called “working copies”). Between these extremes are multiple routes through
various Repository Access (RA) layers. Some of these routes go across computer networks
and through network servers which then access the repository. Others bypass the network al-
together and access the repository directly.

Subversion's Components
Subversion, once installed, has a number of different pieces. The following is a quick overview
of what you get. Don't be alarmed if the brief descriptions leave you scratching your
head—there are plenty more pages in this book devoted to alleviating that confusion.

Preface

xxi

svn
The command-line client program.

svnversion
A program for reporting the state (in terms of revisions of the items present) of a working
copy.

svnlook
A tool for directly inspecting a Subversion repository.

svnadmin
A tool for creating, tweaking or repairing a Subversion repository.

svndumpfilter
A program for filtering Subversion repository dump streams.

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to
others over a network.

svnserve
A custom standalone server program, runnable as a daemon process or invokable by
SSH; another way to make your repository available to others over a network.

svnsync
A program for incrementally mirroring one repository to another over a network.

Assuming you have Subversion installed correctly, you should be ready to start. The next two
chapters will walk you through the use of svn, Subversion's command-line client program.

Preface

xxii

Chapter 1. Fundamental Concepts
This chapter is a short, casual introduction to Subversion. If you're new to version control, this
chapter is definitely for you. We begin with a discussion of general version control concepts,
work our way into the specific ideas behind Subversion, and show some simple examples of
Subversion in use.

Even though the examples in this chapter show people sharing collections of program source
code, keep in mind that Subversion can manage any sort of file collection—it's not limited to
helping computer programmers.

The Repository
Subversion is a centralized system for sharing information. At its core is a repository, which is
a central store of data. The repository stores information in the form of a filesystem tree—a
typical hierarchy of files and directories. Any number of clients connect to the repository, and
then read or write to these files. By writing data, a client makes the information available to oth-
ers; by reading data, the client receives information from others. Figure 1.1, “A typical client/
server system” illustrates this.

Figure 1.1. A typical client/server system

So why is this interesting? So far, this sounds like the definition of a typical file server. And in-
deed, the repository is a kind of file server, but it's not your usual breed. What makes the Sub-
version repository special is that it remembers every change ever written to it: every change to
every file, and even changes to the directory tree itself, such as the addition, deletion, and re-
arrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the
filesystem tree. But the client also has the ability to view previous states of the filesystem. For
example, a client can ask historical questions like, “What did this directory contain last Wed-
nesday?” or “Who was the last person to change this file, and what changes did he make?”
These are the sorts of questions that are at the heart of any version control system: systems
that are designed to record and track changes to data over time.

1

Versioning Models
The core mission of a version control system is to enable collaborative editing and sharing of
data. But different systems use different strategies to achieve this. It's important to understand
these different strategies for a couple of reasons. First, it will help you compare and contrast
existing version control systems, in case you encounter other systems similar to Subversion.
Beyond that, it will also help you make more effective use of Subversion, since Subversion it-
self supports a couple of different ways of working.

The Problem of File-Sharing
All version control systems have to solve the same fundamental problem: how will the system
allow users to share information, but prevent them from accidentally stepping on each other's
feet? It's all too easy for users to accidentally overwrite each other's changes in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two co-
workers, Harry and Sally. They each decide to edit the same repository file at the same time. If
Harry saves his changes to the repository first, then it's possible that (a few moments later)
Sally could accidentally overwrite them with her own new version of the file. While Harry's ver-
sion of the file won't be lost forever (because the system remembers every change), any
changes Harry made won't be present in Sally's newer version of the file, because she never
saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from
the latest version of the file—and probably by accident. This is definitely a situation we want to
avoid!

Figure 1.2. The problem to avoid

Fundamental Concepts

2

The Lock-Modify-Unlock Solution
Many version control systems use a lock-modify-unlock model to address the problem of many
authors clobbering each other's work. In this model, the repository allows only one person to
change a file at a time. This exclusivity policy is managed using locks. Harry must “lock” a file
before he can begin making changes to it. If Harry has locked a file, then Sally cannot also lock
it, and therefore cannot make any changes to that file. All she can do is read the file, and wait
for Harry to finish his changes and release his lock. After Harry unlocks the file, Sally can take
her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock solution” demon-
strates this simple solution.

Figure 1.3. The lock-modify-unlock solution

Fundamental Concepts

3

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a
roadblock for users:

• Locking may cause administrative problems. Sometimes Harry will lock a file and then forget
about it. Meanwhile, because Sally is still waiting to edit the file, her hands are tied. And then
Harry goes on vacation. Now Sally has to get an administrator to release Harry's lock. The
situation ends up causing a lot of unnecessary delay and wasted time.

• Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text
file, and Sally simply wants to edit the end of the same file? These changes don't overlap at
all. They could easily edit the file simultaneously, and no great harm would come, assuming
the changes were properly merged together. There's no need for them to take turns in this
situation.

• Locking may create a false sense of security. Suppose Harry locks and edits file A, while
Sally simultaneously locks and edits file B. But what if A and B depend on one another, and
the changes made to each are semantically incompatible? Suddenly A and B don't work to-
gether anymore. The locking system was powerless to prevent the problem—yet it somehow
provided a false sense of security. It's easy for Harry and Sally to imagine that by locking
files, each is beginning a safe, insulated task, and thus not bother discussing their incompat-
ible changes early on. Locking often becomes a substitute for real communication.

Fundamental Concepts

4

The Copy-Modify-Merge Solution
Subversion, CVS, and a number of other version control systems use a copy-modify-merge
model as an alternative to locking. In this model, each user's client contacts the project reposit-
ory and creates a personal working copy—a local reflection of the repository's files and direct-
ories. Users then work simultaneously and independently, modifying their private copies. Fi-
nally, the private copies are merged together into a new, final version. The version control sys-
tem often assists with the merging, but ultimately a human being is responsible for making it
happen correctly.

Here's an example. Say that Harry and Sally each create working copies of the same project,
copied from the repository. They work concurrently, and make changes to the same file A with-
in their copies. Sally saves her changes to the repository first. When Harry attempts to save his
changes later, the repository informs him that his file A is out-of-date. In other words, that file A
in the repository has somehow changed since he last copied it. So Harry asks his client to
merge any new changes from the repository into his working copy of file A. Chances are that
Sally's changes don't overlap with his own; so once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution”
and Figure 1.5, “The copy-modify-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Figure 1.5. The copy-modify-merge solution (continued)

Fundamental Concepts

5

But what if Sally's changes do overlap with Harry's changes? What then? This situation is
called a conflict, and it's usually not much of a problem. When Harry asks his client to merge
the latest repository changes into his working copy, his copy of file A is somehow flagged as
being in a state of conflict: he'll be able to see both sets of conflicting changes, and manually
choose between them. Note that software can't automatically resolve conflicts; only humans
are capable of understanding and making the necessary intelligent choices. Once Harry has
manually resolved the overlapping changes—perhaps after a discussion with Sally—he can
safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely
smoothly. Users can work in parallel, never waiting for one another. When they work on the
same files, it turns out that most of their concurrent changes don't overlap at all; conflicts are
infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time
lost by a locking system.

In the end, it all comes down to one critical factor: user communication. When users commu-
nicate poorly, both syntactic and semantic conflicts increase. No system can force users to
communicate perfectly, and no system can detect semantic conflicts. So there's no point in be-
ing lulled into a false promise that a locking system will somehow prevent conflicts; in practice,
locking seems to inhibit productivity more than anything else.

When Locking is Necessary

Fundamental Concepts

6

While the lock-modify-unlock model is considered generally harmful to collaboration,
there are still times when locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually
mergeable: that is, that the majority of the files in the repository are line-based text files
(such as program source code). But for files with binary formats, such as artwork or
sound, it's often impossible to merge conflicting changes. In these situations, it really is
necessary to users to take strict turns when changing the file. Without serialized access,
somebody ends up wasting time on changes that are ultimately discarded.

While Subversion is still primarily a copy-modify-merge system, it still recognizes the
need to lock an occasional file ands provide mechanisms for this. This feature is dis-
cussed later in this book, in the section called “Locking”.

Subversion in Action
It's time to move from the abstract to the concrete. In this section, we'll show real examples of
Subversion being used.

Subversion Repository URLs
Throughout this book, Subversion uses URLs to identify versioned files and directories in Sub-
version repositories. For the most part, these URLs use the standard syntax, allowing for serv-
er names and port numbers to be specified as part of the URL:

$ svn checkout http://svn.example.com:9834/repos
…

But there are some nuances in Subversion's handling of URLs that are notable. For example,
URLs containing the file: access method (used for local repositories) must, in accordance
with convention, have either a server name of localhost or no server name at all:

$ svn checkout file:///path/to/repos
…
$ svn checkout file://localhost/path/to/repos
…

Also, users of the file: scheme on Windows platforms will need to use an unofficially
“standard” syntax for accessing repositories that are on the same machine, but on a different
drive than the client's current working drive. Either of the two following URL path syntaxes will
work where X is the drive on which the repository resides:

C:\> svn checkout file:///X:/path/to/repos
…
C:\> svn checkout "file:///X|/path/to/repos"
…

Fundamental Concepts

7

In the second syntax, you need to quote the URL so that the vertical bar character is not inter-
preted as a pipe. Also, note that a URL uses forward slashes even though the native
(non-URL) form of a path on Windows uses backslashes.

Finally, it should be noted that the Subversion client will automatically encode URLs as neces-
sary, just like a web browser does. For example, if a URL contains a space or upper-ASCII
character:

$ svn checkout "http://host/path with space/project/españa"

…then Subversion will escape the unsafe characters and behave as if you had typed:

$ svn checkout http://host/path%20with%20space/project/espa%C3%B1a

If the URL contains spaces, be sure to place it within quote marks, so that your shell treats the
whole thing as a single argument to the svn program.

Working Copies
You've already read about working copies; now we'll demonstrate how the Subversion client
creates and uses them.

A Subversion working copy is an ordinary directory tree on your local system, containing a col-
lection of files. You can edit these files however you wish, and if they're source code files, you
can compile your program from them in the usual way. Your working copy is your own private
work area: Subversion will never incorporate other people's changes, nor make your own
changes available to others, until you explicitly tell it to do so. You can even have multiple
working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work
properly, Subversion provides you with commands to “publish” your changes to the other
people working with you on your project (by writing to the repository). If other people publish
their own changes, Subversion provides you with commands to merge those changes into your
working directory (by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help
it carry out these commands. In particular, each directory in your working copy contains a sub-
directory named .svn, also known as the working copy administrative directory. The files in
each administrative directory help Subversion recognize which files contain unpublished
changes, and which files are out-of-date with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects; usu-
ally, each project is a subdirectory in the repository's filesystem tree. In this arrangement, a
user's working copy will usually correspond to a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects, paint and
calc. Each project lives in its own top-level subdirectory, as shown in Figure 1.6, “The reposit-
ory's filesystem”.

Figure 1.6. The repository's filesystem

Fundamental Concepts

8

To get a working copy, you must check out some subtree of the repository. (The term “check
out” may sound like it has something to do with locking or reserving resources, but it doesn't; it
simply creates a private copy of the project for you.) For example, if you check out /calc, you
will get a working copy like this:

$ svn checkout http://svn.example.com/repos/calc
A calc/Makefile
A calc/integer.c
A calc/button.c
Checked out revision 56.

$ ls -A calc
Makefile integer.c button.c .svn/

The list of letter A's indicates that Subversion is adding a number of items to your working
copy. You now have a personal copy of the repository's /calc directory, with one additional
entry—.svn—which holds the extra information needed by Subversion, as mentioned earlier.

Repository URLs

Subversion repositories can be accessed through many different methods—on local disk,
or through various network protocols, depending on how your administrator has set
things up for you. A repository location, however, is always a URL. Table 1.1, “Repository

Fundamental Concepts

9

Access URLs” describes how different URL schemas map to the available access meth-
ods.

Table 1.1. Repository Access URLs

Schema Access Method

file:/// direct repository access (on local disk)

http:// access via WebDAV protocol to Subversion-
aware Apache server

https:// same as http://, but with SSL encryption.

svn:// access via custom protocol to an svnserve
server

svn+ssh:// same as svn://, but through an SSH tunnel.

For more information on how Subversion parses URLs, see the section called
“Subversion Repository URLs”. For more information on the different types of network
servers available for Subversion, see Chapter 6, Server Configuration.

Suppose you make changes to button.c. Since the .svn directory remembers the file's
modification date and original contents, Subversion can tell that you've changed the file.
However, Subversion does not make your changes public until you explicitly tell it to. The act
of publishing your changes is more commonly known as committing (or checking in) changes
to the repository.

To publish your changes to others, you can use Subversion's commit command.

$ svn commit button.c -m "Fixed a typo in button.c."
Sending button.c
Transmitting file data .
Committed revision 57.

Now your changes to button.c have been committed to the repository, with a note describing
your change (namely, that you fixed a typo). If another user checks out a working copy of /
calc, they will see your changes in the latest version of the file.

Suppose you have a collaborator, Sally, who checked out a working copy of /calc at the
same time you did. When you commit your change to button.c, Sally's working copy is left
unchanged; Subversion only modifies working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using
the Subversion update command. This will incorporate your changes into her working copy, as
well as any others that have been committed since she checked it out.

$ pwd
/home/sally/calc

$ ls -A
.svn/ Makefile integer.c button.c

$ svn update
U button.c

Fundamental Concepts

10

Updated to revision 57.

The output from the svn update command indicates that Subversion updated the contents of
button.c. Note that Sally didn't need to specify which files to update; Subversion uses the in-
formation in the .svn directory, and further information in the repository, to decide which files
need to be brought up to date.

Revisions
An svn commit operation publishes changes to any number of files and directories as a single
atomic transaction. In your working copy, you can change files' contents, create, delete, re-
name and copy files and directories, and then commit a complete set of changes as an atomic
transaction.

By “atomic transaction”, we mean simply this: either all of the changes happen in the reposit-
ory, or none of them happen. Subversion tries to retain this atomicity in the face of program
crashes, system crashes, network problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree,
called a revision. Each revision is assigned a unique natural number, one greater than the
number of the previous revision. The initial revision of a freshly created repository is numbered
zero, and consists of nothing but an empty root directory.

Figure 1.7, “The repository” illustrates a nice way to visualize the repository. Imagine an array
of revision numbers, starting at 0, stretching from left to right. Each revision number has a
filesystem tree hanging below it, and each tree is a “snapshot” of the way the repository looked
after a commit.

Figure 1.7. The repository

Fundamental Concepts

11

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to entire trees,
not individual files. Each revision number selects an entire tree, a particular state of the
repository after some committed change. Another way to think about it is that revision N
represents the state of the repository filesystem after the Nth commit. When Subversion
users talk about “revision 5 of foo.c”, they really mean “foo.c as it appears in revision
5.” Notice that in general, revisions N and M of a file do not necessarily differ! Many other
version control systems use per-file revision numbers, so this concept may seem unusual
at first. (Former CVS users might want to see Appendix B, Subversion for CVS Users for
more details.)

It's important to note that working copies do not always correspond to any single revision in the
repository; they may contain files from several different revisions. For example, suppose you
check out a working copy from a repository whose most recent revision is 4:

calc/Makefile:4
integer.c:4
button.c:4

At the moment, this working directory corresponds exactly to revision 4 in the repository.
However, suppose you make a change to button.c, and commit that change. Assuming no
other commits have taken place, your commit will create revision 5 of the repository, and your
working copy will now look like this:

calc/Makefile:4
integer.c:4
button.c:5

Suppose that, at this point, Sally commits a change to integer.c, creating revision 6. If you
use svn update to bring your working copy up to date, then it will look like this:

calc/Makefile:6
integer.c:6
button.c:6

Sally's change to integer.c will appear in your working copy, and your change will still be
present in button.c. In this example, the text of Makefile is identical in revisions 4, 5, and
6, but Subversion will mark your working copy of Makefile with revision 6 to indicate that it is
still current. So, after you do a clean update at the top of your working copy, it will generally
correspond to exactly one revision in the repository.

How Working Copies Track the Repository
For each file in a working directory, Subversion records two essential pieces of information in
the .svn/ administrative area:

• what revision your working file is based on (this is called the file's working revision), and

• a timestamp recording when the local copy was last updated by the repository.

Fundamental Concepts

12

Given this information, by talking to the repository, Subversion can tell which of the following
four states a working file is in:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been com-
mitted to the repository since its working revision. An svn commit of the file will do noth-
ing, and an svn update of the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been
committed to the repository since you last updated. There are local changes that have not
been committed to the repository, thus an svn commit of the file will succeed in publishing
your changes, and an svn update of the file will do nothing.

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the re-
pository. The file should eventually be updated, to make it current with the latest public re-
vision. An svn commit of the file will do nothing, and an svn update of the file will fold the
latest changes into your working copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. An svn
commit of the file will fail with an “out-of-date” error. The file should be updated first; an
svn update command will attempt to merge the public changes with the local changes. If
Subversion can't complete the merge in a plausible way automatically, it leaves it to the
user to resolve the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state
of any item in your working copy. For more information on that command, see the section
called “svn status”.

Mixed Revision Working Copies
As a general principle, Subversion tries to be as flexible as possible. One special kind of flexib-
ility is the ability to have a working copy containing files and directories with a mix of different
working revision numbers. Unfortunately, this flexibility tends to confuse a number of new
users. If the earlier example showing mixed revisions perplexed you, here's a primer on both
why the feature exists and how to make use of it.

Updates and Commits are Separate

One of the fundamental rules of Subversion is that a “push” action does not cause a “pull”, nor
the other way around. Just because you're ready to submit new changes to the repository
doesn't mean you're ready to receive changes from other people. And if you have new
changes still in progress, then svn update should gracefully merge repository changes into
your own, rather than forcing you to publish them.

The main side-effect of this rule is that it means a working copy has to do extra bookkeeping to
track mixed revisions, and be tolerant of the mixture as well. It's made more complicated by the
fact that directories themselves are versioned.

For example, suppose you have a working copy entirely at revision 10. You edit the file
foo.html and then perform an svn commit, which creates revision 15 in the repository. After
the commit succeeds, many new users would expect the working copy to be entirely at revision

Fundamental Concepts

13

15, but that's not the case! Any number of changes might have happened in the repository
between revisions 10 and 15. The client knows nothing of those changes in the repository,
since you haven't yet run svn update, and svn commit doesn't pull down new changes. If, on
the other hand, svn commit were to automatically download the newest changes, then it
would be possible to set the entire working copy to revision 15—but then we'd be breaking the
fundamental rule of “push” and “pull” remaining separate actions. Therefore the only safe thing
the Subversion client can do is mark the one file—foo.html—as being at revision 15. The
rest of the working copy remains at revision 10. Only by running svn update can the latest
changes be downloaded, and the whole working copy be marked as revision 15.

Mixed revisions are normal

The fact is, every time you run svn commit, your working copy ends up with some mixture of
revisions. The things you just committed are marked as having larger working revisions than
everything else. After several commits (with no updates in-between) your working copy will
contain a whole mixture of revisions. Even if you're the only person using the repository, you
will still see this phenomenon. To examine your mixture of working revisions, use the svn
status --verbose command (see the section called “svn status” for more information.)

Often, new users are completely unaware that their working copy contains mixed revisions.
This can be confusing, because many client commands are sensitive to the working revision of
the item they're examining. For example, the svn log command is used to display the history
of changes to a file or directory (see the section called “svn log”). When the user invokes this
command on a working copy object, they expect to see the entire history of the object. But if
the object's working revision is quite old (often because svn update hasn't been run in a long
time), then the history of the older version of the object is shown.

Mixed revisions are useful

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly
“backdate” portions of your working copy to an earlier revision; you'll learn how to do that in
Chapter 2, Basic Usage. Perhaps you'd like to test an earlier version of a sub-module con-
tained in a subdirectory, or perhaps you'd like to figure out when a bug first came into exist-
ence in a specific file. This is the “time machine” aspect of a version control system — the fea-
ture which allows you to move any portion of your working copy forward and backward in his-
tory.

Mixed revisions have limitations

However you make use of mixed revisions in your working copy, there are limitations to this
flexibility.

First, you cannot commit the deletion of a file or directory which isn't fully up-to-date. If a newer
version of the item exists in the repository, your attempt to delete will be rejected, to prevent
you from accidentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll
learn about attaching “properties” to items in Chapter 3, Advanced Topics. A directory's work-
ing revision defines a specific set of entries and properties, and thus committing a property
change to an out-of-date directory may destroy properties you've not yet seen.

Summary
We've covered a number of fundamental Subversion concepts in this chapter:

Fundamental Concepts

14

• We've introduced the notions of the central repository, the client working copy, and the array
of repository revision trees.

• We've seen some simple examples of how two collaborators can use Subversion to publish
and receive changes from one another, using the “copy-modify-merge” model.

• We've talked a bit about the way Subversion tracks and manages information in a working
copy.

At this point, you should have a good idea of how Subversion works in the most general sense.
Armed with this knowledge, you should now be ready to move into the next chapter, which is a
detailed tour of Subversion's commands and features.

Fundamental Concepts

15

Chapter 2. Basic Usage
Now we will go into the details of using Subversion. By the time you reach the end of this
chapter, you will be able to perform almost all the tasks you need to use Subversion in a nor-
mal day's work. You'll start with an initial checkout of your code, and walk through making
changes and examining those changes. You'll also see how to bring changes made by others
into your working copy, examine them, and work through any conflicts that might arise.

Note that this chapter is not meant to be an exhaustive list of all Subversion's com-
mands—rather, it's a conversational introduction to the most common Subversion tasks you'll
encounter. This chapter assumes that you've read and understood Chapter 1, Fundamental
Concepts and are familiar with the general model of Subversion. For a complete reference of
all commands, see Chapter 9, Subversion Complete Reference.

Help!
Before reading on, here is the most important command you'll ever need when using Subver-
sion: svn help. The Subversion command-line client is self-documenting—at any time, a quick
svn help <subcommand> will describe the syntax, switches, and behavior of the subcom-
mand.

Import
You use svn import to import a new project into a Subversion repository. While this is most
likely the very first thing you will do when you set up your Subversion server, it's not something
that happens very often. For a detailed description of import, see the section called “svn im-
port” later in this chapter.

Time Travel with Subversion
As discussed in the section called “Revisions”, a revision is a “snapshot” of the repository at a
particular moment in time. But the thing that makes Subversion—or any other version control
system—useful is not that it keeps all the versions of your files and directories over time. It's
that you can actually do something with those older versions! And to do this sort of time travel-
ling, you need a mechanism for identifying revision snapshots.

Revision numbers in Subversion are pretty straightforward—just monotonically increasing in-
tegers. When you create a new Subversion repository, it begins its life at revision 0 and each
successive commit increases the revision number by one. Subversion doesn't try to hide these
numbers—they are a part of the interface you have into the history of your versioned data. For
example, after you perform a commit, the Subversion client informs you of the new revision
number:

$ svn commit --message "Corrected number of cheese slices."
Sending sandwich.txt
Transmitting file data .
Committed revision 3.

If at any point in the future you want to refer to that revision, you can do so by specifying it as
3. We'll discover some reasons why you might want to do that later in this chapter.

16

The svn command-line client provides a pair of options for specifying the revisions you wish to
operate on. The most common of these is the --revision (-r), which accepts as a paramet-
er either a single revision specifier (-r REV), or a pair of them separated by a colon (-r
REV1:REV2). This latter format is used to describe a revision range, useful for commands that
compare two revision snapshots or operate on every revision between two specified extremes,
inclusively.

Subversion 1.4 introduced a second option for specifying revision ranges, the --change (-c)
option. This is basically just a shortcut for specifying a range of revisions whose boundaries
are sequential integers. In other words, using -c REV is the same thing as using -r
REV-1:REV. And you can trivially reverse the implied range, too, by putting a dash in front of
the revision number, as in -c -REV.

Initial Checkout
Most of the time, you will start using a Subversion repository by doing a checkout of your
project. Checking out a repository creates a copy of it on your local machine. This copy con-
tains the HEAD (latest revision) of the Subversion repository that you specify on the command
line:

$ svn checkout http://svn.collab.net/repos/svn/trunk
A trunk/subversion.dsw
A trunk/svn_check.dsp
A trunk/COMMITTERS
A trunk/configure.in
A trunk/IDEAS
…
Checked out revision 2499.

What's in a Name?

Subversion tries hard not to limit the type of data you can place under version control.
The contents of files and property values are stored and transmitted as binary data, and
the section called “File Content Type” tells you how to give Subversion a hint that
“textual” operations don't make sense for a particular file. There are a few places,
however, where Subversion places restrictions on information it stores.

Subversion internally handles certain bits of data—for example, property names, path
names, and log messages—as UTF-8 encoded Unicode. This is not to say that all your
interactions with Subversion must involve UTF-8, though. As a general rule, Subversion
clients will gracefully and transparently handle conversions between UTF-8 and the en-
coding system in use on your computer, if such a conversion can meaningfully be done
(which is the case for most common encodings in use today).

In addition, path names are used as XML attribute values in WebDAV exchanges, as well
in as some of Subversion's housekeeping files. This means that path names can only
contain legal XML (1.0) characters. Subversion also prohibits TAB, CR, and LF charac-
ters in path names, so they aren't broken up in diffs, or in the output of commands like
svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a prob-
lem. As long as your locale settings are compatible with UTF-8, and you don't use control
characters in path names, you should have no trouble communicating with Subversion.
The command-line client adds an extra bit of help—it will automatically escape illegal

Basic Usage

17

path characters as needed in URLs you type to create “legally correct” versions for in-
ternal use.

Experienced users of Subversion have also developed a set of best-practice conventions
for laying out paths in the repository. While these aren't strict requirements like the syntax
described above, they help to organize frequently performed tasks. The /trunk part of
URLs you'll find throughout this book is one of these conventions; we'll talk a lot more
about it and related recommendations in Chapter 4, Branching and Merging.

Although the above example checks out the trunk directory, you can just as easily check out
any deep subdirectory of a repository by specifying the subdirectory in the checkout URL:

$ svn checkout http://svn.collab.net/repos/svn/trunk/doc/book/tools
A tools/readme-dblite.html
A tools/fo-stylesheet.xsl
A tools/svnbook.el
A tools/dtd
A tools/dtd/dblite.dtd
…
Checked out revision 2499.

Since Subversion uses a “copy-modify-merge” model instead of “lock-modify-unlock” (see
Chapter 1, Fundamental Concepts), you're already able to start making changes to the files
and directories in your working copy. Your working copy is just like any other collection of files
and directories on your system. You can edit and change them, move them around, you can
even delete the entire working copy and forget about it.

Note

While your working copy is “just like any other collection of files and directories on
your system”, you need to let Subversion know if you're going to be rearranging
anything inside of your working copy. If you want to copy or move an item in a
working copy, you should use svn copy or svn move instead of the copy and
move commands provided by your operating system. We'll talk more about them
later in this chapter.

Unless you're ready to commit a new file or directory, or changes to existing ones, there's no
need to further notify the Subversion server that you've done anything.

What's with the .svn directory?

Every directory in a working copy contains an administrative area, a subdirectory named
.svn. Usually, directory listing commands won't show this subdirectory, but it is never-
theless an important directory. Whatever you do, don't delete or change anything in the
administrative area! Subversion depends on it to manage your working copy.

While you can certainly check out a working copy with the URL of the repository as the only ar-
gument, you can also specify a directory after your repository URL. This places your working
copy in the new directory that you name. For example:

Basic Usage

18

$ svn checkout http://svn.collab.net/repos/svn/trunk subv
A subv/subversion.dsw
A subv/svn_check.dsp
A subv/COMMITTERS
A subv/configure.in
A subv/IDEAS
…
Checked out revision 2499.

That will place your working copy in a directory named subv instead of a directory named
trunk as we did previously.

Basic Work Cycle
Subversion has numerous features, options, bells and whistles, but on a day-to-day basis,
odds are that you will only use a few of them. In this section we'll run through the most com-
mon things that you might find yourself doing with Subversion in the course of a day's work.

The typical work cycle looks like this:

• Update your working copy

• svn update

• Make changes

• svn add

• svn delete

• svn copy

• svn move

• Examine your changes

• svn status

• svn diff

• svn revert

• Merge others' changes into your working copy

• svn update

• svn resolved

• Commit your changes

• svn commit

Update Your Working Copy
When working on a project with a team, you'll want to update your working copy to receive any

Basic Usage

19

changes made since your last update by other developers on the project. Use svn update to
bring your working copy into sync with the latest revision in the repository.

$ svn update
U foo.c
U bar.c
Updated to revision 2.

In this case, someone else checked in modifications to both foo.c and bar.c since the last
time you updated, and Subversion has updated your working copy to include those changes.

Let's examine the output of svn update a bit more. When the server sends changes to your
working copy, a letter code is displayed next to each item to let you know what actions Subver-
sion performed to bring your working copy up-to-date:

U foo
File foo was Updated (received changes from the server).

A foo
File or directory foo was Added to your working copy.

D foo
File or directory foo was Deleted from your working copy.

R foo
File or directory foo was Replaced in your working copy; that is, foo was deleted, and a
new item with the same name was added. While they may have the same name, the re-
pository considers them to be distinct objects with distinct histories.

G foo
File foo received new changes from the repository, but your local copy of the file had your
modifications. Either the changes did not intersect, or the changes were exactly the same
as your local modifications, so Subversion has successfully merGed the repository's
changes into the file without a problem.

C foo
File foo received Conflicting changes from the server. The changes from the server dir-
ectly overlap your own changes to the file. No need to panic, though. This overlap needs to
be resolved by a human (you); we discuss this situation later in this chapter.

Make Changes to Your Working Copy
Now you can get to work and make changes in your working copy. It's usually most convenient
to decide on a particular change (or set of changes) to make, such as writing a new feature,
fixing a bug, etc. The Subversion commands that you will use here are svn add, svn delete,
svn copy, and svn move. However, if you are merely editing files that are already in Subver-
sion, you may not need to use any of these commands until you commit. Changes you can
make to your working copy:

File changes
This is the simplest sort of change. You don't need to tell Subversion that you intend to
change a file; just make your changes. Subversion will be able to automatically detect
which files have been changed.

Basic Usage

20

1Of course, nothing is ever totally deleted from the repository—just from the HEAD of the repository. You can get back
anything you delete by checking out (or updating your working copy) a revision earlier than the one in which you de-
leted it.

Tree changes
You can ask Subversion to “mark” files and directories for scheduled removal, addition,
copying, or moving. While these changes may take place immediately in your working
copy, no additions or removals will happen in the repository until you commit them.

To make file changes, use your text editor, word processor, graphics program, or whatever tool
you would normally use. Subversion handles binary files just as easily as it handles text
files—and just as efficiently too.

Here is an overview of the four Subversion subcommands that you'll use most often to make
tree changes (we'll cover svn import and svn mkdir later).

Versioning symbolic links

On platforms which support them, Subversion is able to version files of the special type
symbolic link (or, “symlink”). A symlink is a file which acts as a sort of transparent refer-
ence to some other object in the filesystem, allowing programs to read and write to those
objects indirectly by way of performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion retains the fact
that the file was in fact a symlink, as well as to what object the symlink “points”. When
that symlink is checked out to another working copy on a supporting system, Subversion
reconstructs a real filesystem-level symbolic link from the versioned symlink. But that
doesn't in any way limit the usability of working copies on systems such as Windows
which do not support symlinks. On such systems, Subversion simply constructs a regular
text file whose contents are the path to which to the original symlink pointed. While that
file can't be used as a symlink on a Windows system, it also won't prevent Windows
users from performing their other Subversion-related activities.

Warning

While you can edit your files with whatever tool you like, you shouldn't change the
structure of your working copy without letting Subversion know what you're doing.
Use the svn copy, svn delete, and svn move commands to change the structure
of your working copy, and use the svn add command to place new files and dir-
ectories under version control.

svn add foo
Schedule file, directory, or symbolic link foo to be added to the repository. When you next
commit, foo will become a child of its parent directory. Note that if foo is a directory,
everything underneath foo will be scheduled for addition. If you only want to add foo it-
self, pass the --non-recursive (-N) switch.

svn delete foo
Schedule file, directory, or symbolic link foo to be deleted from the repository. If foo is a
file or link, it is immediately deleted from your working copy. If foo is a directory, it is not
deleted, but Subversion schedules it for deletion. When you commit your changes, foo will
be removed from your working copy and the repository. 1

Basic Usage

21

svn copy foo bar
Create a new item bar as a duplicate of foo. bar is automatically scheduled for addition.
When bar is added to the repository on the next commit, its copy history is recorded (as
having originally come from foo). svn copy does not create intermediate directories.

svn move foo bar
This command is exactly the same as running svn copy foo bar; svn delete foo. That is,
bar is scheduled for addition as a copy of foo, and foo is scheduled for removal. svn
move does not create intermediate directories.

Changing the Repository Without a Working Copy

Earlier in this chapter, we said that you have to commit any changes that you make in or-
der for the repository to reflect these changes. That's not entirely true—there are some
use cases that immediately commit tree changes to the repository. This only happens
when a subcommand is operating directly on a URL, rather than on a working-copy path.
In particular, specific uses of svn mkdir, svn copy, svn move, and svn delete can work
with URLs.

URL operations behave in this manner because commands that operate on a working
copy can use the working copy as a sort of “staging area” to set up your changes before
committing them to the repository. Commands that operate on URLs don't have this lux-
ury, so when you operate directly on a URL, any of the above actions represent an imme-
diate commit.

Examine Your Changes
Once you've finished making changes, you need to commit them to the repository, but before
you do so, it's usually a good idea to take a look at exactly what you've changed. By examining
your changes before you commit, you can make a more accurate log message. You may also
discover that you've inadvertently changed a file, and this gives you a chance to revert those
changes before committing. Additionally, this is a good opportunity to review and scrutinize
changes before publishing them. You can see exactly what changes you've made by using
svn status, svn diff, and svn revert. You will usually use the first two commands to find out
what files have changed in your working copy, and then perhaps the third to revert some (or
all) of those changes.

Look Ma! No Network!

All three of these commands (svn status, svn diff, and svn revert) can be used without
any network access. This makes it easy to manage your changes-in-progress when you
are somewhere without a network connection, such as travelling on an airplane, riding a
commuter train or hacking on the beach.

Subversion does this by keeping private caches of pristine versions of each versioned file
inside of the .svn administrative areas. This allows Subversion to report—and re-
vert—local modifications to those files without network access. This cache (called the
“text-base”) also allows Subversion to send the user's local modifications during a commit
to the server as a compressed delta (or “difference”) against the pristine version. Having
this cache is a tremendous benefit—even if you have a fast net connection, it's much
faster to send only a file's changes rather than the whole file to the server.

Basic Usage

22

Subversion has been optimized to help you with this task, and is able to do many things
without communicating with the repository. In particular, your working copy contains a secret
cached “pristine” copy of each version controlled file within the .svn area. Because of this,
Subversion can quickly show you how your working files have changed, or even allow you to
undo your changes without contacting the repository.

svn status

You'll probably use the svn status command more than any other Subversion command.

CVS Users: Hold That Update!

You're probably used to using cvs update to see what changes you've made to your
working copy. svn status will give you all the information you need regarding what has
changed in your working copy—without accessing the repository or potentially incorporat-
ing new changes published by other users.

In Subversion, update does just that—it updates your working copy with any changes
committed to the repository since the last time you've updated your working copy. You'll
have to break the habit of using the update command to see what local modifications
you've made.

If you run svn status at the top of your working copy with no arguments, it will detect all file
and tree changes you've made. Below are examples of the different status codes that svn
status can return. (Note that the text following # is not actually printed by svn status.)

L some_dir # svn left a lock in the .svn area of some_dir
M bar.c # the content in bar.c has local modifications
M baz.c # baz.c has property but no content modifications
X 3rd_party # dir is part of an externals definition
? foo.o # svn doesn't manage foo.o
! some_dir # svn manages this, but it's missing or incomplete
~ qux # versioned as file/dir/link, but type has changed
I .screenrc # svn doesn't manage this, and is set to ignore it
A + moved_dir # added with history of where it came from
M + moved_dir/README # added with history and has local modifications
D stuff/fish.c # file is scheduled for deletion
A stuff/loot/bloo.h # file is scheduled for addition
C stuff/loot/lump.c # file has textual conflicts from an update
C stuff/loot/glub.c # file has property conflicts from an update
R xyz.c # file is scheduled for replacement

S stuff/squawk # file or dir has been switched to a branch
K dog.jpg # file is locked locally; lock-token present
O cat.jpg # file is locked in the repository by other user
B bird.jpg # file is locked locally, but lock has been broken
T fish.jpg # file is locked locally, but lock has been stolen

In this output format svn status prints five columns of characters, followed by several
whitespace characters, followed by a file or directory name. The first column tells the status of
a file or directory and/or its contents. The codes printed here are:

A item
The file, directory, or symbolic link item has been scheduled for addition into the reposit-
ory.

Basic Usage

23

C item
The file item is in a state of conflict. That is, changes received from the server during an
update overlap with local changes that you have in your working copy. You must resolve
this conflict before committing your changes to the repository.

D item
The file, directory, or symbolic link item has been scheduled for deletion from the reposit-
ory.

M item
The contents of the file item have been modified.

R item
The file, directory, or symbolic link item has been scheduled to replace item in the repos-
itory. This means that the object is first deleted, then another object of the same name is
added, all within a single revision.

X item
The directory item is unversioned, but is related to a Subversion externals definition. To
find out more about externals definitions, see the section called “Externals Definitions”.

? item
The file, directory, or symbolic link item is not under version control. You can silence the
question marks by either passing the --quiet (-q) switch to svn status, or by setting the
svn:ignore property on the parent directory. For more information on ignored files, see
the section called “Ignoring Unversioned Items”.

! item
The file, directory, or symbolic link item is under version control but is missing or some-
how incomplete. The item can be missing if it's removed using a non-Subversion com-
mand. In the case of a directory, it can be incomplete if you happened to interrupt a check-
out or update. A quick svn update will refetch the file or directory from the repository, or
svn revert file will restore a missing file.

~ item
The file, directory, or symbolic link item is in the repository as one kind of object, but
what's actually in your working copy is some other kind. For example, Subversion might
have a file in the repository, but you removed the file and created a directory in its place,
without using the svn delete or svn add command.

I item
The file, directory, or symbolic link item is not under version control, and Subversion is
configured to ignore it during svn add, svn import and svn status operations. For more
information on ignored files, see the section called “Ignoring Unversioned Items”. Note that
this symbol only shows up if you pass the --no-ignore option to svn status—otherwise
the file would be ignored and not listed at all!

The second column tells the status of a file or directory's properties (see the section called
“Properties” for more information on properties). If an M appears in the second column, then
the properties have been modified. If a C appears in that column, then the properties for the file
are in a state of conflict, which must be resolved before committing the changes to the reposit-
ory. Otherwise a whitespace will be printed.

The third column will only show whitespace or an L which means that Subversion has locked
the directory's .svn working area. You will see an L if you run svn status in a directory where
an svn commit is in progress—perhaps when you are editing the log message. If Subversion

Basic Usage

24

is not running, then presumably Subversion was interrupted and the lock needs to be cleaned
up by running svn cleanup (more about that later in this chapter).

The fourth column will only show whitespace or a + which means that the file or directory is
scheduled to be added or modified with additional attached history. This typically happens
when you svn move or svn copy a file or directory. If you see A +, this means the item is
scheduled for addition-with-history. It could be a file, or the root of a copied directory. + means
the item is part of a subtree scheduled for addition-with-history, i.e. some parent got copied,
and it's just coming along for the ride. M + means the item is part of a subtree scheduled for
addition-with-history, and it has local modifications. When you commit, first the parent will be
added-with-history (copied), which means this file will automatically exist in the copy. Then the
local modifications will be uploaded into the copy.

The fifth column will only show whitespace or an S. This signifies that the file or directory has
been switched from the path of the rest of the working copy (using svn switch) to a branch.

The sixth column shows information about locks, which is further explained in the section
called “Locking”. (These are not the same locks as the ones indicated by an L in the third
column; see Three meanings of “lock”.)

If you pass a specific path to svn status, it gives you information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a --verbose (-v) switch, which will show you the status of every item in
your working copy, even if it has not been changed:

$ svn status --verbose
M 44 23 sally README

44 30 sally INSTALL
M 44 20 harry bar.c

44 18 ira stuff
44 35 harry stuff/trout.c

D 44 19 ira stuff/fish.c
44 21 sally stuff/things

A 0 ? ? stuff/things/bloo.h
44 36 harry stuff/things/gloo.c

This is the “long form” output of svn status. The first column remains the same, but the
second column shows the working-revision of the item. The third and fourth columns show the
revision in which the item last changed, and who changed it.

None of the above invocations to svn status contact the repository, they work only locally by
comparing the metadata in the .svn directory with the working copy. Finally, there is the -
-show-updates (-u) switch, which contacts the repository and adds information about things
that are out-of-date:

$ svn status --show-updates --verbose
M * 44 23 sally README
M 44 20 harry bar.c

* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
Status against revision: 46

Basic Usage

25

2Subversion uses its internal diff engine, which produces unified diff format, by default. If you want diff output in a dif-
ferent format, specify an external diff program using --diff-cmd and pass any flags you'd like to it using the -
-extensions switch. For example, to see local differences in file foo.c in context output format while ignoring
whitespace changes, you might run svn diff --diff-cmd /usr/bin/diff --extensions '-bc' foo.c.

Notice the two asterisks: if you were to run svn update at this point, you would receive
changes to README and trout.c. This tells you some very useful information—you'll need to
update and get the server changes on README before you commit, or the repository will reject
your commit for being out-of-date. (More on this subject later.)

svn diff

Another way to examine your changes is with the svn diff command. You can find out exactly
how you've modified things by running svn diff with no arguments, which prints out file
changes in unified diff format:2

$ svn diff
Index: bar.c
===
--- bar.c (revision 3)
+++ bar.c (working copy)
@@ -1,7 +1,12 @@
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#include <stdio.h>

int main(void) {
- printf("Sixty-four slices of American Cheese...\n");
+ printf("Sixty-five slices of American Cheese...\n");
return 0;
}

Index: README
===
--- README (revision 3)
+++ README (working copy)
@@ -193,3 +193,4 @@
+Note to self: pick up laundry.

Index: stuff/fish.c
===
--- stuff/fish.c (revision 1)
+++ stuff/fish.c (working copy)
-Welcome to the file known as 'fish'.
-Information on fish will be here soon.

Index: stuff/things/bloo.h
===
--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe
+things about bloo.

The svn diff command produces this output by comparing your working files against the
cached “pristine” copies within the .svn area. Files scheduled for addition are displayed as all
added-text, and files scheduled for deletion are displayed as all deleted text.

Output is displayed in unified diff format. That is, removed lines are prefaced with a - and ad-

Basic Usage

26

ded lines are prefaced with a +. svn diff also prints filename and offset information useful to
the patch program, so you can generate “patches” by redirecting the diff output to a file:

$ svn diff > patchfile

You could, for example, email the patch file to another developer for review or testing prior to
commit.

svn revert

Now suppose you see the above diff output, and realize that your changes to README are a
mistake; perhaps you accidentally typed that text into the wrong file in your editor.

This is a perfect opportunity to use svn revert.

$ svn revert README
Reverted 'README'

Subversion reverts the file to its pre-modified state by overwriting it with the cached “pristine”
copy from the .svn area. But also note that svn revert can undo any scheduled opera-
tions—for example, you might decide that you don't want to add a new file after all:

$ svn status foo
? foo

$ svn add foo
A foo

$ svn revert foo
Reverted 'foo'

$ svn status foo
? foo

Note

svn revert ITEM has exactly the same effect as deleting ITEM from your working
copy and then running svn update -r BASE ITEM. However, if you're reverting a
file, svn revert has one very noticeable difference—it doesn't have to communic-
ate with the repository to restore your file.

Or perhaps you mistakenly removed a file from version control:

$ svn status README
README

$ svn delete README
D README

$ svn revert README
Reverted 'README'

$ svn status README

Basic Usage

27

README

Resolve Conflicts (Merging Others' Changes)
We've already seen how svn status -u can predict conflicts. Suppose you run svn update and
some interesting things occur:

$ svn update
U INSTALL
G README
C bar.c
Updated to revision 46.

The U and G codes are no cause for concern; those files cleanly absorbed changes from the
repository. The files marked with U contained no local changes but were Updated with changes
from the repository. The G stands for merGed, which means that the file had local changes to
begin with, but the changes coming from the repository didn't overlap with the local changes.

But the C stands for conflict. This means that the changes from the server overlapped with
your own, and now you have to manually choose between them.

Whenever a conflict occurs, three things typically occur to assist you in noticing and resolving
that conflict:

• Subversion prints a C during the update, and remembers that the file is in a state of conflict.

• If Subversion considers the file to be of a mergeable type, it places conflict markers—special
strings of text which delimit the “sides” of the conflict—into the file to visibly demonstrate the
overlapping areas. (Subversion uses the svn:mime-type property to decide if a file is cap-
able of contextual, line-based merging. See the section called “File Content Type” to learn
more.)

• For every conflicted file, Subversion places up to three extra unversioned files in your work-
ing copy:

filename.mine
This is your file as it existed in your working copy before you updated your working
copy—that is, without conflict markers. This file has your latest changes in it and nothing
else. (If Subversion considers the file to be unmergeable, then the .mine file isn't created,
since it would be identical to the working file.)

filename.rOLDREV
This is the file that was the BASE revision before you updated your working copy. That is,
the file that you checked out before you made your latest edits.

filename.rNEWREV
This is the file that your Subversion client just received from the server when you updated
your working copy. This file corresponds to the HEAD revision of the repository.

Here OLDREV is the revision number of the file in your .svn directory and NEWREV is the re-
vision number of the repository HEAD.

For example, Sally makes changes to the file sandwich.txt in the repository. Harry has just

Basic Usage

28

3You can always remove the temporary files yourself, but would you really want to do that when Subversion can do it
for you? We didn't think so.

changed the file in his working copy and checked it in. Sally updates her working copy before
checking in and she gets a conflict:

$ svn update
C sandwich.txt
Updated to revision 2.
$ ls -1
sandwich.txt
sandwich.txt.mine
sandwich.txt.r1
sandwich.txt.r2

At this point, Subversion will not allow you to commit the file sandwich.txt until the three
temporary files are removed.

$ svn commit --message "Add a few more things"
svn: Commit failed (details follow):
svn: Aborting commit: '/home/sally/svn-work/sandwich.txt' remains in conflict

If you get a conflict, you need to do one of three things:

• Merge the conflicted text “by hand” (by examining and editing the conflict markers within the
file).

• Copy one of the temporary files on top of your working file.

• Run svn revert <filename> to throw away all of your local changes.

Once you've resolved the conflict, you need to let Subversion know by running svn resolved.
This removes the three temporary files and Subversion no longer considers the file to be in a
state of conflict.3

$ svn resolved sandwich.txt
Resolved conflicted state of 'sandwich.txt'

Merging Conflicts by Hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little
practice, it can become as easy as falling off a bike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the
file sandwich.txt at the same time. Sally commits her changes, and when you go to update
your working copy, you get a conflict and we're going to have to edit sandwich.txt to re-
solve the conflicts. First, let's take a look at the file:

$ cat sandwich.txt
Top piece of bread
Mayonnaise
Lettuce
Tomato

Basic Usage

29

4And if you ask them for it, they may very well ride you out of town on a rail.

Provolone
<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2
Creole Mustard
Bottom piece of bread

The strings of less-than signs, equal signs, and greater-than signs are conflict markers, and
are not part of the actual data in conflict. You generally want to ensure that those are removed
from the file before your next commit. The text between the first two sets of markers is com-
posed of the changes you made in the conflicting area:

<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======

The text between the second and third sets of conflict markers is the text from Sally's commit:

=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to
be awfully surprised when the sandwich arrives and it's not what she wanted. So this is where
you pick up the phone or walk across the office and explain to Sally that you can't get
sauerkraut from an Italian deli.4 Once you've agreed on the changes you will check in, edit
your file and remove the conflict markers.

Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
Salami
Mortadella
Prosciutto
Creole Mustard
Bottom piece of bread

Now run svn resolved, and you're ready to commit your changes:

$ svn resolved sandwich.txt
$ svn commit -m "Go ahead and use my sandwich, discarding Sally's edits."

Basic Usage

30

Note that svn resolved, unlike most of the other commands we deal with in this chapter, re-
quires an argument. In any case, you want to be careful and only run svn resolved when
you're certain that you've fixed the conflict in your file—once the temporary files are removed,
Subversion will let you commit the file even if it still contains conflict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files
that Subversion creates for you in your working copy—including your file as it was before you
updated. You can even use a third-party interactive merging tool to examine those three files.

Copying a File Onto Your Working File

If you get a conflict and decide that you want to throw out your changes, you can merely copy
one of the temporary files created by Subversion over the file in your working copy:

$ svn update
C sandwich.txt
Updated to revision 2.
$ ls sandwich.*
sandwich.txt sandwich.txt.mine sandwich.txt.r2 sandwich.txt.r1
$ cp sandwich.txt.r2 sandwich.txt
$ svn resolved sandwich.txt

Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and
start your edits again, just revert your changes:

$ svn revert sandwich.txt
Reverted 'sandwich.txt'
$ ls sandwich.*
sandwich.txt

Note that when you revert a conflicted file, you don't have to run svn resolved.

Commit Your Changes
Finally! Your edits are finished, you've merged all changes from the server, and you're ready to
commit your changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a
change, you need to supply a log message, describing your change. Your log message will be
attached to the new revision you create. If your log message is brief, you may wish to supply it
on the command line using the --message (or -m) option:

$ svn commit --message "Corrected number of cheese slices."
Sending sandwich.txt
Transmitting file data .
Committed revision 3.

However, if you've been composing your log message as you work, you may want to tell Sub-
version to get the message from a file by passing the filename with the --file switch:

Basic Usage

31

$ svn commit --file logmsg
Sending sandwich.txt
Transmitting file data .
Committed revision 4.

If you fail to specify either the --message or --file switch, then Subversion will automatic-
ally launch your favorite editor (see the editor-cmd section in the section called “Config”) for
composing a log message.

Tip

If you're in your editor writing a commit message and decide that you want to can-
cel your commit, you can just quit your editor without saving changes. If you've
already saved your commit message, simply delete the text and save again.

$ svn commit
Waiting for Emacs...Done

Log message unchanged or not specified
a)bort, c)ontinue, e)dit
a
$

The repository doesn't know or care if your changes make any sense as a whole; it only
checks to make sure that nobody else has changed any of the same files that you did when
you weren't looking. If somebody has done that, the entire commit will fail with a message in-
forming you that one or more of your files is out-of-date:

$ svn commit --message "Add another rule"
Sending rules.txt
svn: Commit failed (details follow):
svn: Out of date: 'rules.txt' in transaction 'g'

At this point, you need to run svn update, deal with any merges or conflicts that result, and at-
tempt your commit again.

That covers the basic work cycle for using Subversion. There are many other features in Sub-
version that you can use to manage your repository and working copy, but you can get by quite
easily using only the commands that we've discussed so far in this chapter.

Examining History
As we mentioned earlier, the repository is like a time machine. It keeps a record of every
change ever committed, and allows you to explore this history by examining previous versions
of files and directories as well as the metadata that accompanies them. With a single Subver-
sion command, you can check out the repository (or restore an existing working copy) exactly
as it was at any date or revision number in the past. However, sometimes you just want to peer
into the past instead of going into the past.

There are several commands that can provide you with historical data from the repository:

svn log

Basic Usage

32

Shows you broad information: log messages with date and author information attached to
revisions, and which paths changed in each revision.

svn diff
Shows you the specific details of how a file changed over time.

svn cat
This is used to retrieve any file as it existed in a particular revision number and display it
on your screen.

svn list
Displays the files in a directory for any given revision.

svn log
To find information about the history of a file or directory, use the svn log command. svn log
will provide you with a record of who made changes to a file or directory, at what revision it
changed, the time and date of that revision, and, if it was provided, the log message that ac-
companied the commit.

$ svn log
--
r3 | sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

Added include lines and corrected # of cheese slices.
--
r2 | harry | Mon, 15 Jul 2002 17:47:57 -0500 | 1 line

Added main() methods.
--
r1 | sally | Mon, 15 Jul 2002 17:40:08 -0500 | 1 line

Initial import
--

Note that the log messages are printed in reverse chronological order by default. If you wish to
see a different range of revisions in a particular order, or just a single revision, pass the -
-revision (-r) switch:

$ svn log --revision 5:19 # shows logs 5 through 19 in chronological order

$ svn log -r 19:5 # shows logs 5 through 19 in reverse order

$ svn log -r 8 # shows log for revision 8

You can also examine the log history of a single file or directory. For example:

$ svn log foo.c
…
$ svn log http://foo.com/svn/trunk/code/foo.c
…

These will display log messages only for those revisions in which the working file (or URL)
changed.

Basic Usage

33

If you want even more information about a file or directory, svn log also takes a --verbose
(-v) switch. Because Subversion allows you to move and copy files and directories, it is im-
portant to be able to track path changes in the filesystem, so in verbose mode, svn log will in-
clude a list of changed paths in a revision in its output:

$ svn log -r 8 -v
--
r8 | sally | 2002-07-14 08:15:29 -0500 | 1 line
Changed paths:
M /trunk/code/foo.c
M /trunk/code/bar.h
A /trunk/code/doc/README

Frozzled the sub-space winch.

--

svn log also takes a --quiet (-q) switch, which suppresses the body of the log message.
When combined with --verbose, it gives just the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

$ svn log -r 2
--
$

At first glance, this seems like an error. But recall that while revisions are repository-wide,
svn log operates on a path in the repository. If you supply no path, Subversion uses the
current working directory as the default target. As a result, if you're operating in a subdir-
ectory of your working copy and attempt to see the log of a revision in which neither that
directory nor any of its children was changed, Subversion will show you an empty log. If
you want to see what changed in that revision, try pointing svn log directly at the top-
most URL of your repository, as in svn log -r 2 http://svn.collab.net/repos/svn.

svn diff
We've already seen svn diff before—it displays file differences in unified diff format; it was
used to show the local modifications made to our working copy before committing to the repos-
itory.

In fact, it turns out that there are three distinct uses of svn diff:

• Examine local changes

• Compare your working copy to the repository

• Compare repository to repository

Examining Local Changes

Basic Usage

34

As we've seen, invoking svn diff with no switches will compare your working files to the
cached “pristine” copies in the .svn area:

$ svn diff
Index: rules.txt
===
--- rules.txt (revision 3)
+++ rules.txt (working copy)
@@ -1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in moderation
-Chew with your mouth open
+Chew with your mouth closed
+Listen when others are speaking
$

Comparing Working Copy to Repository

If a single --revision (-r) number is passed, then your working copy is compared to the
specified revision in the repository.

$ svn diff --revision 3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 3)
+++ rules.txt (working copy)
@@ -1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in moderation
-Chew with your mouth open
+Chew with your mouth closed
+Listen when others are speaking
$

Comparing Repository to Repository

If two revision numbers, separated by a colon, are passed via --revision (-r), then the two
revisions are directly compared.

$ svn diff --revision 2:3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@@ -1,4 +1,4 @@
Be kind to others
-Freedom = Chocolate Ice Cream
+Freedom = Responsibility
Everything in moderation
Chew with your mouth open
$

Not only can you use svn diff to compare files in your working copy to the repository, but if you
supply a URL argument, you can examine the differences between items in the repository

Basic Usage

35

without even having a working copy. This is especially useful if you wish to inspect changes in
a file when you don't have a working copy on your local machine:

$ svn diff --revision 4:5 http://svn.red-bean.com/repos/example/trunk/text/rules.txt
…
$

svn cat
If you want to examine an earlier version of a file and not necessarily the differences between
two files, you can use svn cat:

$ svn cat --revision 2 rules.txt
Be kind to others
Freedom = Chocolate Ice Cream
Everything in moderation
Chew with your mouth open
$

You can also redirect the output directly into a file:

$ svn cat --revision 2 rules.txt > rules.txt.v2
$

You're probably wondering why we don't just use svn update --revision to update the file to
the older revision. There are a few reasons why we might prefer to use svn cat.

First, you may want to see the differences between two revisions of a file using an external diff
program (perhaps a graphical one, or perhaps your file is in such a format that the output of
unified diff is nonsensical). In this case, you'll need to grab a copy of the old revision, redirect it
to a file, and pass both that and the file in your working copy to your external diff program.

Secondly, it's sometimes just easier to look at an older version of a file in its entirety than to
look only at the differences between it and another revision.

svn list
The svn list command shows you what files are in a repository directory without actually
downloading the files to your local machine:

$ svn list http://svn.collab.net/repos/svn
README
branches/
clients/
tags/
trunk/

If you want a more detailed listing, pass the --verbose (-v) flag to get output like this:

$ svn list --verbose http://svn.collab.net/repos/svn
2755 harry 1331 Jul 28 02:07 README
2773 sally Jul 29 15:07 branches/

Basic Usage

36

5See? We told you that Subversion was a time machine.

2769 sally Jul 29 12:07 clients/
2698 harry Jul 24 18:07 tags/
2785 sally Jul 29 19:07 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who
modified it, the size if it is a file, the date it was last modified, and the item's name.

A Final Word on History
In addition to all of the above commands, you can use svn update and svn checkout with the
--revision switch to take an entire working copy “back in time” 5:

$ svn checkout --revision 1729 # Checks out a new working copy at r1729
…
$ svn update --revision 1729 # Updates an existing working copy to r1729
…

Other Useful Commands
While not as frequently used as the commands previously discussed in this chapter, you will
occasionally need these commands.

svn cleanup
When Subversion modifies your working copy (or any information within .svn), it tries to do so
as safely as possible. Before changing the working copy, Subversion writes its intentions to a
log file. Next it executes the commands in the log file to apply the requested change, holding a
lock on the relevant part of the working copy while it works — to prevent other Subversion cli-
ents from accessing the working copy in mid-change. Finally, Subversion removes the log file.
Architecturally, this is similar to a journaled filesystem. If a Subversion operation is interrupted
(if the process is killed, or if the machine crashes, for example), the log files remain on disk. By
re-executing the log files, Subversion can complete the previously started operation, and your
working copy can get itself back into a consistent state.

And this is exactly what svn cleanup does: it searches your working copy and runs any
leftover logs, removing working copy locks in the process. If Subversion ever tells you that
some part of your working copy is “locked”, then this is the command that you should run. Also,
svn status will display an L next to locked items:

$ svn status
L somedir

M somedir/foo.c

$ svn cleanup
$ svn status
M somedir/foo.c

Don't confuse these working copy locks with the ordinary locks that Subversion users create
when using the “lock-modify-unlock” model of concurrent version control; see Three meanings

Basic Usage

37

of “lock” for clarification.

svn import
The svn import command is a quick way to copy an unversioned tree of files into a repository,
creating intermediate directories as necessary.

$ svnadmin create /usr/local/svn/newrepos
$ svn import mytree file:///usr/local/svn/newrepos/some/project \

-m "Initial import"
Adding mytree/foo.c
Adding mytree/bar.c
Adding mytree/subdir
Adding mytree/subdir/quux.h

Committed revision 1.

The previous example copied the contents of directory mytree under the directory some/
project in the repository:

$ svn list file:///usr/local/svn/newrepos/some/project
bar.c
foo.c
subdir/

Note that after the import is finished, the original tree is not converted into a working copy. To
start working, you still need to svn checkout a fresh working copy of the tree.

Summary
Now we've covered most of the Subversion client commands. Notable exceptions are those
dealing with branching and merging (see Chapter 4, Branching and Merging) and properties
(see the section called “Properties”). However, you may want to take a moment to skim
through Chapter 9, Subversion Complete Reference to get an idea of all the many different
commands that Subversion has—and how you can use them to make your work easier.

Basic Usage

38

Chapter 3. Advanced Topics
If you've been reading this book chapter by chapter, from start to finish, you should by now
have acquired enough knowledge to use the Subversion client to perform the most common
version control operations. You understand how to checkout a working copy from a Subversion
repository. You are comfortable with submitting and receiving changes using the svn commit
and svn update functions. You've probably even developed a reflex which causes you to run
the svn status command almost unconsciously. For all intents and purposes, you are ready to
use Subversion in a typical environment.

But the Subversion feature set doesn't stop at “common version control operations”. It has oth-
er bits of functionality that extend beyond just communicating file and directory changes to and
from a central repository.

This chapter highlights some of Subversion's features that, while important, aren't part of the
typical user's daily routine. It assumes that you are familiar with Subversion's basic file and dir-
ectory versioning capabilities. If you aren't, you'll want to first read Chapter 1, Fundamental
Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed
this chapter, you'll be a Subversion power-user!

Revision Specifiers
As you saw in the section called “Time Travel with Subversion”, revision numbers in Subver-
sion are pretty straightforward—integers that keep getting larger as you commit more changes
to your versioned data. Still, it doesn't take long before you can no longer remember exactly
what happened in each and every revision. Fortunately, the typical Subversion workflow
doesn't often demand that you supply arbitrary revisions to the Subversion operations you per-
form. For operations that do require a revision specifier, you generally supply a revision num-
ber that you saw in a commit email, in the output of some other Subversion operation, or in
some other context that would yield meaning to that particular number.

But occasionally, you need to pinpoint a moment in time for which you don't already have a re-
vision number memorized or handy. So besides the integer revision numbers, svn allows as
input some additional forms of revision specifiers—revision keywords, and revision dates.

Note

The various forms of Subversion revision specifiers can be mixed and matched
when used to specify revision ranges. For example, you can use -r REV1:REV2
where REV1 is a revision keyword and REV2 is a revision number, or where REV1
is a date and REV2 is a revision keyword, and so on. The individual revision spe-
cifiers are independently evaluated, so you can put whatever you want on the op-
posite sides of that colon.

Revision Keywords
The Subversion client understands a number of revision keywords. These keywords can be
used instead of integer arguments to the --revision switch, and are resolved into specific
revision numbers by Subversion:

HEAD
The latest (or “youngest”) revision in the repository.

39

BASE
The revision number of an item in a working copy. If the item has been locally modified, the
“BASE version” refers to the way the item appears without those local modifications.

COMMITTED
The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV
The revision immediately before the last revision in which an item changed. Technically,
this boils down to COMMITTED-1.

As can be derived from their descriptions, the PREV, BASE, and COMMITTED revision keywords
are used only when referring to a working copy path—they don't apply to repository URLs.
HEAD, on the other hand, can be used in conjuction with both of these path types.

Here are some examples of revision keywords in action:

$ svn diff -r PREV:COMMITTED foo.c
shows the last change committed to foo.c

$ svn log -r HEAD
shows log message for the latest repository commit

$ svn diff -r HEAD
compares your working copy (with all of its local changes) to the
latest version of that tree in the repository

$ svn diff -r BASE:HEAD foo.c
compares the unmodified version of foo.c with the latest version of
foo.c in the repository

$ svn log -r BASE:HEAD
shows all commit logs for the current versioned directory since you
last updated

$ svn update -r PREV foo.c
rewinds the last change on foo.c, decreasing foo.c's working revision

$ svn diff -r BASE:14 foo.c
compares the unmodified version of foo.c with the way foo.c looked
in revision 14

Revision Dates
Revision numbers reveal nothing about the world outside the version control system, but
sometimes you need to correlate a moment in real time with a moment in version history. To
facilitate this, the --revision option can also accept as input date specifiers wrapped in
curly braces ({ and }). Subversion accepts the standard ISO-8601 date and time formats, plus
a few others. Here are some examples. (Remember to use quotes around any date that con-
tains spaces.)

$ svn checkout -r {2006-02-17}
$ svn checkout -r {15:30}
$ svn checkout -r {15:30:00.200000}
$ svn checkout -r {"2006-02-17 15:30"}
$ svn checkout -r {"2006-02-17 15:30 +0230"}

Advanced Topics

40

$ svn checkout -r {2006-02-17T15:30}
$ svn checkout -r {2006-02-17T15:30Z}
$ svn checkout -r {2006-02-17T15:30-04:00}
$ svn checkout -r {20060217T1530}
$ svn checkout -r {20060217T1530Z}
$ svn checkout -r {20060217T1530-0500}
…

When you specify a date, Subversion resolves that date to the most recent revision of the re-
pository as of that date, and then continues to operate against that resolved revision number:

$ svn log -r {2006-11-28}
--
r12 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines
…

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example
2006-11-27), you may think that Subversion should give you the last revision that took
place on the 27th of November. Instead, you'll get back a revision from the 26th, or even
earlier. Remember that Subversion will find the most recent revision of the repository as
of the date you give. If you give a date without a timestamp, like 2006-11-27, Subver-
sion assumes a time of 00:00:00, so looking for the most recent revision won't return any-
thing on the day of the 27th.

If you want to include the 27th in your search, you can either specify the 27th with the
time ({"2006-11-27 23:59"}), or just specify the next day ({2006-11-28}).

You can also use a range of dates. Subversion will find all revisions between both dates, in-
clusive:

$ svn log -r {2006-11-20}:{2006-11-29}
…

Warning

Since the timestamp of a revision is stored as an unversioned, modifiable property
of the revision (see the section called “Properties”, revision timestamps can be
changed to represent complete falsifications of true chronology, or even removed
altogether. This will wreak havoc on the internal date-to-revision conversion that
Subversion performs.

Properties
We've already covered in detail how Subversion stores and retrieves various versions of files
and directories in its repository. Whole chapters have been devoted to this most fundamental
piece of functionality provided by the tool. And if the versioning support stopped there, Subver-
sion would still be complete from a version control perspective.

Advanced Topics

41

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding,
modifying, and removing versioned metadata on each of your versioned directories and files.
We refer to this metadata as properties, and they can be thought of as two-column tables that
map property names to arbitrary values attached to each item in your working copy. Generally
speaking, the names and values of the properties can be whatever you want them to be, with
the constraint that the names must be human-readable text. And the best part about these
properties is that they, too, are versioned, just like the textual contents of your files. You can
modify, commit, and revert property changes as easily as you can file content changes. And
the sending and receiving of property changes occurs as part of your typical commit and up-
date operations—you don't have to change your basic processes to accomodate them.

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbit-
rary property names and values attached to them, each revision as a whole may have arbitrary
properties attached to it. The same constraints apply—human-readable names and anything-
you-want binary values. The main difference is that revision properties are not versioned. In
other words, if you change the value of, or delete, a revision property, there's no way within the
scope of Subversion's functionality to recover the previous value.

Subversion has no particular policy regarding the use of properties. It asks only that you not
use property names that begin with the prefix svn:. That's the namespace that it sets aside for
its own use. And Subversion does, in fact, use properties, both the versioned and unversioned
variety. Certain versioned properties have special meaning or effects when found on files and
directories, or house a particular bit of information about the revisions on which they are found.
Certain revision properties are automatically attached to revisions by Subversion's commit pro-
cess, and carry information about the revision. Most of these properties are mentioned else-
where in this or other chapters as part of the more general topics to which they are related. For
an exhaustive list of Subversion's pre-defined properties, see Subversion-defined properties.

In this section, we will examine the utility—both to users of Subversion, and to Subversion it-
self—of property support. You'll learn about the property-related svn subcommands, and how
property modifications affect your normal Subversion workflow. Hopefully, you'll be convinced
that Subversion properties can enhance your version control experience.

Why Properties?
Just as Subversion uses properties to store extra information about the files, directories, and
revisions that it contains, you might also find properties to be of similar use. Some part of the
processes around Subversion's usage to which you adhere, or maybe some additional tooling
around Subversion that you use, might find utility in having a place close to your versioned
data to hang custom metadata about that data.

Say you wish to design a website that houses many digital photos, and displays them with cap-
tions and a datestamp. Now, your set of photos is constantly changing, so you'd like to have as
much of this site automated as possible. These photos can be quite large, so as is common
with sites of this nature, you want to provide smaller thumbnail images to your site visitors.

Now, you can get this functionality using traditional files. That is, you can have your im-
age123.jpg and an image123-thumbnail.jpg side-by-side in a directory. Or if you want
to keep the filenames the same, you might have your thumbnails in a different directory, like
thumbnails/image123.jpg. You can also store your captions and datestamps in a similar
fashion, again separated from the original image file. But the problem here is that your collec-
tion of files grows in multiples with each new photo added to the site.

Now consider the same website deployed in a way that makes use of Subversion's file proper-

Advanced Topics

42

ties. Imagine having a single image file, image123.jpg, and then properties set on that file
named caption, datestamp, and even thumbnail. Now your working copy directory looks
much more manageable—in fact, it looks to the casual browser like there are nothing but im-
age files in it. But your automation scripts know better. They know that they can use svn (or
better yet, they can use the Subversion language bindings—see the section called “Using Lan-
guages Other than C and C++”) to dig out the extra information that your site needs to display
without having to read an index file or play path manipulation games.

Custom revision properties are also frequently used. One common such use is a property
whose value contains an issue tracker ID with which the revision is associated, perhaps be-
cause the change made in that revision fixes a bug filed in the tracker issue with that ID. Other
uses include hanging more friendly names on the revision—it might be hard to remember that
revision 1935 was a fully tested revision. But if there's, say, a test-results property on that
revision with a value all passing, that's meaningful information to have.

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to
them—have a major shortcoming which diminishes their practicality. While it is a simple
matter to set a custom property, finding that property later is whole different ball of wax.

Trying to locate a custom revision property generally involves performing a linear walk
across all the revisions of the repository, asking of each revision, "Do you have the prop-
erty I'm looking for?" Trying to find a custom versioned property is painful, too, and often
involves a recursive svn propget across an entire working copy. In your situation, that
might not be as bad as a linear walk across all revisions. But it certainly leaves much to
be desired in terms of both performance and likelihood of success, especially if the scope
of your search would require a working copy from the root of your repository.

For this reason, you might choose—especially in the revision property use-case—to
simply add your metadata to the revision's log message, using some policy-driven (and
perhaps programmatically-enforced) formatting that is designed to be quickly parsed from
the output of svn log. It is quite common to see in Subversion log messages the likes of:

Issue(s): IZ2376, IZ1919
Reviewed by: sally

This fixes a nasty segfault in the wort frabbing process
…

But here again lies some misfortune. Subversion doesn't yet provide a log message tem-
plating mechanism, which would go a long way toward helping users be consistent with
the formatting of their log-embedded revision metadata.

Manipulating Properties
The svn command affords a few ways to add or modify file and directory properties. For prop-
erties with short, human-readable values, perhaps the simplest way to add a new property is to
specify the property name and value on the command-line of the propset subcommand.

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/button.c
property 'copyright' set on 'calc/button.c'
$

Advanced Topics

43

1If you're familiar with XML, this is pretty much the ASCII subset of the syntax for XML "Name".

But we've been touting the flexibility that Subversion offers for your property values. And if you
are planning to have a multi-line textual, or even binary, property value, you probably do not
want to supply that value on the command-line. So the propset subcommand takes a --file
(-F) option for specifying the name of a file which contains the new property value.

$ svn propset license -F /path/to/LICENSE calc/button.c
property 'license' set on 'calc/button.c'
$

There are some restrictions on the names you can use for properties. A property name must
start with a letter, a colon (:), or an underscore (_); after that, you can also use digits, hyphens
(-), and periods (.). 1

In addition to the propset command, the svn program supplies the propedit command. This
command uses the configured editor program (see the section called “Config”) to add or modi-
fy properties. When you run the command, svn invokes your editor program on a temporary
file that contains the current value of the property (or which is empty, if you are adding a new
property). Then, you just modify that value in your editor program until it represents the new
value you wish to store for the property, save the temporary file, and then exit the editor pro-
gram. If Subversion detects that you've actually changed the existing value of the property, it
will accept that as the new property value. If you exit your editor without making any changes,
no property modification will occur.

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on
multiple paths at once. This enables you to modify properties on whole sets of files with a
single command. For example, we could have done:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'calc/Makefile'
property 'copyright' set on 'calc/button.c'
property 'copyright' set on 'calc/integer.c'
…
$

All of this property adding and editing isn't really very useful if you can't easily get the stored
property value. So the svn program supplies two subcommands for displaying the names and
values of properties stored on files and directories. The svn proplist command will list the
names of properties that exist on a path. Once you know the names of the properties on the
node, you can request their values individually using svn propget. This command will, given a
path (or set of paths) and a property name, print the value of the property to the standard out-
put stream.

$ svn proplist calc/button.c
Properties on 'calc/button.c':
copyright

Advanced Topics

44

2Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness” in commit log messages is perhaps the most
common use case for the --revprop option.

license
$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and value of all of
the properties. Simply supply the --verbose (-v) option.

$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':
copyright : (c) 2006 Red-Bean Software
license : ==

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the recipe for Fitz's famous
red-beans-and-rice.
…

The last property-related subcommand is propdel. Since Subversion allows you to store prop-
erties with empty values, you can't remove a property altogether using propedit or propset.
For example, this command will not yield the desired effect:

$ svn propset license '' calc/button.c
property 'license' set on 'calc/button.c'
$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':
copyright : (c) 2006 Red-Bean Software
license :

$

You need to use the propdel subcommand to delete properties altogether. The syntax is simil-
ar to the other property commands:

$ svn propdel license calc/button.c
property 'license' deleted from 'calc/button.c'.
$ svn proplist --verbose calc/button.c
Properties on 'calc/button.c':
copyright : (c) 2006 Red-Bean Software

$

Remember those unversioned revision properties? You can modify those, too, using the same
svn subcommands that we just described. Simply add the --revprop command-line para-
meter, and specify the revision whose property you wish to modify. Since revisions are global,
you don't need to specify a target path to these property-related commands so long as you are
positioned in a working copy of the repository whose revision property you wish to modify. Oth-
erwise, you can simply provide the URL of any path in the repository of interest (including the
repository's root URL). For example, you might want to replace the commit log message of an
existing revision. 2 If your current working directory is part of a working copy of your repository,

Advanced Topics

45

you can simply run the svn propset command with no target path:

$ svn propset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop
property 'svn:log' set on repository revision '11'
$

But even if you haven't checked out a working copy from that repository, you can still affect the
property change by providing the repository's root URL:

$ svn propset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop \
http://svn.example.com/repos/project

property 'svn:log' set on repository revision '11'
$

Note that the ability to modify these unversioned properties must be explicitly added by the re-
pository administrator (see the section called “Hook Scripts”). Since the properties aren't ver-
sioned, you run the risk of losing information if you aren't careful with your edits. The repository
administrator can setup methods to protect against this loss, and by default, modification of un-
versioned properties is disabled.

Tip

Users should, where possible, use svn propedit instead of svn propset. While
the end result of the commands is identical, the former will allow them to see the
current value of the property they are about to change, which helps them to verify
that they are, in fact, making the change they think they are making. This is espe-
cially true when modifying unversioned revision properties. Also, it is significantly
easier to modify multiline property values in a text editor than at the command line.

Properties and the Subversion Workflow
Now that you are familiar with all of the property-related svn subcommands, let's see how
property modifications affect the usual Subversion workflow. As we mentioned earlier, file and
directory properties are versioned, just like your file contents. As a result, Subversion provides
the same opportunities for merging—in cleanly or conflicting fashions—someone else's modi-
fications into your own.

And as with file contents, your property changes are local modifications, only made permanent
when you commit them to the repository with svn commit. Your property changes can be eas-
ily unmade, too—the svn revert command will restore your files and directories to their un-
edited states, contents, properties, and all. Also, you can receive interesting information about
the state of your file and directory properties by using the svn status and svn diff commands.

$ svn status calc/button.c
M calc/button.c
$ svn diff calc/button.c
Property changes on: calc/button.c

Name: copyright

+ (c) 2006 Red-Bean Software

$

Advanced Topics

46

Notice how the status subcommand displays M in the second column instead of the first. That
is because we have modified the properties on calc/button.c, but not modified its textual
contents. Had we changed both, we would have seen M in the first column, too (see the section
called “svn status”).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by
someone else. If you update your working copy directory and receive property changes
on a versioned object that clash with your own, Subversion will report that the object is in
a conflicted state.

% svn update calc
M calc/Makefile.in
C calc/button.c
Updated to revision 143.
$

Subversion will also create, in the same directory as the conflicted object, a file with a
.prej extension which contains the details of the conflict. You should examine the con-
tents of this file so you can decide how to resolve the conflict. Until the conflict is re-
solved, you will see a C in the second column of svn status output for that object, and at-
tempts to commit your local modifications will fail.

$ svn status calc
C calc/button.c
? calc/button.c.prej
$ cat calc/button.c.prej
prop 'linecount': user set to '1256', but update set to '1301'.
$

To resolve property conflicts, simply ensure that the conflicting properties contain the val-
ues that they should, and then use the svn resolved command to alert Subversion that
you have manually resolved the problem.

You might also have noticed the non-standard way that Subversion currently displays property
differences. You can still run svn diff and redirect the output to create a usable patch file. The
patch program will ignore property patches—as a rule, it ignores any noise it can't understand.
This does unfortunately mean that to fully apply a patch generated by svn diff, any property
modifications will need to be applied by hand.

Automatic Property Setting
Properties are a powerful feature of Subversion, acting as key components of many Subver-
sion features discussed elsewhere in this and other chapters—textual diff and merge support,
keyword substitution, newline translation, etc. But to get the full benefit of properties, they must
be set on the right files and directories. Unfortunately, that can be a step easily forgotten in the
routine of things, especially since failing to set a property doesn't usually result in an obvious
error condition (at least compared to, say, failing to add a file to version control). To help your
properties get applied to the places that need them, Subversion provides a couple of simple
but useful features.

Advanced Topics

47

Whenever you introduce a file to version control using the svn add or svn import commands,
Subversion tries to assist by setting some common file properties automatically. First, on oper-
ating systems whose filesystems support an execute permission bit, Subversion will automatic-
ally set the svn:executable property on newly added or imported files whose execute bit is
enabled. (See the section called “File Executability” for more about this property.) Secondly, it
runs a very basic heuristic to determine if that file contains human-readable content. If not,
Subversion will automatically set the svn:mime-type property on that file to application/oct-
et-stream (the generic “this is a collection of bytes” MIME type). Of course, if Subversion
guesses incorrectly, or if you wish to set the svn:mime-type property to something more pre-
cise—perhaps image/png or application/x-shockwave-flash—you can always re-
move or edit that property. (For more on Subversion's use of MIME types, see the section
called “File Content Type”.)

Subversion also provides, via its runtime configuration system (see the section called “Runtime
Configuration Area”), a more flexible automatic property setting feature which allows you to
create mappings of filename patterns to property names and values. Once again, these map-
pings affect adds and imports, and not only can override the default MIME type decision made
by Subversion during those operations, but can also set additional Subversion or custom prop-
erties, too. For example, you might create a mapping that says that any time you add JPEG
files—ones that match the pattern *.jpg—Subversion should automatically set the
svn:mime-type property on those files to image/jpeg. Or perhaps any files that match
*.cpp should have svn:eol-style set to native, and svn:keywords set to Id. Automat-
ic property support is perhaps the handiest property related tool in the Subversion toolbox. See
the section called “Config” for more about configuring that support.

File Portability
Fortunately for Subversion users who routinely find themselves on different computers with dif-
ferent operating systems, Subversion's command-line program behaves almost identically on
all those systems. If you know how to wield svn on one platform, you know how to wield it
everywhere.

However, the same is not always true of other general classes of software, or of the actual files
you keep in Subversion. For example, on a Windows machine, the definition of a “text file”
would be similar to that used on a Linux box, but with a key difference—the character se-
quences used to mark the ends of the lines of those files. There are other differences, too.
Unix platforms have (and Subversion supports) symbolic links; Windows does not. Unix plat-
forms use filesystem permission to determine executability; Windows uses filename exten-
sions.

Because Subversion is in no position to unite the whole world in common definitions and im-
plementations of all of these things, the best it can do is to try to help make your life simpler
when you need to work with your versioned files and directories on multiple computers and op-
erating systems. This section describes some of the ways Subversion does this.

File Content Type
Subversion joins the ranks of the many applications which recognize and make use of Mul-
tipurpose Internet Mail Extensions (MIME) content types. Besides being a general-purpose
storage location for a file's content type, the value of the svn:mime-type file property de-
termines some behavioral characteristics of Subversion itself.

Identifying File Types

Advanced Topics

48

3You think that was rough? During that same era, WordPerfect also used .DOC for their proprietary file format's
preferred extension!

Software programs on most modern operating systems make assumptions about the
type and format of the contents of a file by the file's name, specifically its file extension.
For example, files whose names end in .txt are generally assumed to be human-
readable, able to be understood by simple perusal rather than requiring complex pro-
cessing to decipher. Files whose names end in .png, on the other hand, are assumed to
be of the Portable Network Graphics type—not human-readable at all, and sensible only
when interpreted by software which understands the PNG format and can render the in-
formation in that format as a raster image.

Unfortunately, some of those extensions have changed meanings over time. When per-
sonal computers first appeared, a file named README.DOC would have almost certainly
been a plaintext file, just like today's .txt files. But by the mid-1990's, you could almost
bet that a file of that name would not be a plaintext file at all, but instead a Microsoft
Word document with a proprietary, non-human-readable format. But this change didn't
occur overnight—there was certainly a period of confusion for computer users over what
exactly they had in hand when they saw a .DOC file. 3

The popularity of computer networking cast still more doubt on the mapping between a
file's name and its content. With information being served across networks and generated
dynamically by server-side scripts, there was often no real file per se to speak of, and
therefore no file name. Web servers, for example, needed some other way to tell
browsers what they were downloading so the browser could do something intelligent with
that information, whether that was to display the data using a program registered to
handle that data type, or to prompt the user for where on the client machine to store the
downloaded data.

Eventually, a standard emerged for, among other things, describing the contents of a
data stream. In 1996, RFC2045 was published, the first of five RFCs describing MIME. In
it, this RFC describes the concept of media types and subtypes, and recommends a syn-
tax for the representation of those types. Today, MIME media types—or, MIME types—
are used almost universally across e-mail applications, Web servers, and other software
as the de facto mechanism for clearing up the file content confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based
merging of changes received from the server during an update into your working file. But for
files containing non-textual data, there is often no concept of a “line”. So, for versioned files
whose svn:mime-type property is set to a non-textual MIME type (generally, something that
doesn't begin with text/, though there are exceptions), Subversion does not attempt to per-
form contextual merges during updates. Instead, any time you have locally modified a binary
working copy file that is also being updated, your file is renamed with a .orig extension, and
then Subversion stores a new working copy file that contains the changes received during the
update, but not your own local modifications, at the original filename. This behavior is really for
the protection of the user against failed attempts at performing contextual merges on files that
simply cannot be contextually merged.

Also, if the svn:mime-type property is set, then the Subversion Apache module will use its
value to populate the Content-type: HTTP header when responding to GET requests. This
gives your web browser a crucial clue about how to display a file when using it to peruse your
Subversion repository's contents.

File Executability

Advanced Topics

49

4The Windows filesystems use file extensions (such as .EXE, .BAT, and .COM) to denote executable files.

On many operating systems, the ability to execute a file as a command is governed by the
presence of an execute permission bit. This bit usually defaults to being disabled, and must be
explicitly enabled by the user for each file that needs it. But it would be a monumental hassle
to have to remember exactly which files in freshly checked-out working copy were supposed to
have their executable bits toggled on, and then to have to do that toggling. So, Subversion
provides the svn:executable property as a way to specify that the executable bit for the file
on which that property is set should be enabled, and Subversion honors that request when
populating working copies with such files.

This property has no effect on filesystems that have no concept of an executable permission
bit, such as FAT32 and NTFS. 4 Also, although it has no defined values, Subversion will force
its value to * when setting this property. Finally, this property is valid only on files, not on dir-
ectories.

End-of-Line Character Sequences
Unless otherwise noted using a versioned file's svn:mime-type property, Subversion as-
sumes the file contains human-readable data. Generally speaking, Subversion only uses this
knowledge to determine if contextual difference reports for that file are possible. Otherwise, to
Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line
(EOL) markers used in your files. Unfortunately, different operating systems have different con-
ventions about which character sequences represent the end of a line of text in a file. For ex-
ample, the usual line ending token used by software on the Windows platform is a pair of AS-
CII control characters—a carriage return (CR) followed by a line feed (LF). Unix software,
however, just uses the LF character to denote the end of a line.

Not all of the various tools on these operating systems are prepared to understand files that
contain line endings in a format that differs from the native line ending style of the operating
system on which they are running. Common results are that Unix programs treat the CR char-
acter present in Windows files as a regular character (usually rendered as ^M), and that Win-
dows programs combine all of the lines of a Unix file into one giant line because no carriage
return-linefeed (or CRLF) character combination was found to denote the end of line.

This sensitivity to foreign EOL markers can become frustrating for folks who share a file across
different operating systems. For example, consider a source code file, and developers that edit
this file on both Windows and Unix systems. If all the developers always use tools which pre-
serve the line ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read a file with foreign EOL markers,
or they convert the file's line endings to the native style when the file is saved. If the former is
true for a developer, he has to use an external conversion utility (such as dos2unix or its com-
panion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation.
But both cases result in a file that differs from the original quite literally on every line! Prior to
committing his changes, the user has two choices. Either he can use a conversion utility to re-
store the modified file to the same line ending style that it was in before his edits were made.
Or, he can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to com-
mitted files. Wasted time is painful enough. But when commits change every line in a file, this
complicates the job of determining which of those lines were changed in a non-trivial way.
Where was that bug really fixed? On what line was a syntax error introduced?

The solution to this problem is the svn:eol-style property. When this property is set to a

Advanced Topics

50

valid value, Subversion uses it to determine what special processing to perform on the file so
that the file's line ending style isn't flip-flopping with every commit that comes from a different
operating system. The valid values are:

native
This causes the file to contain the EOL markers that are native to the operating system on
which Subversion was run. In other words, if a user on a Windows machine checks out a
working copy that contains a file with an svn:eol-style property set to native, that file
will contain CRLF EOL markers. A Unix user checking out a working copy which contains
the same file will see LF EOL markers in his copy of the file.

Note that Subversion will actually store the file in the repository using normalized LF EOL
markers regardless of the operating system. This is basically transparent to the user,
though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operat-
ing system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating
system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating
system in use. This line ending style is not very common. It was used on older Macintosh
platforms (on which Subversion doesn't even run).

Ignoring Unversioned Items
In any given working copy there is a good chance that alongside all those versioned files and
directories are other files and directories which are neither versioned nor intended to be. Text
editors litter directories with backup files. Code compilation processes generate intermedi-
ate—or even final—files which you typically wouldn't bother to version. And users themselves
drop various other files and directories wherever they see fit, often in version control working
copies.

It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of
clutter and impurity. In fact, Subversion counts it as a feature that its working copies are just
typical directories, just like unversioned trees. But these not-to-be-versioned files and director-
ies can cause some annoyance for Subversion users. For example, because the svn add and
svn import commands act recursively by default, and don't know which files in a given tree
you do and don't wish to version, it's easy to accidentally add stuff to version control that you
didn't mean to. And because svn status reports, by default, every item of interest in a working
copy—including unversioned files and directories—its output can get quite noisy where many
of these things exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disreg-
ard. One of the ways involves the use of Subversion's runtime configuration system (see the
section called “Runtime Configuration Area”), and therefore applies to all the Subversion oper-
ations which make use of that runtime configuration, generally those performed on a particular
computer, or by a particular user of a computer. The other way makes use of Subversion's dir-
ectory property support, is more tightly bound to the versioned tree itself, and therefore affects
everyone who has a working copy of that tree. Both of the mechanisms use file patterns.

Advanced Topics

51

The Subversion runtime configuration system provides an option, global-ignores, whose
value is a whitespace-delimited collection of file patterns (or globs). These patterns are applied
to files which are candidates for addition to version control, as well as to unversioned files
which the svn status command notices. If the filenames match one of the patterns, Subver-
sion will basically act as if the file didn't exist at all. This is really useful for file patterns which
are nearly universally of the variety that you don't want to version, such as editor backup files
like Emacs' *~ and .*~ files.

When found on a versioned directory, the svn:ignore property is expected to contain a list of
newline-delimited file patterns which Subversion should use to determine ignorable objects in
that same directory. These patterns do not override those found in the global-ignores
runtime configuration option, but are instead appended to that list. And it's worth noting again
that, unlike the global-ignores option, the patterns found in the svn:eol-ignore prop-
erty apply only to the directory on which that property is set, and not to any of its subdirector-
ies. The svn:ignore property is a good way to tell Subversion to ignore files that are likely to
be present in every user's working copy of that directory, such as compiler output or—to use
an example more appropriate to this book—the HTML, PDF, or PostScript files generated as
the result of a conversion of some source DocBook XML files to a more legible output format.

Warning

Subversion's support for ignorable file patterns extends only to the one-time pro-
cess of adding unversioned files and directories to version control. Once an object
is under Subversion's control, the ignore pattern mechanisms no longer apply to it.
In other words, don't expect Subversion to avoid committing changes you've made
to a versioned file simply because that file's name matches an ignore pat-
tern—Subversion always notices all of its versioned objects.

Ignore Patterns for CVS Users

The Subversion svn:ignore property is very similar in syntax and function to the CVS
.cvsignore file. In fact, if you are migrating a CVS working copy to Subversion, you
can directly migrate the ignore patterns by using the .cvsignore file as input file to the
svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'
$

There are, however, some differences in the ways that CVS and Subversion handle ig-
nore patterns. The two systems use the ignore patterns at some different times, and
there are slight discrepancies in what the ignore patterns apply to. Also, Subversion does
not recognize the use of the ! pattern as a reset back to having no ignore patterns at all.

The global list of ignore patterns tends to be more a matter of personal taste, and tied more
closely to a user's particular tool chain than to the details of any particular working copy's
needs. So, the rest of this section will focus on the svn:ignore property and its uses.

Say you have the following output from svn status:

$ svn status calc
M calc/button.c

Advanced Topics

52

5Isn't that the whole point of a build system?

? calc/calculator
? calc/data.c
? calc/debug_log
? calc/debug_log.1
? calc/debug_log.2.gz
? calc/debug_log.3.gz

In this example, you have made some property modifications to button.c, but in your work-
ing copy you also have some unversioned files: the latest calculator program that you've
compiled from your source code, a source file named data.c, and a set of debugging output
log files. Now, you know that your build system always results in the calculator program
being generated. 5 And you know that your test suite always leaves those debugging log files
lying around. These facts are true for all working copies of this project, not just your own. And
you know that you aren't interested in seeing those things every time you run svn status, and
pretty sure that nobody else is interested in them either. So you use svn propedit svn:ignore
calc to add some ignore patterns to the calc directory. For example, you might add this as
the new value of the svn:ignore property:

calculator
debug_log*

After you've added this property, you will now have a local property modification on the calc
directory. But notice what else is different about your svn status output:

$ svn status
M calc
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Of course, your calculator compiled program
and all those logfiles are still in your working copy. Subversion is simply not reminding you that
they are present and unversioned. And now with all the uninteresting noise removed from the
display, you are left with more interesting items—such as that source code file data.c that
you probably forgot to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If
you actually want to see the ignored files as part of the status report, you can pass the -
-no-ignore option to Subversion:

$ svn status --no-ignore
M calc
M calc/button.c
I calc/calculator
? calc/data.c
I calc/debug_log
I calc/debug_log.1
I calc/debug_log.2.gz
I calc/debug_log.3.gz

As mentioned earlier, the list of file patterns to ignore is also used by svn add and svn import.
Both of these operations involve asking Subversion to begin managing some set of files and
directories. Rather than force the user to pick and choose which files in a tree she wishes to

Advanced Topics

53

start versioning, Subversion uses the ignore patterns—both the global and the per-directory
lists—to determine which files should not be swept into the version control system as part of a
larger recursive addition or import operation. And here again, you can use the --no-ignore
option to tell Subversion ignore its ignores list and operate on all the files and directories
present.

Keyword Substitution
Subversion has the ability to substitute keywords—pieces of useful, dynamic information about
a versioned file—into the contents of the file itself. Keywords generally describe information
about the last time the file was known to be modified. Because this information changes each
time the file changes, and more importantly, just after the file changes, it is a hassle for any
process except the version control system to keep the data completely up-to-date. Left to hu-
man authors, the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on
which it was modified. You could burden every author of that document to, just before commit-
ting their changes, also tweak the part of the document that describes when it was last
changed. But sooner or later, someone would forget to do that. Instead simply ask Subversion
to perform keyword substitution on the LastChangedDate keyword. You control where the
keyword is inserted into your document by placing a keyword anchor at the desired location in
the file. This anchor is just a string of text formatted as $KeywordName$.

All keywords are case-sensitive where they appear as anchors in files: you must use the cor-
rect capitalization in order for the keyword to be expanded. You should consider the value of
the svn:keywords property to be case-sensitive too—certain keyword names will be recog-
nized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the follow-
ing five keywords, some of which have aliases that you can also use:

Date
This keyword describes the last time the file was known to have been changed in the re-
pository, and looks something like $Date: 2006-07-22 21:42:37 -0700 (Sat, 22
Jul 2006) $. It may also be specified as LastChangedDate.

Revision
This keyword describes the last known revision in which this file changed in the repository,
and looks something like $Revision: 144 $. It may also be specified as Last-
ChangedRevision or Rev.

Author
This keyword describes the last known user to change this file in the repository, and looks
something like $Author: harry $. It may also be specified as LastChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and
looks something like $HeadURL: http://svn.collab.net/repos/trunk/README
$. It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks
something like $Id: calc.c 148 2006-07-28 21:30:43Z sally $, and is inter-
preted to mean that the file calc.c was last changed in revision 148 on the evening of Ju-
ly 28, 2006 by the user sally.

Advanced Topics

54

6… or maybe even a section of a book …

Simply adding keyword anchor text to your file does nothing special. Subversion will never at-
tempt to perform textual substitutions on your file contents unless explicitly asked to do so.
After all, you might be writing a document 6 about how to use keywords, and you don't want
Subversion to substitute your beautiful examples of un-substituted keyword anchors!

To tell Subversion whether or not to substitute keywords on a particular file, we again turn to
the property-related subcommands. The svn:keywords property, when set on a versioned
file, controls which keywords will be substituted on that file. The value is a space-delimited list
of the keyword names or aliases found in the previous table.

For example, say you have a versioned file named weather.txt that looks like this:

Here is the latest report from the front lines.
$LastChangedDate$
Rev
Cumulus clouds are appearing more frequently as summer approaches.

With no svn:keywords property set on that file, Subversion will do nothing special. Now, let's
enable substitution of the LastChangedDate keyword.

$ svn propset svn:keywords "Date Author" weather.txt
property 'svn:keywords' set on 'weather.txt'
$

Now you have made a local property modification on the weather.txt file. You will see no
changes to the file's contents (unless you made some of your own prior to setting the prop-
erty). Notice that the file contained a keyword anchor for the Rev keyword, yet we did not in-
clude that keyword in the property value we set. Subversion will happily ignore requests to
substitute keywords that are not present in the file, and will not substitute keywords that are not
present in the svn:keywords property value.

Immediately after you commit this property change, Subversion will update your working file
with the new substitute text. Instead of seeing your keyword anchor $LastChangedDate$,
you'll see its substituted result. That result also contains the name of the keyword, and contin-
ues to be bounded by the dollar sign ($) characters. And as we predicted, the Rev keyword
was not substituted because we didn't ask for it to be.

Note also that we set the svn:keywords property to “Date Author” yet the keyword anchor
used the alias $LastChangedDate$ and still expanded correctly.

Here is the latest report from the front lines.
$LastChangedDate: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
Rev
Cumulus clouds are appearing more frequently as summer approaches.

If someone else now commits a change to weather.txt, your copy of that file will continue to
display the same substituted keyword value as before—until you update your working copy. At
that time the keywords in your weather.txt file will be re-substituted with information that re-
flects the most recent known commit to that file.

Where's $GlobalRev$?

Advanced Topics

55

New users are often confused by how the Rev keyword works. Since the repository
has a single, globally increasing revision number, many people assume that it is this
number which is reflected by the Rev keyword's value. But Rev expands to show
the last revision in which the file changed, not the last revision to which it was updated.
Understanding this clears the confusion, but frustration often remains—without the sup-
port of a Subversion keyword to do so, how can you automatically get the global revision
number into your files?

To do this, you need external processing. Subversion ships with a tool called svnversion
which was designed for just this purpose. svnversion crawls your working copy and gen-
erates as output the revision(s) it finds. You can use this program, plus some additionally
tooling, to embed that revision information into your files. For more information on svn-
version, see the section called “svnversion”.

Subversion 1.2 introduced a new variant of the keyword syntax which brought additional, use-
ful—though perhaps atypical—functionality. You can now tell Subversion to maintain a fixed
length (in terms of the number of bytes consumed) for the substituted keyword. By using a
double-colon (::) after the keyword name, followed by a number of space characters, you
define that fixed width. When Subversion goes to substitute your keyword for the keyword and
its value, it will essentially replace only those space characters, leaving the overall width of the
keyword field unchanged. If the substituted value is shorter than the defined field width, there
will be extra padding characters (spaces) at the end of the substituted field; if it is too long, it is
truncated with a special hash (#) character just before the final dollar sign terminator.

For example, say you have a document in which you have some section of tabular data reflect-
ing the document's Subversion keywords. Using the original Subversion keyword substitution
syntax, your file might look something like:

Rev: Revision of last commit
$Author$: Author of last commit
$Date$: Date of last commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with
keyword substitution enabled, of course), you see:

$Rev: 12 $: Revision of last commit
$Author: harry $: Author of last commit
$Date: 2006-03-15 02:33:03 -0500 (Wed, 15 Mar 2006) $: Date of last commit

The result is not so beautiful. And you might be tempted to then adjust the file after the substi-
tution so that it again looks tabular. But that only holds as long as the keyword values are the
same width. If the last committed revision rolls into a new place value (say, from 99 to 100), or
if another person with a longer username commits the file, stuff gets all crooked again.
However, if you are using Subversion 1.2 or better, you can use the new fixed-length keyword
syntax, define some field widths that seem sane, and now your file might look like this:

$Rev:: $: Revision of last commit
$Author:: $: Author of last commit
$Date:: $: Date of last commit

You commit this change to your file. This time, Subversion notices the new fixed-length

Advanced Topics

56

keyword syntax, and maintains the width of the fields as defined by the padding you placed
between the double-colon and the trailing dollar sign. After substitution, the width of the fields
is completely unchanged—the short values for Rev and Author are padded with spaces, and
the long Date field is truncated by a hash character:

$Rev:: 13 $: Revision of last commit
$Author:: harry $: Author of last commit
$Date:: 2006-03-15 0#$: Date of last commit

The use of fixed-length keywords is especially handy when performing substitutions into com-
plex file formats that themselves use fixed-length fields for data, or for which the stored size of
a given data field is overbearingly difficult to modify from outside the format's native application
(such as for Microsoft Office documents).

Warning

Be aware that because the width of a keyword field is measured in bytes, the po-
tential for corruption of multi-byte values exists. For example, a username which
contains some multi-byte UTF-8 characters might suffer truncation in the middle of
the string of bytes which make up one of those characters. The result will be a
mere truncation when viewed at the byte level, but will likely appear as a string
with an incorrect or garbled final character when viewed as UTF-8 text. It is con-
ceivable that certain applications, when asked to load the file, would notice the
broken UTF-8 text and deem the entire file corrupt, refusing to operate on the file
altogether.

Locking
Subversion's copy-modify-merge version control model lives and dies on its data merging al-
gorithms, specifically on how well those algorithms perform when trying to resolve conflicts
caused by multiple users modifying the same file concurrently. Subversion itself provides only
one such algorithm, a three-way differencing algorithm which is smart enough to handle data
at a granularity of a single line of text. Subversion also allows you to supplement its content
merge processing with external differencing utilities (as described in the section called
“External diff3”), some of which may do an even better job, perhaps providing granularity of a
word or a single character of text. But common among those algorithms is that they generally
work only on text files. The landscape starts to look pretty grim when you start talking about
content merges of non-textual file formats. And when you can't find a tool that can handle that
type of merging, you begin to run into problems with the copy-modify-merge model.

Let's look at a real-life example of where this model runs aground. Harry and Sally are both
graphic designers working on the same project, a bit of marketing collateral for an automobile
mechanic. Central to the design of a particular poster is an image of a car in need of some
body work, stored in a file using the PNG image format. The poster's layout is almost finished,
and both Harry and Sally are pleased with the particular photo they chose for their damaged
car—a baby blue 1967 Ford Mustang with an unfortunate bit of crumpling on the left front fend-
er.

Now, as is common in graphic design work, there's a change in plans which causes the car's
color to be a concern. So Sally updates her working copy to HEAD, fires up her photo editing
software, and sets about tweaking the image so that the car is now cherry red. Meanwhile,
Harry, feeling particularly inspired that day, decides that the image would have greater impact
if the car also appears to have suffered greater impact. He, too, updates to HEAD, and then

Advanced Topics

57

7Communication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that
matter.
8Subversion does not currently allow locks on directories.

draws some cracks on the vehicle's windshield. He manages to finish his work before Sally fin-
ishes hers, and after admiring the fruits of his undeniable talent, commits the modified image.
Shortly thereafter, Sally is finished with the car's new finish, and tries to commit her changes.
But, as expected, Subversion fails the commit, informing Sally that now her version of the im-
age is out of date.

Here's where the difficulty sets in. Were Harry and Sally making changes to a text file, Sally
would simply update her working copy, receiving Harry's changes in the process. In the worst
possible case, they would have modified the same region of the file, and Sally would have to
work out by hand the proper resolution to the conflict. But these aren't text files—they are bin-
ary images. And while it's a simple matter to describe what one would expect the results of this
content merge to be, there is precious little chance that any software exists which is smart
enough to examine the common baseline image that each of these graphic artists worked
against, the changes that Harry made, and the changes that Sally made, and spit out an image
of a busted-up red Mustang with a cracked windshield!

Clearly, things would have gone more smoothly if Harry and Sally had serialized their modifica-
tions to the image. If, say, Harry had waited to draw his windshield cracks on Sally's now-red
car, or if Sally had tweaked the color of a car whose windshield was already cracked. As is dis-
cussed in the section called “The Copy-Modify-Merge Solution”, much of these types problems
go away entirely where perfect communication between Harry and Sally exists. 7 But as one's
version control system is, in fact, one form of communication, it follows that having that soft-
ware facilitate the serialization of non-parallelizable energies is no bad thing. And this where
Subversion's implementation of the lock-modify-unlock model steps into the spotlight. This is
where we talk about Subversion's locking feature, which is similar to the “reserved checkouts”
mechanisms of other version control systems.

Subversion's locking feature serves two main purposes:

• Serializing access to a versioned object. By allowing a user to programmatically claim the
exclusive right to change to a file in the repository, that user can be reasonably confident
that energy invested on unmergeable changes won't be wasted—his commit of those
changes will succeed.

• Aiding communication. By alerting other users that serialization is in effect for particular ver-
sioned object, those other users can reasonably expect that the object is about to be
changed by someone else, and they, too, can avoid wasting their time and energy on un-
mergeable changes that won't be committable due to eventual out-of-dateness.

When referring to Subversion's locking feature, one is actually talking about a fairly diverse col-
lection of behaviors which include the ability to lock a versioned file 8 (claiming the exclusive
right to modify the file), to unlock that file (yielding that exclusive right to modify), to see reports
about which files are locked and by whom, to annotate files for which locking before editing is
strongly advised, and so on. In this section, we'll cover all of these facets of the larger locking
feature.

Three meanings of “lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” de-
scribe a mechanism for mutual exclusion between users to avoid clashing commits. Un-
fortunately, there are two other sorts of “lock” with which Subversion, and therefore this
book, sometimes needs to be concerned.

Advanced Topics

58

The first is working copy locks, used internally by Subversion to prevent clashes between
multiple Subversion clients operating on the same working copy. This is the sort of lock
indicated by an L in the third column of svn status output, and removed by the svn
cleanup command, as described in the section called “svn cleanup”.

Secondly, there are database locks, used internally by the Berkeley DB backend to pre-
vent clashes between multiple programs trying to access the database. This is the sort of
lock whose unwanted persistence after an error can cause a repository to be “wedged”,
as described in the section called “Repository Recovery”.

You can generally forget about these other kinds of locks until something goes wrong
that requires you to care about them. In this book, “lock” means the first sort unless the
contrary is either clear from context or explicitly stated.

Creating locks
In the Subversion repository, a lock is a piece of metadata which grants exclusive access to
one user to change a file. This user is said to be the lock owner. Each lock also has a unique
identifier, typically a long string of characters, known as the lock token. The repository man-
ages locks, ultimately handling their creation, enforcement, and removal. If any commit trans-
action attempts to modify or delete a locked file (or delete one of the parent directories of the
file), the repository will demand two pieces of information—that the client performing the com-
mit be authenticated as the lock owner, and that the lock token has been provided as part of
the commit process as a sort of proof that client knows which lock it is using.

To demonstrate lock creation, let's refer back to our example of multiple graphic designers
working with on the same binary image files. Harry has decided to change a JPEG image. To
prevent other people from committing changes to the file while he is modifying it (as well as
alerting them that he is about to change it), he locks the file in the repository using the svn
lock command.

$ svn lock banana.jpg --message "Editing file for tomorrow's release."
'banana.jpg' locked by user 'harry'.
$

There are a number of new things demonstrated in the previous example. First, notice that
Harry passed the --message option to svn lock. Similar to svn commit, the svn lock com-
mand can take comments (either via --message (-m) or --file (-F)) to describe the
reason for locking the file. Unlike svn commit, however, svn lock will not demand a message
by launching your preferred text editor. Lock comments are optional, but still recommended to
aid communication.

Secondly, the lock attempt succeeded. This means that the file wasn't already locked, and that
Harry had the latest version of the file. If Harry's working copy of the file had been out-of-date,
the repository would have rejected the request, forcing Harry to svn update and reattempt the
locking command. The locking command would also have failed if the file already been locked
by someone else.

As you can see, the svn lock command prints confirmation of the successful lock. At this
point, the fact that the file is locked becomes apparent in the output of the svn status and svn
info reporting subcommands.

Advanced Topics

59

$ svn status
K banana.jpg

$ svn info banana.jpg
Path: banana.jpg
Name: banana.jpg
URL: http://svn.example.com/repos/project/banana.jpg
Repository UUID: edb2f264-5ef2-0310-a47a-87b0ce17a8ec
Revision: 2198
Node Kind: file
Schedule: normal
Last Changed Author: frank
Last Changed Rev: 1950
Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006)
Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Checksum: 3b110d3b10638f5d1f4fe0f436a5a2a5
Lock Token: opaquelocktoken:0c0f600b-88f9-0310-9e48-355b44d4a58e
Lock Owner: harry
Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006)
Lock Comment (1 line):
Editing file for tomorrow's release.

$

That the svn info command, which does not contact the repository when run against working
copy paths, can display the lock token reveals an important fact about lock tokens—that they
are cached in the working copy. The presence of the lock token is critical. It gives the working
copy authorization to make use of the lock later on. Also, the svn status command shows a K
next to the file (short for locKed), indicating that the lock token is present.

Regarding lock tokens

A lock token isn't an authentication token, so much as an authorization token. The token
isn't a protected secret. In fact, a lock's unique token is discoverable by anyone who runs
svn info URL. A lock token is special only when it lives inside a working copy. It's proof
that the lock was created in that particular working copy, and not somewhere else by
some other client. Merely authenticating as the lock owner isn't enough to prevent acci-
dents.

For example, suppose you lock a file using a computer at your office, but leave work for
the day before you finish your changes to that file. It should not be possible to accident-
ally commit changes to that same file from your home computer later that evening simply
because you've authenticated as the lock's owner. In other words, the lock token pre-
vents one piece of Subversion-related software from undermining the work of another. (In
our example, if you really need to change the file from an alternate working copy, you
would need to break the lock and re-lock the file.)

Now that Harry has locked banana.jpg, Sally is unable to change or delete that file:

$ svn delete banana.jpg
D banana.jpg
$ svn commit -m "Delete useless file."
Deleting banana.jpg
svn: Commit failed (details follow):
svn: DELETE of
'/repos/project/!svn/wrk/64bad3a9-96f9-0310-818a-df4224ddc35d/banana.jpg':

Advanced Topics

60

423 Locked (http://svn.example.com)
$

But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the
file. That's because he authenticates as the lock owner, and also because his working copy
holds the correct lock token:

$ svn status
M K banana.jpg
$ svn commit -m "Make banana more yellow"
Sending banana.jpg
Transmitting file data .
Committed revision 2201.
$ svn status
$

Notice that after the commit is finished, svn status shows that the lock token is no longer
present in working copy. This is the standard behavior of svn commit—it searches the work-
ing copy (or list of targets, if you provide such a list) for local modifications, and sends all the
lock tokens it encounters during this walk to the server as part of the commit transaction. After
the commit completes successfully, all of the repository locks that were mentioned are re-
leased—even on files that weren't committed. This is meant to discourage users from being
sloppy about locking, or from holding locks for too long. If Harry haphazardly locks thirty files in
a directory named images because he's unsure of which files he needs to change, yet only
only changes four of those file, when he runs svn commit images, the process will still re-
lease all thirty locks.

This behavior of automatically releasing locks can be overridden with the --no-unlock op-
tion to svn commit. This is best used for those times when you want to commit changes, but
still plan to make more changes and thus need to retain existing locks. You can also make this
your default behavior by setting the no-unlock runtime configuration option (see the section
called “Runtime Configuration Area”).

Of course, locking a file doesn't oblige one to commit a change to it. The lock can be released
at any time with a simple svn unlock command:

$ svn unlock banana.c
'banana.c' unlocked.

Discovering locks
When a commit fails due to someone else's locks, it's fairly easy to learn about them. The easi-
est of these is svn status --show-updates:

$ svn status --show-updates
M 23 bar.c
M O 32 raisin.jpg

* 72 foo.h
Status against revision: 105
$

In this example, Sally can see not only that her copy of foo.h is out-of-date, but that one of
the two modified files she plans to commit is locked in the repository. The O symbol stands for

Advanced Topics

61

“Other”, meaning that a lock exists on the file, and was created by somebody else. If she were
to attempt a commit, the lock on raisin.jpg would prevent it. Sally is left wondering who
made the lock, when, and why. Once again, svn info has the answers:

$ svn info http://svn.example.com/repos/project/raisin.jpg
Path: raisin.jpg
Name: raisin.jpg
URL: http://svn.example.com/repos/project/raisin.jpg
Repository UUID: edb2f264-5ef2-0310-a47a-87b0ce17a8ec
Revision: 105
Node Kind: file
Last Changed Author: sally
Last Changed Rev: 32
Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006)
Lock Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b
Lock Owner: harry
Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)
Lock Comment (1 line):
Need to make a quick tweak to this image.
$

Just as svn info can be used to examine objects in the working copy, it can also be used to
examine objects in the repository. If the main argument to svn info is a working copy path,
then all of the working copy's cached information is displayed; any mention of a lock means
that the working copy is holding a lock token (if a file is locked by another user or in another
working copy, svn info on a working copy path will show no lock information at all). If the main
argument to svn info is a URL, then the information reflects the latest version of an object in
the repository, and any mention of a lock describes the current lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16th to
“make a quick tweak”. It being June, she suspects that he probably forgot all about the lock.
She might phone Harry to complain and ask him to release the lock. If he's unavailable, she
might try to forcibly break the lock herself or ask an administrator to do so.

Breaking and stealing locks
A repository lock isn't sacred—in Subversion's default configuration state, locks can be re-
leased not only by the person who created them, but by anyone at all. When somebody other
than the original lock creator destroys a lock, we refer to this as breaking the lock.

From the administrator's chair, it's simple to break locks. The svnlook and svnadmin pro-
grams have the ability to display and remove locks directly from the repository. (For more in-
formation about these tools, see the section called “An Administrator's Toolkit”.)

$ svnadmin lslocks /usr/local/svn/repos
Path: /project2/images/banana.jpg
UUID Token: opaquelocktoken:c32b4d88-e8fb-2310-abb3-153ff1236923
Owner: frank
Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006)
Expires:
Comment (1 line):
Still improving the yellow color.

Path: /project/raisin.jpg
UUID Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b
Owner: harry
Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)
Expires:

Advanced Topics

62

Comment (1 line):
Need to make a quick tweak to this image.

$ svnadmin rmlocks /usr/local/svn/repos /project/raisin.jpg
Removed lock on '/project/raisin.jpg'.
$

The more interesting option is allowing users to break each other's locks over the network. To
do this, Sally simply needs to pass the --force to the unlock command:

$ svn status --show-updates
M 23 bar.c
M O 32 raisin.jpg

* 72 foo.h
Status against revision: 105
$ svn unlock raisin.jpg
svn: 'raisin.jpg' is not locked in this working copy
$ svn info raisin.jpg | grep URL
URL: http://svn.example.com/repos/project/raisin.jpg
$ svn unlock http://svn.example.com/repos/project/raisin.jpg
svn: Unlock request failed: 403 Forbidden (http://svn.example.com)
$ svn unlock --force http://svn.example.com/repos/project/raisin.jpg
'raisin.jpg' unlocked.
$

Now, Sally's initial attempt to unlock failed because she ran svn unlock directly on her working
copy of the file, and no lock token was present. To remove the lock directly from the repository,
she needs to pass a URL to svn unlock. Her first attempt to unlock the URL fails, because
she can't authenticate as the lock owner (nor does she have the lock token). But when she
passes --force, the authentication and authorization requirements are ignored, and the re-
mote lock is broken.

Of course, simply breaking a lock may not be enough. In the running example, Sally may not
only want to break Harry's long-forgotten lock, but re-lock the file for her own use. She can ac-
complish this by running svn unlock --force and then svn lock back-to-back, but there's a
small chance that somebody else might lock the file between the two commands. The simpler
thing to is steal the lock, which involves breaking and re-locking the file all in one atomic step.
To do this, Sally passes the --force option to svn lock:

$ svn lock raisin.jpg
svn: Lock request failed: 423 Locked (http://svn.example.com)
$ svn lock --force raisin.jpg
'raisin.jpg' locked by user 'sally'.
$

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's work-
ing copy still contains the original lock token, but that lock no longer exists. The lock token is
said to be defunct. The lock represented by the lock-token has either been broken (no longer
in the repository), or stolen (replaced with a different lock). Either way, Harry can see this by
asking svn status to contact the repository:

$ svn status
K raisin.jpg

$ svn status --show-updates
B 32 raisin.jpg

Advanced Topics

63

$ svn update
B raisin.jpg

$ svn status
$

If the repository lock was broken, then svn status --show-updates displays a B (Broken) sym-
bol next to the file. If a new lock exists in place of the old one, then a T (sTolen) symbol is
shown. Finally, svn update notices any defunct lock tokens and removes them from the work-
ing copy.

Locking Policies

Different systems have different notions of how strict a lock should be. Some folks argue
that locks must be strictly enforced at all costs, releasable only by the original creator or
administrator. They argue that if anyone can break a lock, then chaos runs rampant and
the whole point of locking is defeated. The other side argues that locks are first and fore-
most a communication tool. If users are constantly breaking each others' locks, then it
represents a cultural failure within the team and the problem falls outside the scope of
software enforcement.

Subversion defaults to the “softer” approach, but still allows administrators to create
stricter enforcement policies through the use of hook scripts. In particular, the pre-lock
and pre-unlock hooks allow administrators to decide when lock creation and lock re-
leases are allowed to happen. Depending on whether or not a lock already exists, these
two hooks can decide whether or not to allow a certain user to break or steal a lock. The
post-lock and post-unlock hooks are also available, and can be used to send email
after locking actions. To learn more about repository hooks, see the section called “Hook
Scripts”.

Lock Communication
We've seen how svn lock and svn unlock can be used to create, release, break, and steal
locks. This satisfies the goal of serializing commit access to a file. But what about the larger
problem of preventing wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles
away, Sally wants to do the same thing. She doesn't think to run svn status --show-updates,
so she has no idea that Harry has already locked the file. She spends hours editing the file,
and when she tries to commit her change, she discovers that either the file is locked or that
she's out-of-date. Regardless, her changes aren't mergeable with Harry's. One of these two
people has to throw away their work, and a lot of time has been wasted.

Subversion's solution to this problem is to provide a mechanism to remind users that a file
ought to be locked before the editing begins. The mechanism is a special property,
svn:needs-lock. If that property is attached to a file (regardless of its value, which is irrelev-
ant), then Subversion will try to use filesystem-level permissions to make the file read-only, un-
less, of course, the user has explicitly locked the file. When a lock-token is present (as a result
of running svn lock), the file becomes read-write. When the lock is released, the file becomes
read-only again.

The theory, then, is that if the image file has this property attached, then Sally would immedi-
ately notice something is strange when she opens the file for editing. Many applications alert
users immediately when a read-only file is opened for editing. And nearly all applications would
at least prevent her from saving changes to the file. This reminds her to lock the file before

Advanced Topics

64

9Except, perhaps, a classic Vulcan mind-meld.

editing, whereby she discovers the pre-existing lock:

$ /usr/local/bin/gimp raisin.jpg
gimp: error: file is read-only!
$ ls -l raisin.jpg
-r--r--r-- 1 sally sally 215589 Jun 8 19:23 raisin.jpg
$ svn lock raisin.jpg
svn: Lock request failed: 423 Locked (http://svn.example.com)
$ svn info http://svn.example.com/repos/project/raisin.jpg | grep Lock
Lock Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b
Lock Owner: harry
Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006)
Lock Comment (1 line):
Making some tweaks. Locking for the next two hours.
$

Tip

Users and administrators alike are encouraged to attach the svn:needs-lock
property to any file which cannot be contextually merged. This is the primary tech-
nique for encouraging good locking habits and preventing wasted effort.

Note that this property is a communication tool which works independently from the locking
system. In other words, any file can be locked, whether or not this property is present. And
conversely, the presence of this property doesn't make the repository require a lock when com-
mitting.

Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the
read-only reminder won't always work. Sometimes applications misbehave and “hijack” the
read-only file, silently allowing users to edit and save the file anyway. There's not much that
Subversion can do in this situation—at the end of the day, there's simply no substitution for
good interpersonal communication. 9

Externals Definitions
Sometimes it is useful to construct a working copy that is made out of a number of different
checkouts. For example, you may want different subdirectories to come from different locations
in a repository, or perhaps from different repositories altogether. You could certainly setup
such a scenario by hand—using svn checkout to create the sort of nested working copy struc-
ture you are trying to achieve. But if this layout is important for everyone who uses your repos-
itory, every other user will need to perform the same checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a
mapping of a local directory to the URL—and possibly a particular revision—of a versioned dir-
ectory. In Subversion, you declare externals definitions in groups using the svn:externals
property. You can create or modify this property using svn propset or svn propedit (see the
section called “Manipulating Properties”). It can be set on any versioned directory, and its
value is a multi-line table of subdirectories (relative to the versioned directory on which the
property is set) and fully qualified, absolute Subversion repository URLs.

Advanced Topics

65

$ svn propget svn:externals calc
third-party/sounds http://sounds.red-bean.com/repos
third-party/skins http://skins.red-bean.com/repositories/skinproj
third-party/skins/toolkit -r21 http://svn.red-bean.com/repos/skin-maker

The convenience of the svn:externals property is that once it is set on a versioned direct-
ory, everyone who checks out a working copy with that directory also gets the benefit of the ex-
ternals definition. In other words, once one person has made the effort to define those nested
working copy checkouts, no one else has to bother—Subversion will, upon checkout of the ori-
ginal working copy, also checkout the external working copies.

Note the previous externals definition example. When someone checks out a working copy of
the calc directory, Subversion also continues to checkout the items found in its externals
definition.

$ svn checkout http://svn.example.com/repos/calc
A calc
A calc/Makefile
A calc/integer.c
A calc/button.c
Checked out revision 148.

Fetching external item into calc/third-party/sounds
A calc/third-party/sounds/ding.ogg
A calc/third-party/sounds/dong.ogg
A calc/third-party/sounds/clang.ogg
…
A calc/third-party/sounds/bang.ogg
A calc/third-party/sounds/twang.ogg
Checked out revision 14.

Fetching external item into calc/third-party/skins
…

If you need to change the externals definition, you can do so using the regular property modi-
fication subcommands. When you commit a change to the svn:externals property, Subver-
sion will synchronize the checked-out items against the changed externals definition when you
next run svn update. The same thing will happen when others update their working copies
and receive your changes to the externals definition.

Tip

Because the svn:externals property has a multiline value, we strongly recom-
mend that you use svn propedit instead of svn propset.

Tip

You should strongly consider using explicit revision numbers in all of your extern-
als definitions. Doing so means that you get to decide when to pull down a differ-
ent snapshot of external information, and exactly which snapshot to pull. Besides
avoiding the surprise of getting changes to third-party repositories that you might
not have any control over, using explicit revision numbers also means that as you
backdate your working copy to a previous revision, your externals definitions will
also revert to the way they looked in that previous revision, which in turn means
that the external working copies will be updated to match they way they looked

Advanced Topics

66

back when your repository was at that previous revision. For software projects, this
could be the difference between a successful and a failed build of an older snap-
shot of your complex codebase.

The svn status command also recognizes externals definitions, displaying a status code of X
for the disjoint subdirectories into which externals are checked out, and then recursing into
those subdirectories to display the status of the external items themselves.

The support that exists for externals definitions in Subversion today can be a little misleading,
though. First, an externals definition can only point to directories, not files. Second, the extern-
als definition cannot point to relative paths (paths like ../../skins/myskin). Third, the
working copies created via the externals definition support are still disconnected from the
primary working copy (on whose versioned directories the svn:externals property was ac-
tually set). And Subversion still only truly operates on non-disjoint working copies. So, for ex-
ample, if you want to commit changes that you've made in one or more of those external work-
ing copies, you must run svn commit explicitly on those working copies—committing on the
primary working copy will not recurse into any external ones.

Also, since the definitions themselves use absolute URLs, moving or copying a directory to
which they are attached will not affect what gets checked out as an external (though the relat-
ive local target subdirectory will, of course, move with renamed directory). This can be confus-
ing—even frustrating—in certain situations. For example, say you have a top-level directory
named my-project, and you've created an externals definition on one of its subdirectories
(my-project/some-dir) which tracks the latest revision of another of its subdirectories (my-
project/external-dir).

$ svn co http://svn.example.com/projects .
A my-project
A my-project/some-dir
A my-project/external-dir
…
Fetching external item into 'my-project/some-dir/subdir'
Checked out external at revision 11.

Checked out revision 11.
$ svn pget svn:externals my-project/some-dir
subdir http://svn.example.com/projects/my-project/external-dir

$

Now you use svn move to rename the my-project directory. At this point, your externals
definition will still refer to a path under the my-project directory, even though that directory
no longer exists.

$ svn mv -q my-project renamed-project
$ svn ci -m "Rename my-project to renamed-project."
Deleting my-project
Adding my-renamed-project

Committed revision 12.
$ svn up

Fetching external item into 'renamed-project/some-dir/subdir'
svn: Target path does not exist
$

Advanced Topics

67

10“You're not supposed to name it. Once you name it, you start getting attached to it.” — Mike Wazowski

Also, the fact that externals definitions use absolute URLs can cause problems with repositor-
ies that are available via multiple URL schemes. For example, if your Subversion server is con-
figured to allow everyone to checkout the repository over http:// or https://, but only al-
low commits to come in via https://, you have an interesting problem on your hands. If your
externals definitions use the http:// form of the repository URLs, you won't be able to com-
mit anything from the working copies created by those externals. On the other hand, if they use
the https:// form of the URLs, anyone who might be checking out via http:// because
their client doesn't support https:// will be unable to fetch the external items. Be aware, too,
that if you need to re-parent your working copy (using svn switch --relocate), externals defini-
tions will not also be re-parented.

Finally, there might be times when you would prefer that svn subcommands would not recog-
nize or otherwise operate on the external working copies created as the result of externals
definition handling. In those instances, you can pass the --ignore-externals option to the
subcommand.

Peg and Operative Revisions
We make use of the ability to copy, move, rename, and completely replace files and directories
on our computers all the time. And your version control system shouldn't get in the way of your
doing these things with your version-controlled files and directories, either. Subversion's file
management support is quite liberating, affording almost as much flexibility for versioned files
as you'd expect when manipulating your unversioned ones. But that flexibility means that
across the lifetime of your repository, a given versioned object might have many paths, and a
given path might represent several entirely different versioned objects. And this introduces a
certain level of complexity to your interactions with those paths and objects.

Subversion is pretty smart about noticing when an object's version history includes such
“changes of address”. For example, if you ask for the revision history log of a particular file that
was renamed last week, Subversion happily provides all those logs—the revision in which the
rename itself happened, plus the logs of relevant revisions both before and after that rename.
So, most of the time, you don't even have to think about such things. But occasionally, Subver-
sion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or file is deleted from version control,
and then a new directory or file is created with the same name and added to version control.
Clearly the thing you deleted and the thing you later added aren't the same thing. They merely
happen to have had the same path, /trunk/object for example. What, then, does it mean
to ask Subversion about the history of /trunk/object? Are you asking about the thing cur-
rently at that location, or the old thing you deleted from that location? Are you asking about the
operations that have happened to all the objects that have ever lived at that path? Clearly,
Subversion needs a hint about what you really want.

And thanks to moves, versioned object history can get far more twisted than that, even. For ex-
ample, you might have a directory named concept, containing some nascent software project
you've been toying with. Eventually, though, that project matures to the point that the idea
seems to actually have some wings, so you do the unthinkable and decide to give the project a
name. 10 Let's say you called your software Frabnaggilywort. At this point, it makes sense to
rename the directory to reflect the project's new name, so concept is renamed to frabnag-
gilywort. Life goes on, Frabnaggilywort releases a 1.0 version, and is downloaded and used
daily by hordes of people aiming to improve their lives.

It's a nice story, really, but it doesn't end there. Entrepreneur that you are, you've already got
another think in the tank. So you make a new directory, concept, and the cycle begins again.

Advanced Topics

68

11606 N. Main Street, Wheaton, Illinois, is the home of the Wheaton History Center. Get it—“History Center”? It
seemed appropriate….

In fact, the cycle begins again many times over the years, each time starting with that old
concept directory, then sometimes seeing that directory renamed as the idea cures, some-
times seeing it deleted when you scrap the idea. Or, to get really sick, maybe you rename
concept to something else for a while, but later rename the thing back to concept for some
reason.

When scenarios like these occur, attempting to instruct Subversion to work with these re-used
paths can be a little like instructing a motorist in Chicago's West Suburbs to drive east down
Roosevelt Road and turn left onto Main Street. In a mere twenty minutes, you can cross “Main
Street” in Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motor-
ist—and our Subversion—need a little more detail in order to do the right thing.

In version 1.1, Subversion introduced a way for you to tell it exactly which Main Street you
meant. It's called the peg revision, and it is a revision provided to Subversion for the sole pur-
pose of identifying a unique line of history. Because at most one versioned object may occupy
a path at any given time—or, more precisely, in any one revision—the combination of a path
and a peg revision is all that is needed to refer to a specific line of history. Peg revisions are
specified to the Subversion command-line client using at syntax, so called because the syntax
involves appending an “at sign” (@) and the peg revision to the end of the path with which the
revision is associated.

But what of the --revision (-r) of which we've spoken so much in this book? That revi-
sion (or set of revisions) is called the operative revision (or operative revision range). Once a
particular line of history has been identified using a path and peg revision, Subversion per-
forms the requested operation using the operative revision(s). To map this to our Chicagoland
streets analogy, if we are told to go to 606 N. Main Street in Wheaton, 11 we can think of “Main
Street” as our path and “Wheaton” as our peg revision. These two pieces of information identi-
fy a unique path which can travelled (north or south on Main Street), and will keep us from
travelling up and down the wrong Main Street in search of our destination. Now we throw in
“606 N.” as our operative revision, of sorts, and we know exactly where to go.

The peg revision algorithm

The Subversion command-line performs the peg revision algorithm any time it needs to
resolve possible ambiguities in the paths and revisions provided to it. Here's an example
of such an invocation for the purposes of illustrating that algorithm.

$ svn command -r OPERATIVE-REV item@PEG-REV

The algorithm has three simple steps:

• Locate item in the revision identified by PEG-REV. There can be only one such object.

• Trace the object's history backwards (through any possible renames) to its ancestor in
the revision OPERATIVE-REV.

• Perform the requested action on that ancestor, wherever it is located, or whatever its
name might be or have been at that time.

Note that even when you don't explicitly supply a peg revision or operative revision, they
are still present. For your convenience, the default peg revision is BASE for working copy

Advanced Topics

69

items and HEAD for repository URLs. And when no operative revision is provided, it de-
faults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 added our first concept direct-
ory, plus an IDEA file in that directory talking about the concept. After several revisions in
which real code was added and tweaked, we, in revision 20, renamed this directory to frabn-
aggilywort. By revision 27, we had a new concept, a new concept directory to hold it, and
a new IDEA file to describe it. And then five years and twenty thousand revisions flew by, just
like they would in any good romance story.

Now, years later, we wonder what the IDEA file looked like back in revision 1. But Subversion
needs to know if we are asking about how the current file looked back in revision 1, or are we
asking for the contents of whatever file lived at concepts/IDEA in revision 1? Certainly those
questions have different answers, and because of peg revisions, you can ask either of them.
To find out how the current IDEA file looked in that old revision, you run:

$ svn cat -r 1 concept/IDEA
svn: Unable to find repository location for 'concept/IDEA' in revision 1

Of course, in this example, the current IDEA file didn't exist yet in revision 1, so Subversion
gives an error. The command above is shorthand for a longer notation which explicitly lists a
peg revision. The expanded notation is:

$ svn cat -r 1 concept/IDEA@BASE
svn: Unable to find repository location for 'concept/IDEA' in revision 1

And when executed, it has the expected results. Peg revisions generally default to a value of
BASE (the revision currently present in the working copy) when applied to working copy paths,
and of HEAD when applied to URLs.

The perceptive reader is probably wondering at this point if the peg revision syntax causes
problems for working copy paths or URLs that actually have at signs in them. After all, how
does svn know whether news@11 is the name of a directory in my tree, or just a syntax for
“revision 11 of news”? Thankfully, while svn will always assume the latter, there is a trivial
workaround. You need only append an at sign to the end of the path, such as news@11@. svn
only cares about the last at sign in the argument, and it is not considered illegal to omit a literal
peg revision specifier after that at sign. This workaround even applies to paths that end in an at
sign—you would use filename@@ to talk about a file named filename@.

Let's ask the other question, then—in revision 1, what were the contents of whatever file occu-
pied the address concepts/IDEA at the time? We'll use an explicit peg revision to help us
out.

$ svn cat concept/IDEA@1
The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky
business, and doing it incorrectly can have serious ramifications, so
we need to employ over-the-top input validation and data verification
mechanisms.

Notice that we didn't provide an operative revision this time. That's because when no operative
revision is specified, Subversion assumes a default operative revision that's the same as the

Advanced Topics

70

peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions
frabbing naggily worts, so this is almost certainly the file which describes the software now
called Frabnaggilywort. In fact, we can verify this using the combination of an explicit peg revi-
sion and explicit operative revision. We know that in HEAD, the Frabnaggilywort project is loc-
ated in the frabnaggilywort directory. So we specify that we want to see how the line of
history identified in HEAD as the path frabnaggilywort/IDEA looked in revision 1.

$ svn cat -r 1 frabnaggilywort/IDEA@HEAD
The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky
business, and doing it incorrectly can have serious ramifications, so
we need to employ over-the-top input validation and data verification
mechanisms.

And the peg and operative revisions need not be so trivial, either. For example, say frabnag-
gilywort had been deleted from HEAD, but we know it existed in revision 20, and we want to
see the diffs for its IDEA file between revisions 4 and 10. We can use the peg revision 20 in
conjunction with the URL that would have held Frabnaggilywort's IDEA file in revision 20, and
then use 4 and 10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean.com/projects/frabnaggilywort/IDEA@20
Index: frabnaggilywort/IDEA
===
--- frabnaggilywort/IDEA (revision 4)
+++ frabnaggilywort/IDEA (revision 10)
@@ -1,5 +1,5 @@
-The idea behind this project is to come up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky
-business, and doing it incorrectly can have serious ramifications, so
-we need to employ over-the-top input validation and data verification
-mechanisms.
+The idea behind this project is to come up with a piece of
+client-server software that can remotely frab a naggily wort.
+Frabbing naggily worts is tricky business, and doing it incorrectly
+can have serious ramifications, so we need to employ over-the-top
+input validation and data verification mechanisms.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember
that peg revisions are that extra hint Subversion needs to clear up ambiguity.

Advanced Topics

71

Chapter 4. Branching and Merging
Branching, tagging, and merging are concepts common to almost all version control systems.
If you're not familiar with these ideas, we provide a good introduction in this chapter. If you are
familiar, then hopefully you'll find it interesting to see how Subversion implements these ideas.

Branching is a fundamental part of version control. If you're going to allow Subversion to man-
age your data, then this is a feature you'll eventually come to depend on. This chapter as-
sumes that you're already familiar with Subversion's basic concepts (Chapter 1, Fundamental
Concepts).

What's a Branch?
Suppose it's your job to maintain a document for a division in your company, a handbook of
some sort. One day a different division asks you for the same handbook, but with a few parts
“tweaked” for them, since they do things slightly differently.

What do you do in this situation? You do the obvious thing: you make a second copy of your
document, and begin maintaining the two copies separately. As each department asks you to
make small changes, you incorporate them into one copy or the other.

You often want to make the same change to both copies. For example, if you discover a typo
in the first copy, it's very likely that the same typo exists in the second copy. The two docu-
ments are almost the same, after all; they only differ in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently
of another line, yet still shares a common history if you look far enough back in time. A branch
always begins life as a copy of something, and moves on from there, generating its own history
(see Figure 4.1, “Branches of development”).

Figure 4.1. Branches of development

Subversion has commands to help you maintain parallel branches of your files and directories.
It allows you to create branches by copying your data, and remembers that the copies are re-
lated to one another. It also helps you duplicate changes from one branch to another. Finally, it
can make portions of your working copy reflect different branches, so that you can “mix and
match” different lines of development in your daily work.

Using Branches
72

At this point, you should understand how each commit creates an entire new filesystem tree
(called a “revision”) in the repository. If not, go back and read about revisions in the section
called “Revisions”.

For this chapter, we'll go back to the same example from Chapter 1, Fundamental Concepts.
Remember that you and your collaborator, Sally, are sharing a repository that contains two
projects, paint and calc. Notice that in Figure 4.2, “Starting repository layout”, however,
each project directory now contains subdirectories named trunk and branches. The reason
for this will soon become clear.

Figure 4.2. Starting repository layout

As before, assume that Sally and you both have working copies of the “calc” project. Specific-
ally, you each have a working copy of /calc/trunk. All the files for the project are in this
subdirectory rather than in /calc itself, because your team has decided that /calc/trunk is
where the “main line” of development is going to take place.

Let's say that you've been given the task of performing a radical reorganization of the project. It
will take a long time to write, and will affect all the files in the project. The problem here is that
you don't want to interfere with Sally, who is in the process of fixing small bugs here and there.
She's depending on the fact that the latest version of the project (in /calc/trunk) is always
usable. If you start committing your changes bit-by-bit, you'll surely break things for Sally.

One strategy is to crawl into a hole: you and Sally can stop sharing information for a week or
two. That is, start gutting and reorganizing all the files in your working copy, but don't commit
or update until you're completely finished with the task. There are a number of problems with
this, though. First, it's not very safe. Most people like to save their work to the repository fre-

Branching and Merging

73

quently, should something bad accidentally happen to their working copy. Second, it's not very
flexible. If you do your work on different computers (perhaps you have a working copy of /
calc/trunk on two different machines), you'll need to manually copy your changes back and
forth, or just do all the work on a single computer. By that same token, it's difficult to share your
changes-in-progress with anyone else. A common software development “best practice” is to
allow your peers to review your work as you go. If nobody sees your intermediate commits,
you lose potential feedback. Finally, when you're finished with all your changes, you might find
it very difficult to re-merge your final work with the rest of the company's main body of code.
Sally (or others) may have made many other changes in the repository that are difficult to in-
corporate into your working copy—especially if you run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This
allows you to save your half-broken work frequently without interfering with others, yet you can
still selectively share information with your collaborators. You'll see exactly how this works later
on.

Creating a Branch
Creating a branch is very simple—you make a copy of the project in the repository using the
svn copy command. Subversion is not only able to copy single files, but whole directories as
well. In this case, you want to make a copy of the /calc/trunk directory. Where should the
new copy live? Wherever you wish—it's a matter of project policy. Let's say that your team has
a policy of creating branches in the /calc/branches area of the repository, and you want to
name your branch my-calc-branch. You'll want to create a new directory, /
calc/branches/my-calc-branch, which begins its life as a copy of /calc/trunk.

There are two different ways to make a copy. We'll demonstrate the messy way first, just to
make the concept clear. To begin, check out a working copy of the project's root directory, /
calc:

$ svn checkout http://svn.example.com/repos/calc bigwc
A bigwc/trunk/
A bigwc/trunk/Makefile
A bigwc/trunk/integer.c
A bigwc/trunk/button.c
A bigwc/branches/
Checked out revision 340.

Making a copy is now simply a matter of passing two working-copy paths to the svn copy
command:

$ cd bigwc
$ svn copy trunk branches/my-calc-branch
$ svn status
A + branches/my-calc-branch

In this case, the svn copy command recursively copies the trunk working directory to a new
working directory, branches/my-calc-branch. As you can see from the svn status com-
mand, the new directory is now scheduled for addition to the repository. But also notice the “+”
sign next to the letter A. This indicates that the scheduled addition is a copy of something, not
something new. When you commit your changes, Subversion will create /
calc/branches/my-calc-branch in the repository by copying /calc/trunk, rather than
resending all of the working copy data over the network:

Branching and Merging

74

1Subversion does not support cross-repository copying. When using URLs with svn copy or svn move, you can only
copy items within the same repository.

$ svn commit -m "Creating a private branch of /calc/trunk."
Adding branches/my-calc-branch
Committed revision 341.

And now the easier method of creating a branch, which we should have told you about in the
first place: svn copy is able to operate directly on two URLs.

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/my-calc-branch \

-m "Creating a private branch of /calc/trunk."

Committed revision 341.

There's really no difference between these two methods. Both procedures create a new direct-
ory in revision 341, and the new directory is a copy of /calc/trunk. This is shown in Fig-
ure 4.3, “Repository with new copy”. Notice that the second method, however, performs an im-
mediate commit. 1 It's an easier procedure, because it doesn't require you to check out a large
mirror of the repository. In fact, this technique doesn't even require you to have a working copy
at all.

Figure 4.3. Repository with new copy

Branching and Merging

75

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need
to worry about the repository growing huge—Subversion doesn't actually duplicate any
data. Instead, it creates a new directory entry that points to an existing tree. If you're a
Unix user, this is the same concept as a hard-link. From there, the copy is said to be
“lazy”. That is, if you commit a change to one file within the copied directory, then only
that file changes—the rest of the files continue to exist as links to the original files in the
original directory.

This is why you'll often hear Subversion users talk about “cheap copies”. It doesn't matter
how large the directory is—it takes a very tiny, constant amount of time to make a copy of
it. In fact, this feature is the basis of how commits work in Subversion: each revision is a
“cheap copy” of the previous revision, with a few items lazily changed within. (To read
more about this, visit Subversion's website and read about the “bubble up” method in
Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the
user, who simply sees copies of trees. The main point here is that copies are cheap, both
in time and space. Make branches as often as you want.

Working with Your Branch

Branching and Merging

76

Now that you've created a branch of the project, you can check out a new working copy to start
using it:

$ svn checkout http://svn.example.com/repos/calc/branches/my-calc-branch
A my-calc-branch/Makefile
A my-calc-branch/integer.c
A my-calc-branch/button.c
Checked out revision 341.

There's nothing special about this working copy; it simply mirrors a different directory in the re-
pository. When you commit changes, however, Sally won't ever see them when she updates.
Her working copy is of /calc/trunk. (Be sure to read the section called “Switching a Work-
ing Copy” later in this chapter: the svn switch command is an alternate way of creating a
working copy of a branch.)

Let's pretend that a week goes by, and the following commits happen:

• You make a change to /calc/branches/my-calc-branch/button.c, which creates
revision 342.

• You make a change to /calc/branches/my-calc-branch/integer.c, which creates
revision 343.

• Sally makes a change to /calc/trunk/integer.c, which creates revision 344.

There are now two independent lines of development, shown in Figure 4.4, “The branching of
one file's history”, happening on integer.c.

Figure 4.4. The branching of one file's history

Things get interesting when you look at the history of changes made to your copy of in-
teger.c:

$ pwd
/home/user/my-calc-branch

$ svn log --verbose integer.c
--

Branching and Merging

77

r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

M /calc/branches/my-calc-branch/integer.c

* integer.c: frozzled the wazjub.

--
r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

A /calc/branches/my-calc-branch (from /calc/trunk:340)

Creating a private branch of /calc/trunk.

--
r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: changed a docstring.

--
r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: adding this file to the project.

--

Notice that Subversion is tracing the history of your branch's integer.c all the way back
through time, even traversing the point where it was copied. It shows the creation of the branch
as an event in the history, because integer.c was implicitly copied when all of /
calc/trunk/ was copied. Now look what happens when Sally runs the same command on
her copy of the file:

$ pwd
/home/sally/calc

$ svn log --verbose integer.c
--
r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

--
r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: changed a docstring.

--
r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: adding this file to the project.

--

Branching and Merging

78

Sally sees her own revision 344 change, but not the change you made in revision 343. As far
as Subversion is concerned, these two commits affected different files in different repository
locations. However, Subversion does show that the two files share a common history. Before
the branch-copy was made in revision 341, they used to be the same file. That's why you and
Sally both see the changes made in revisions 303 and 98.

The Key Concepts Behind Branches
There are two important lessons that you should remember from this section.

1. Unlike many other version control systems, Subversion's branches exist as normal filesys-
tem directories in the repository, not in an extra dimension. These directories just happen to
carry some extra historical information.

2. Subversion has no internal concept of a branch—only copies. When you copy a directory,
the resulting directory is only a “branch” because you attach that meaning to it. You may
think of the directory differently, or treat it differently, but to Subversion it's just an ordinary
directory that happens to have been created by copying.

Copying Changes Between Branches
Now you and Sally are working on parallel branches of the project: you're working on a private
branch, and Sally is working on the trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have
working copies of the trunk. Whenever someone needs to make a long-running change that is
likely to disrupt the trunk, a standard procedure is to create a private branch and commit
changes there until all the work is complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that
it's very easy to drift too far apart. Remember that one of the problems with the “crawl in a
hole” strategy is that by the time you're finished with your branch, it may be near-impossible to
merge your changes back into the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide
which changes are worth sharing; Subversion gives you the ability to selectively “copy”
changes between branches. And when you're completely finished with your branch, your entire
set of branch changes can be copied back into the trunk.

Copying Specific Changes
In the previous section, we mentioned that both you and Sally made changes to integer.c
on different branches. If you look at Sally's log message for revision 344, you can see that she
fixed some spelling errors. No doubt, your copy of the same file still has the same spelling er-
rors. It's likely that your future changes to this file will be affecting the same areas that have the
spelling errors, so you're in for some potential conflicts when you merge your branch someday.
It's better, then, to receive Sally's change now, before you start working too heavily in the
same places.

It's time to use the svn merge command. This command, it turns out, is a very close cousin to
the svn diff command (which you read about in Chapter 2, Basic Usage). Both commands are

Branching and Merging

79

able to compare any two objects in the repository and describe the differences. For example,
you can ask svn diff to show you the exact change made by Sally in revision 344:

$ svn diff -r 343:344 http://svn.example.com/repos/calc/trunk

Index: integer.c
===
--- integer.c (revision 343)
+++ integer.c (revision 344)
@@ -147,7 +147,7 @@

case 6: sprintf(info->operating_system, "HPFS (OS/2 or NT)"); break;
case 7: sprintf(info->operating_system, "Macintosh"); break;
case 8: sprintf(info->operating_system, "Z-System"); break;

- case 9: sprintf(info->operating_system, "CPM"); break;
+ case 9: sprintf(info->operating_system, "CP/M"); break;

case 10: sprintf(info->operating_system, "TOPS-20"); break;
case 11: sprintf(info->operating_system, "NTFS (Windows NT)"); break;
case 12: sprintf(info->operating_system, "QDOS"); break;

@@ -164,7 +164,7 @@
low = (unsigned short) read_byte(gzfile); /* read LSB */
high = (unsigned short) read_byte(gzfile); /* read MSB */
high = high << 8; /* interpret MSB correctly */

- total = low + high; /* add them togethe for correct total */
+ total = low + high; /* add them together for correct total */

info->extra_header = (unsigned char *) my_malloc(total);
fread(info->extra_header, total, 1, gzfile);

@@ -241,7 +241,7 @@
Store the offset with ftell() ! */

if ((info->data_offset = ftell(gzfile))== -1) {
- printf("error: ftell() retturned -1.\n");
+ printf("error: ftell() returned -1.\n");

exit(1);
}

@@ -249,7 +249,7 @@
printf("I believe start of compressed data is %u\n", info->data_offset);
#endif

- /* Set postion eight bytes from the end of the file. */
+ /* Set position eight bytes from the end of the file. */

if (fseek(gzfile, -8, SEEK_END)) {
printf("error: fseek() returned non-zero\n");

The svn merge command is almost exactly the same. Instead of printing the differences to
your terminal, however, it applies them directly to your working copy as local modifications:

$ svn merge -r 343:344 http://svn.example.com/repos/calc/trunk
U integer.c

$ svn status
M integer.c

The output of svn merge shows that your copy of integer.c was patched. It now contains
Sally's change—the change has been “copied” from the trunk to your working copy of your
private branch, and now exists as a local modification. At this point, it's up to you to review the
local modification and make sure it works correctly.

Branching and Merging

80

2In the future, the Subversion project plans to use (or invent) an expanded patch format that describes changes in
tree structure and properties.

In another scenario, it's possible that things may not have gone so well, and that integer.c
may have entered a conflicted state. You might need to resolve the conflict using standard pro-
cedures (see Chapter 2, Basic Usage), or if you decide that the merge was a bad idea alto-
gether, simply give up and svn revert the local change.

But assuming that you've reviewed the merged change, you can svn commit the change as
usual. At that point, the change has been merged into your repository branch. In version con-
trol terminology, this act of copying changes between branches is commonly called porting
changes.

When you commit the local modification, make sure your log message mentions that you're
porting a specific change from one branch to another. For example:

$ svn commit -m "integer.c: ported r344 (spelling fixes) from trunk."
Sending integer.c
Transmitting file data .
Committed revision 360.

As you'll see in the next sections, this is a very important “best practice” to follow.

Why Not Use Patches Instead?

A question may be on your mind, especially if you're a Unix user: why bother to use svn
merge at all? Why not simply use the operating system's patch command to accomplish
the same job? For example:

$ svn diff -r 343:344 http://svn.example.com/repos/calc/trunk > patchfile
$ patch -p0 < patchfile
Patching file integer.c using Plan A...
Hunk #1 succeeded at 147.
Hunk #2 succeeded at 164.
Hunk #3 succeeded at 241.
Hunk #4 succeeded at 249.
done

In this particular case, yes, there really is no difference. But svn merge has special abilit-
ies that surpass the patch program. The file format used by patch is quite limited; it's
only able to tweak file contents. There's no way to represent changes to trees, such as
the addition, removal, or renaming of files and directories. If Sally's change had, say, ad-
ded a new directory, the output of svn diff wouldn't have mentioned it at all. svn diff only
outputs the limited patch-format, so there are some ideas it simply can't express. 2 The
svn merge command, however, can express changes in tree structure and properties by
directly applying them to your working copy.

A word of warning: while svn diff and svn merge are very similar in concept, they do have dif-
ferent syntax in many cases. Be sure to read about them in Chapter 9, Subversion Complete
Reference for details, or ask svn help. For example, svn merge requires a working-copy path
as a target, i.e. a place where it should apply the tree-changes. If the target isn't specified, it
assumes you are trying to perform one of the following common operations:

Branching and Merging

81

1. You want to merge directory changes into your current working directory.

2. You want to merge the changes in a specific file into a file by the same name which exists in
your current working directory.

If you are merging a directory and haven't specified a target path, svn merge assumes the first
case above and tries to apply the changes into your current directory. If you are merging a file,
and that file (or a file by the same name) exists in your current working directory, svn merge
assumes the second case and tries to apply the changes to a local file with the same name.

If you want changes applied somewhere else, you'll need to say so. For example, if you're sit-
ting in the parent directory of your working copy, you'll have to specify the target directory to re-
ceive the changes:

$ svn merge -r 343:344 http://svn.example.com/repos/calc/trunk my-calc-branch
U my-calc-branch/integer.c

The Key Concept Behind Merging
You've now seen an example of the svn merge command, and you're about to see several
more. If you're feeling confused about exactly how merging works, you're not alone. Many
users (especially those new to version control) are initially perplexed about the proper syntax
of the command, and about how and when the feature should be used. But fear not, this com-
mand is actually much simpler than you think! There's a very easy technique for understanding
exactly how svn merge behaves.

The main source of confusion is the name of the command. The term “merge” somehow de-
notes that branches are combined together, or that there's some sort of mysterious blending of
data going on. That's not the case. A better name for the command might have been svn diff-
and-apply, because that's all that happens: two repository trees are compared, and the differ-
ences are applied to a working copy.

The command takes three arguments:

1. An initial repository tree (often called the left side of the comparison),

2. A final repository tree (often called the right side of the comparison),

3. A working copy to accept the differences as local changes (often called the target of the
merge).

Once these three arguments are specified, the two trees are compared, and the resulting dif-
ferences are applied to the target working copy as local modifications. When the command is
done, the results are no different than if you had hand-edited the files, or run various svn add
or svn delete commands yourself. If you like the results, you can commit them. If you don't like
the results, you can simply svn revert all of the changes.

The syntax of svn merge allows you to specify the three necessary arguments rather flexibly.
Here are some examples:

$ svn merge http://svn.example.com/repos/branch1@150 \
http://svn.example.com/repos/branch2@212 \

Branching and Merging

82

my-working-copy

$ svn merge -r 100:200 http://svn.example.com/repos/trunk my-working-copy

$ svn merge -r 100:200 http://svn.example.com/repos/trunk

The first syntax lays out all three arguments explicitly, naming each tree in the form
URL@REV and naming the working copy target. The second syntax can be used as a short-
hand for situations when you're comparing two different revisions of the same URL. The last
syntax shows how the working-copy argument is optional; if omitted, it defaults to the current
directory.

Best Practices for Merging

Tracking Merges Manually

Merging changes sounds simple enough, but in practice it can become a headache. The prob-
lem is that if you repeatedly merge changes from one branch to another, you might accident-
ally merge the same change twice. When this happens, sometimes things will work fine. When
patching a file, Subversion typically notices if the file already has the change, and does noth-
ing. But if the already-existing change has been modified in any way, you'll get a conflict.

Ideally, your version control system should prevent the double-application of changes to a
branch. It should automatically remember which changes a branch has already received, and
be able to list them for you. It should use this information to help automate merges as much as
possible.

Unfortunately, Subversion is not such a system. Like CVS, Subversion does not yet record any
information about merge operations. When you commit local modifications, the repository has
no idea whether those changes came from running svn merge, or from just hand-editing the
files.

What does this mean to you, the user? It means that until the day Subversion grows this fea-
ture, you'll have to track merge information yourself. The best place to do this is in the commit
log-message. As demonstrated in the earlier example, it's recommended that your log-
message mention a specific revision number (or range of revisions) that are being merged into
your branch. Later on, you can run svn log to review which changes your branch already con-
tains. This will allow you to carefully construct a subsequent svn merge command that won't
be redundant with previously ported changes.

In the next section, we'll show some examples of this technique in action.

Previewing Merges

Because merging only results in local modifications, it's not usually a high-risk operation. If you
get the merge wrong the first time, simply svn revert the changes and try again.

It's possible, however, that your working copy might already have local modifications. The
changes applied by a merge will be mixed with your pre-existing ones, and running svn revert
is no longer an option. The two sets of changes may be impossible to separate.

In cases like this, people take comfort in being able to predict or examine merges before they
happen. One simple way to do that is to run svn diff with the same arguments you plan to
pass to svn merge, as we already showed in our first example of merging. Another method of
previewing is to pass the --dry-run option to the merge command:

Branching and Merging

83

$ svn merge --dry-run -r 343:344 http://svn.example.com/repos/calc/trunk
U integer.c

$ svn status
nothing printed, working copy is still unchanged.

The --dry-run option doesn't actually apply any local changes to the working copy. It only
shows status codes that would be printed in a real merge. It's useful for getting a “high level”
preview of the potential merge, for those times when running svn diff gives too much detail.

Merge Conflicts

Just like the svn update command, svn merge applies changes to your working copy. And
therefore it's also capable of creating conflicts. The conflicts produced by svn merge,
however, are sometimes different, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a
particular revision, the changes sent by the server will always apply “cleanly” to your working
copy. The server produces the delta by comparing two trees: a virtual snapshot of your work-
ing copy, and the revision tree you're interested in. Because the left-hand side of the comparis-
on is exactly equal to what you already have, the delta is guaranteed to correctly convert your
working copy into the right-hand tree.

But svn merge has no such guarantees and can be much more chaotic: the user can ask the
server to compare any two trees at all, even ones that are unrelated to the working copy! This
means there's large potential for human error. Users will sometimes compare the wrong two
trees, creating a delta that doesn't apply cleanly. svn merge will do its best to apply as much
of the delta as possible, but some parts may be impossible. Just like the Unix patch command
sometimes complains about “failed hunks”, svn merge will complain about “skipped targets”:

$ svn merge -r 1288:1351 http://svn.example.com/repos/branch
U foo.c
U bar.c
Skipped missing target: 'baz.c'
U glub.c
C glorb.h

$

In the previous example it might be the case that baz.c exists in both snapshots of the branch
being compared, and the resulting delta wants to change the file's contents, but the file doesn't
exist in the working copy. Whatever the case, the “skipped” message means that the user is
most likely comparing the wrong two trees; they're the classic sign of driver error. When this
happens, it's easy to recursively revert all the changes created by the merge (svn revert -
-recursive), delete any unversioned files or directories left behind after the revert, and re-run
svn merge with different arguments.

Also notice that the previous example shows a conflict happening on glorb.h. We already
stated that the working copy has no local edits: how can a conflict possibly happen? Again, be-
cause the user can use svn merge to define and apply any old delta to the working copy, that
delta may contain textual changes that don't cleanly apply to a working file, even if the file has
no local modifications.

Another small difference between svn update and svn merge are the names of the full-text
files created when a conflict happens. In the section called “Resolve Conflicts (Merging Others'

Branching and Merging

84

Changes)”, we saw that an update produces files named filename.mine, file-
name.rOLDREV, and filename.rNEWREV. When svn merge produces a conflict, though, it
creates three files named filename.working, filename.left, and filename.right. In
this case, the terms “left” and “right” are describing which side of the double-tree comparison
the file came from. In any case, these differing names will help you distinguish between con-
flicts that happened as a result of an update versus ones that happened as a result of a merge.

Noticing or Ignoring Ancestry

When conversing with a Subversion developer, you might very likely hear reference to the term
ancestry. This word is used to describe the relationship between two objects in a repository: if
they're related to each other, then one object is said to be an ancestor of the other.

For example, suppose you commit revision 100, which includes a change to a file foo.c.
Then foo.c@99 is an “ancestor” of foo.c@100. On the other hand, suppose you commit the
deletion of foo.c in revision 101, and then add a new file by the same name in revision 102.
In this case, foo.c@99 and foo.c@102 may appear to be related (they have the same path),
but in fact are completely different objects in the repository. They share no history or
“ancestry”.

The reason for bringing this up is to point out an important difference between svn diff and
svn merge. The former command ignores ancestry, while the latter command is quite sensit-
ive to it. For example, if you asked svn diff to compare revisions 99 and 102 of foo.c, you
would see line-based diffs; the diff command is blindly comparing two paths. But if you
asked svn merge to compare the same two objects, it would notice that they're unrelated and
first attempt to delete the old file, then add the new file; the output would indicate a deletion fol-
lowed by an add:

D foo.c
A foo.c

Most merges involve comparing trees that are ancestrally related to one another, and therefore
svn merge defaults to this behavior. Occasionally, however, you may want the merge com-
mand to compare two unrelated trees. For example, you may have imported two source-code
trees representing different vendor releases of a software project (see the section called
“Vendor branches”). If you asked svn merge to compare the two trees, you'd see the entire
first tree being deleted, followed by an add of the entire second tree!

In these situations, you'll want svn merge to do a path-based comparison only, ignoring any
relations between files and directories. Add the --ignore-ancestry option to your merge
command, and it will behave just like svn diff. (And conversely, the --notice-ancestry op-
tion will cause svn diff to behave like the merge command.)

Common Use-Cases
There are many different uses for branching and svn merge, and this section describes the
most common ones you're likely to run into.

Merging a Whole Branch to Another
To complete our running example, we'll move forward in time. Suppose several days have
passed, and many changes have happened on both the trunk and your private branch. Sup-
pose that you've finished working on your private branch; the feature or bug fix is finally com-
plete, and now you want to merge all of your branch changes back into the trunk for others to

Branching and Merging

85

enjoy.

So how do we use svn merge in this scenario? Remember that this command compares two
trees, and applies the differences to a working copy. So to receive the changes, you need to
have a working copy of the trunk. We'll assume that either you still have your original one lying
around (fully updated), or that you recently checked out a fresh working copy of
/calc/trunk.

But which two trees should be compared? At first glance, the answer may seem obvious: just
compare the latest trunk tree with your latest branch tree. But beware—this assumption is
wrong, and has burned many a new user! Since svn merge operates like svn diff, comparing
the latest trunk and branch trees will not merely describe the set of changes you made to your
branch. Such a comparison shows too many changes: it would not only show the addition of
your branch changes, but also the removal of trunk changes that never happened on your
branch.

To express only the changes that happened on your branch, you need to compare the initial
state of your branch to its final state. Using svn log on your branch, you can see that your
branch was created in revision 341. And the final state of your branch is simply a matter of us-
ing the HEAD revision. That means you want to compare revisions 341 and HEAD of your
branch directory, and apply those differences to a working copy of the trunk.

Tip

A nice way of finding the revision in which a branch was created (the “base” of the
branch) is to use the --stop-on-copy option to svn log. The log subcommand
will normally show every change ever made to the branch, including tracing back
through the copy which created the branch. So normally, you'll see history from the
trunk as well. The --stop-on-copy will halt log output as soon as svn log de-
tects that its target was copied or renamed.

So in our continuing example,

$ svn log --verbose --stop-on-copy \
http://svn.example.com/repos/calc/branches/my-calc-branch

…
--
r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

A /calc/branches/my-calc-branch (from /calc/trunk:340)

$

As expected, the final revision printed by this command is the revision in which
my-calc-branch was created by copying.

Here's the final merging procedure, then:

$ cd calc/trunk
$ svn update
At revision 405.

$ svn merge -r 341:405 http://svn.example.com/repos/calc/branches/my-calc-branch
U integer.c
U button.c

Branching and Merging

86

U Makefile

$ svn status
M integer.c
M button.c
M Makefile

...examine the diffs, compile, test, etc...

$ svn commit -m "Merged my-calc-branch changes r341:405 into the trunk."
Sending integer.c
Sending button.c
Sending Makefile
Transmitting file data ...
Committed revision 406.

Again, notice that the commit log message very specifically mentions the range of changes
that was merged into the trunk. Always remember to do this, because it's critical information
you'll need later on.

For example, suppose you decide to keep working on your branch for another week, in order
to complete an enhancement to your original feature or bug fix. The repository's HEAD revision
is now 480, and you're ready to do another merge from your private branch to the trunk. But as
discussed in the section called “Best Practices for Merging”, you don't want to merge the
changes you've already merged before; you only want to merge everything “new” on your
branch since the last time you merged. The trick is to figure out what's new.

The first step is to run svn log on the trunk, and look for a log message about the last time you
merged from the branch:

$ cd calc/trunk
$ svn log
…
--
r406 | user | 2004-02-08 11:17:26 -0600 (Sun, 08 Feb 2004) | 1 line

Merged my-calc-branch changes r341:405 into the trunk.
--
…

Aha! Since all branch-changes that happened between revisions 341 and 405 were previously
merged to the trunk as revision 406, you now know that you want to merge only the branch
changes after that—by comparing revisions 406 and HEAD.

$ cd calc/trunk
$ svn update
At revision 480.

We notice that HEAD is currently 480, so we use it to do the merge:

$ svn merge -r 406:480 http://svn.example.com/repos/calc/branches/my-calc-branch
U integer.c
U button.c
U Makefile

$ svn commit -m "Merged my-calc-branch changes r406:480 into the trunk."
Sending integer.c
Sending button.c

Branching and Merging

87

Sending Makefile
Transmitting file data ...
Committed revision 481.

Now the trunk contains the complete second wave of changes made to the branch. At this
point, you can either delete your branch (we'll discuss this later on), or continue working on
your branch and repeat this procedure for subsequent merges.

Undoing Changes
Another common use for svn merge is to roll back a change that has already been committed.
Suppose you're working away happily on a working copy of /calc/trunk, and you discover
that the change made way back in revision 303, which changed integer.c, is completely
wrong. It never should have been committed. You can use svn merge to “undo” the change in
your working copy, and then commit the local modification to the repository. All you need to do
is to specify a reverse difference:

$ svn merge -r 303:302 http://svn.example.com/repos/calc/trunk
U integer.c

$ svn status
M integer.c

$ svn diff
…
verify that the change is removed
…

$ svn commit -m "Undoing change committed in r303."
Sending integer.c
Transmitting file data .
Committed revision 350.

One way to think about a repository revision is as a specific group of changes (some version
control systems call these changesets). By using the -r switch, you can ask svn merge to ap-
ply a changeset, or whole range of changesets, to your working copy. In our case of undoing a
change, we're asking svn merge to apply changeset #303 to our working copy backwards.

Subversion and Changesets

Everyone seems to have a slightly different definition of “changeset”, or at least a differ-
ent expectation of what it means for a version control system to have “changeset fea-
tures”. For our purpose, let's say that a changeset is just a collection of changes with a
unique name. The changes might include textual edits to file contents, modifications to
tree structure, or tweaks to metadata. In more common speak, a changeset is just a
patch with a name you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the
repository looked after the Nth commit. It's also the name of an implicit changeset: if you
compare tree N with tree N-1, you can derive the exact patch that was committed. For
this reason, it's easy to think of “revision N” as not just a tree, but a changeset as well. If
you use an issue tracker to manage bugs, you can use the revision numbers to refer to
particular patches that fix bugs—for example, “this issue was fixed by revision 9238.”.
Somebody can then run svn log -r9238 to read about the exact changeset which fixed
the bug, and run svn diff -r9237:9238 to see the patch itself. And Subversion's merge

Branching and Merging

88

3The Subversion project has plans, however, to someday implement an svnadmin obliterate command that would ac-
complish the task of permanently deleting information. In the meantime, see the section called “svndumpfilter” for a
possible workaround.
4Because CVS doesn't version trees, it creates an Attic area within each repository directory as a way of remember-
ing deleted files.

command also uses revision numbers. You can merge specific changesets from one
branch to another by naming them in the merge arguments: svn merge -r9237:9238
would merge changeset #9238 into your working copy.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so
you should use svn status and svn diff to confirm that your work is in the state you want it to
be in, and then use svn commit to send the final version to the repository. After committing,
this particular changeset is no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still ex-
ists in revision 303. If somebody checks out a version of the calc project between revisions
303 and 349, they'll still see the bad change, right?

Yes, that's true. When we talk about “removing” a change, we're really talking about removing
it from HEAD. The original change still exists in the repository's history. For most situations, this
is good enough. Most people are only interested in tracking the HEAD of a project anyway.
There are special cases, however, where you really might want to destroy all evidence of the
commit. (Perhaps somebody accidentally committed a confidential document.) This isn't so
easy, it turns out, because Subversion was deliberately designed to never lose information.
Revisions are immutable trees which build upon one another. Removing a revision from history
would cause a domino effect, creating chaos in all subsequent revisions and possibly invalidat-
ing all working copies. 3

Resurrecting Deleted Items
The great thing about version control systems is that information is never lost. Even when you
delete a file or directory, it may be gone from the HEAD revision, but the object still exists in
earlier revisions. One of the most common questions new users ask is, “How do I get my old
file or directory back?”.

The first step is to define exactly which item you're trying to resurrect. Here's a useful meta-
phor: you can think of every object in the repository as existing in a sort of two-dimensional co-
ordinate system. The first coordinate is a particular revision tree, and the second coordinate is
a path within that tree. So every version of your file or directory can be defined by a specific
coordinate pair.

Subversion has no Attic directory like CVS does, 4 so you need to use svn log to discover
the exact coordinate pair you wish to resurrect. A good strategy is to run svn log --verbose in
a directory which used to contain your deleted item. The --verbose option shows a list of all
changed items in each revision; all you need to do is find the revision in which you deleted the
file or directory. You can do this visually, or by using another tool to examine the log output (via
grep, or perhaps via an incremental search in an editor).

$ cd parent-dir
$ svn log --verbose
…
--
r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed paths:

D /calc/trunk/real.c

Branching and Merging

89

M /calc/trunk/integer.c

Added fast fourier transform functions to integer.c.
Removed real.c because code now in double.c.
…

In the example, we're assuming that you're looking for a deleted file real.c. By looking
through the logs of a parent directory, you've spotted that this file was deleted in revision 808.
Therefore, the last version of the file to exist was in the revision right before that. Conclusion:
you want to resurrect the path /calc/trunk/real.c from revision 807.

That was the hard part—the research. Now that you know what you want to restore, you have
two different choices.

One option is to use svn merge to apply revision 808 “in reverse”. (We've already discussed
how to undo changes, see the section called “Undoing Changes”.) This would have the effect
of re-adding real.c as a local modification. The file would be scheduled for addition, and
after a commit, the file would again exist in HEAD.

In this particular example, however, this is probably not the best strategy. Reverse-applying re-
vision 808 would not only schedule real.c for addition, but the log message indicates that it
would also undo certain changes to integer.c, which you don't want. Certainly, you could re-
verse-merge revision 808 and then svn revert the local modifications to integer.c, but this
technique doesn't scale well. What if there were 90 files changed in revision 808?

A second, more targeted strategy is not to use svn merge at all, but rather the svn copy com-
mand. Simply copy the exact revision and path “coordinate pair” from the repository to your
working copy:

$ svn copy --revision 807 \
http://svn.example.com/repos/calc/trunk/real.c ./real.c

$ svn status
A + real.c

$ svn commit -m "Resurrected real.c from revision 807, /calc/trunk/real.c."
Adding real.c
Transmitting file data .
Committed revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but
scheduled for addition “with history”. Subversion remembers where it was copied from. In the
future, running svn log on this file will traverse back through the file's resurrection and through
all the history it had prior to revision 807. In other words, this new real.c isn't really new; it's
a direct descendant of the original, deleted file.

Although our example shows us resurrecting a file, note that these same techniques work just
as well for resurrecting deleted directories.

Common Branching Patterns
Version control is most often used for software development, so here's a quick peek at two of
the most common branching/merging patterns used by teams of programmers. If you're not us-
ing Subversion for software development, feel free to skip this section. If you're a software de-
veloper using version control for the first time, pay close attention, as these patterns are often
considered best practices by experienced folk. These processes aren't specific to Subversion;

Branching and Merging

90

they're applicable to any version control system. Still, it may help to see them described in
Subversion terms.

Release Branches

Most software has a typical lifecycle: code, test, release, repeat. There are two problems with
this process. First, developers need to keep writing new features while quality-assurance
teams take time to test supposedly-stable versions of the software. New work cannot halt while
the software is tested. Second, the team almost always needs to support older, released ver-
sions of software; if a bug is discovered in the latest code, it most likely exists in released ver-
sions as well, and customers will want to get that bugfix without having to wait for a major new
release.

Here's where version control can help. The typical procedure looks like this:

• Developers commit all new work to the trunk. Day-to-day changes are committed to
/trunk: new features, bugfixes, and so on.

• The trunk is copied to a “release” branch. When the team thinks the software is ready for re-
lease (say, a 1.0 release), then /trunk might be copied to /branches/1.0.

• Teams continue to work in parallel. One team begins rigorous testing of the release branch,
while another team continues new work (say, for version 2.0) on /trunk. If bugs are dis-
covered in either location, fixes are ported back and forth as necessary. At some point,
however, even that process stops. The branch is “frozen” for final testing right before a re-
lease.

• The branch is tagged and released. When testing is complete, /branches/1.0 is copied to
/tags/1.0.0 as a reference snapshot. The tag is packaged and released to customers.

• The branch is maintained over time. While work continues on /trunk for version 2.0, bug-
fixes continue to be ported from /trunk to /branches/1.0. When enough bugfixes have
accumulated, management may decide to do a 1.0.1 release: /branches/1.0 is copied to
/tags/1.0.1, and the tag is packaged and released.

This entire process repeats as the software matures: when the 2.0 work is complete, a new 2.0
release branch is created, tested, tagged, and eventually released. After some years, the re-
pository ends up with a number of release branches in “maintenance” mode, and a number of
tags representing final shipped versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter, the
one you've been working on while Sally continues to work on /trunk. It's a temporary branch
created to work on a complex change without interfering with the stability of /trunk. Unlike re-
lease branches (which may need to be supported forever), feature branches are born, used for
a while, merged back to the trunk, then ultimately deleted. They have a finite span of useful-
ness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature
branch. Some projects never use feature branches at all: commits to /trunk are a free-for-all.
The advantage to this system is that it's simple—nobody needs to learn about branching or
merging. The disadvantage is that the trunk code is often unstable or unusable. Other projects
use branches to an extreme: no change is ever committed to the trunk directly. Even the most
trivial changes are created on a short-lived branch, carefully reviewed and merged to the trunk.

Branching and Merging

91

Then the branch is deleted. This system guarantees an exceptionally stable and usable trunk
at all times, but at the cost of tremendous process overhead.

Most projects take a middle-of-the-road approach. They commonly insist that /trunk compile
and pass regression tests at all times. A feature branch is only required when a change re-
quires a large number of destabilizing commits. A good rule of thumb is to ask this question: if
the developer worked for days in isolation and then committed the large change all at once (so
that /trunk were never destabilized), would it be too large a change to review? If the answer
to that question is “yes”, then the change should be developed on a feature branch. As the de-
veloper commits incremental changes to the branch, they can be easily reviewed by peers.

Finally, there's the issue of how to best keep a feature branch in “sync” with the trunk as work
progresses. As we mentioned earlier, there's a great risk to working on a branch for weeks or
months; trunk changes may continue to pour in, to the point where the two lines of develop-
ment differ so greatly that it may become a nightmare trying to merge the branch back to the
trunk.

This situation is best avoided by regularly merging trunk changes to the branch. Make up a
policy: once a week, merge the last week's worth of trunk changes to the branch. Take care
when doing this; the merging needs to be hand-tracked to avoid the problem of repeated
merges (as described in the section called “Tracking Merges Manually”). You'll need to write
careful log messages detailing exactly which revision ranges have been merged already (as
demonstrated in the section called “Merging a Whole Branch to Another”). It may sound intim-
idating, but it's actually pretty easy to do.

At some point, you'll be ready to merge the “synchronized” feature branch back to the trunk. To
do this, begin by doing a final merge of the latest trunk changes to the branch. When that's
done, the latest versions of branch and trunk will be absolutely identical except for your branch
changes. So in this special case, you would merge by comparing the branch with the trunk:

$ cd trunk-working-copy

$ svn update
At revision 1910.

$ svn merge http://svn.example.com/repos/calc/trunk@1910 \
http://svn.example.com/repos/calc/branches/mybranch@1910

U real.c
U integer.c
A newdirectory
A newdirectory/newfile
…

By comparing the HEAD revision of the trunk with the HEAD revision of the branch, you're defin-
ing a delta that describes only the changes you made to the branch; both lines of development
already have all of the trunk changes.

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analog-
ous to running svn update in a working copy, while the final merge step is analogous to run-
ning svn commit from a working copy. After all, what else is a working copy but a very shallow
private branch? It's a branch that's only capable of storing one change at a time.

Switching a Working Copy
The svn switch command transforms an existing working copy into a different branch. While
this command isn't strictly necessary for working with branches, it provides a nice shortcut to
users. In our earlier example, after creating your private branch, you checked out a fresh work-

Branching and Merging

92

5You can, however, use svn switch with the --relocate switch if the URL of your server changes and you don't
want to abandon an existing working copy. See the svn switch section in Chapter 9, Subversion Complete Reference
for more information and an example.

ing copy of the new repository directory. Instead, you can simply ask Subversion to change
your working copy of /calc/trunk to mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.example.com/repos/calc/trunk

$ svn switch http://svn.example.com/repos/calc/branches/my-calc-branch
U integer.c
U button.c
U Makefile
Updated to revision 341.

$ svn info | grep URL
URL: http://svn.example.com/repos/calc/branches/my-calc-branch

After “switching” to the branch, your working copy is no different than what you would get from
doing a fresh checkout of the directory. And it's usually more efficient to use this command, be-
cause often branches only differ by a small degree. The server sends only the minimal set of
changes necessary to make your working copy reflect the branch directory.

The svn switch command also takes a --revision (-r) option, so you need not always
move your working copy to the “tip” of the branch.

Of course, most projects are more complicated than our calc example, containing multiple
subdirectories. Subversion users often follow a specific algorithm when using branches:

1. Copy the project's entire “trunk” to a new branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch-work only needs to happen on a specific subdir-
ectory, they use svn switch to move only that subdirectory to the branch. (Or sometimes
users will switch just a single working file to the branch!) That way, they can continue to re-
ceive normal “trunk” updates to most of their working copy, but the switched portions will re-
main immune (unless someone commits a change to their branch). This feature adds a whole
new dimension to the concept of a “mixed working copy”—not only can working copies contain
a mixture of working revisions, but a mixture of repository locations as well.

If your working copy contains a number of switched subtrees from different repository loca-
tions, it continues to function as normal. When you update, you'll receive patches to each sub-
tree as appropriate. When you commit, your local changes will still be applied as a single,
atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these
locations must all be within the same repository. Subversion repositories aren't yet able to
communicate with one another; that's a feature planned beyond Subversion 1.0.5

Switches and Updates

Have you noticed that the output of svn switch and svn update look the same? The

Branching and Merging

93

switch command is actually a superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repos-
itory does so, and then sends a description of the differences back to the client. The only
difference between svn switch and svn update is that the update command always
compares two identical paths.

That is, if your working copy is a mirror of /calc/trunk, then svn update will automat-
ically compare your working copy of /calc/trunk to /calc/trunk in the HEAD revi-
sion. If you're switching your working copy to a branch, then svn switch will compare
your working copy of /calc/trunk to some other branch-directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your
working copy through time and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any
local modifications in your working copy are preserved when new data arrives from the reposit-
ory. This allows you to perform all sorts of clever tricks.

For example, suppose you have a working copy of /calc/trunk and make a number of
changes to it. Then you suddenly realize that you meant to make the changes to a branch in-
stead. No problem! When you svn switch your working copy to the branch, the local changes
will remain. You can then test and commit them to the branch.

Tags
Another common version control concept is a tag. A tag is just a “snapshot” of a project in time.
In Subversion, this idea already seems to be everywhere. Each repository revision is exactly
that—a snapshot of the filesystem after each commit.

However, people often want to give more human-friendly names to tags, like release-1.0.
And they want to make snapshots of smaller subdirectories of the filesystem. After all, it's not
so easy to remember that release-1.0 of a piece of software is a particular subdirectory of revi-
sion 4822.

Creating a Simple Tag
Once again, svn copy comes to the rescue. If you want to create a snapshot of /
calc/trunk exactly as it looks in the HEAD revision, then make a copy of it:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/tags/release-1.0 \

-m "Tagging the 1.0 release of the 'calc' project."

Committed revision 351.

This example assumes that a /calc/tags directory already exists. (If it doesn't, see svn mk-
dir). After the copy completes, the new release-1.0 directory is forever a snapshot of how
the project looked in the HEAD revision at the time you made the copy. Of course you might
want to be more precise about exactly which revision you copy, in case somebody else may
have committed changes to the project when you weren't looking. So if you know that revision
350 of /calc/trunk is exactly the snapshot you want, you can specify it by passing -r 350
to the svn copy command.

Branching and Merging

94

But wait a moment: isn't this tag-creation procedure the same procedure we used to create a
branch? Yes, in fact, it is. In Subversion, there's no difference between a tag and a branch.
Both are just ordinary directories that are created by copying. Just as with branches, the only
reason a copied directory is a “tag” is because humans have decided to treat it that way: as
long as nobody ever commits to the directory, it forever remains a snapshot. If people start
committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags.
The first approach is “hands off”: as a matter of project policy, decide where your tags will live,
and make sure all users know how to treat the directories they copy in there. (That is, make
sure they know not to commit to them.) The second approach is more paranoid: you can use
one of the access-control scripts provided with Subversion to prevent anyone from doing any-
thing but creating new copies in the tags-area (See Chapter 6, Server Configuration.) The
paranoid approach, however, isn't usually necessary. If a user accidentally commits a change
to a tag-directory, you can simply undo the change as discussed in the previous section. This
is version control, after all.

Creating a Complex Tag
Sometimes you may want your “snapshot” to be more complicated than a single directory at a
single revision.

For example, pretend your project is much larger than our calc example: suppose it contains
a number of subdirectories and many more files. In the course of your work, you may decide
that you need to create a working copy that is designed to have specific features and bug
fixes. You can accomplish this by selectively backdating files or directories to particular revi-
sions (using svn update -r liberally), or by switching files and directories to particular branches
(making use of svn switch). When you're done, your working copy is a hodgepodge of reposit-
ory locations from different revisions. But after testing, you know it's the precise combination of
data you need.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want
to make a snapshot of your exact working copy arrangement and store it in the repository.
Luckily, svn copy actually has four different uses (which you can read about in Chapter 9,
Subversion Complete Reference), including the ability to copy a working-copy tree to the re-
pository:

$ ls
my-working-copy/

$ svn copy my-working-copy http://svn.example.com/repos/calc/tags/mytag

Committed revision 352.

Now there is a new directory in the repository, /calc/tags/mytag, which is an exact snap-
shot of your working copy—mixed revisions, URLs, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where
you have a bunch of local changes made to your working copy, and you'd like a collaborator to
see them. Instead of running svn diff and sending a patch file (which won't capture tree
changes, symlink changes or changes in properties), you can instead use svn copy to
“upload” your working copy to a private area of the repository. Your collaborator can then
either checkout a verbatim copy of your working copy, or use svn merge to receive your exact
changes.

Branching and Merging

95

Branch Maintenance
You may have noticed by now that Subversion is extremely flexible. Because it implements
branches and tags with the same underlying mechanism (directory copies), and because
branches and tags appear in normal filesystem space, many people find Subversion intimidat-
ing. It's almost too flexible. In this section, we'll offer some suggestions for arranging and man-
aging your data over time.

Repository Layout
There are some standard, recommended ways to organize a repository. Most people create a
trunk directory to hold the “main line” of development, a branches directory to contain
branch copies, and a tags directory to contain tag copies. If a repository holds only one
project, then often people create these top-level directories:

/trunk
/branches
/tags

If a repository contains multiple projects, admins typically index their layout by project (see the
section called “Choosing a Repository Layout” to read more about “project roots”):

/paint/trunk
/paint/branches
/paint/tags
/calc/trunk
/calc/branches
/calc/tags

Of course, you're free to ignore these common layouts. You can create any sort of variation,
whatever works best for you or your team. Remember that whatever you choose, it's not a per-
manent commitment. You can reorganize your repository at any time. Because branches and
tags are ordinary directories, the svn move command can move or rename them however you
wish. Switching from one layout to another is just a matter of issuing a series of server-side
moves; if you don't like the way things are organized in the repository, just juggle the director-
ies around.

Remember, though, that while moving directories may be easy to do, you need to be consider-
ate of your users as well. Your juggling can be disorienting to users with existing working cop-
ies. If a user has a working copy of a particular repository directory, your svn move operation
might remove the path from the latest revision. When the user next runs svn update, she will
be told that her working copy represents a path that no longer exists, and the user will be
forced to svn switch to the new location.

Data Lifetimes
Another nice feature of Subversion's model is that branches and tags can have finite lifetimes,
just like any other versioned item. For example, suppose you eventually finish all your work on
your personal branch of the calc project. After merging all of your changes back into /
calc/trunk, there's no need for your private branch directory to stick around anymore:

$ svn delete http://svn.example.com/repos/calc/branches/my-calc-branch \
-m "Removing obsolete branch of calc project."

Branching and Merging

96

Committed revision 375.

And now your branch is gone. Of course it's not really gone: the directory is simply missing
from the HEAD revision, no longer distracting anyone. If you use svn checkout, svn switch, or
svn list to examine an earlier revision, you'll still be able to see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data
is very easy in Subversion. If there's a deleted directory (or file) that you'd like to bring back in-
to HEAD, simply use svn copy -r to copy it from the old revision:

$ svn copy -r 374 http://svn.example.com/repos/calc/branches/my-calc-branch \
http://svn.example.com/repos/calc/branches/my-calc-branch

Committed revision 376.

In our example, your personal branch had a relatively short lifetime: you may have created it to
fix a bug or implement a new feature. When your task is done, so is the branch. In software de-
velopment, though, it's also common to have two “main” branches running side-by-side for very
long periods. For example, suppose it's time to release a stable version of the calc project to
the public, and you know it's going to take a couple of months to shake bugs out of the soft-
ware. You don't want people to add new features to the project, but you don't want to tell all
developers to stop programming either. So instead, you create a “stable” branch of the soft-
ware that won't change much:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/stable-1.0 \
-m "Creating stable branch of calc project."

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /
calc/trunk, and you can declare a project policy that only bug fixes are to be committed to /
calc/branches/stable-1.0. That is, as people continue to work on the trunk, a human
selectively ports bug fixes over to the stable branch. Even after the stable branch has shipped,
you'll probably continue to maintain the branch for a long time—that is, as long as you continue
to support that release for customers.

Vendor branches
As is especially the case when developing software, the data that you maintain under version
control is often closely related to, or perhaps dependent upon, someone else's data. Generally,
the needs of your project will dictate that you stay as up-to-date as possible with the data
provided by that external entity without sacrificing the stability of your own project. This scen-
ario plays itself out all the time—anywhere that the information generated by one group of
people has a direct effect on that which is generated by another group.

For example, software developers might be working on an application which makes use of a
third-party library. Subversion has just such a relationship with the Apache Portable Runtime
library (see the section called “The Apache Portable Runtime Library”). The Subversion source
code depends on the APR library for all its portability needs. In earlier stages of Subversion's
development, the project closely tracked APR's changing API, always sticking to the “bleeding
edge” of the library's code churn. Now that both APR and Subversion have matured, Subver-

Branching and Merging

97

sion attempts to synchronize with APR's library API only at well-tested, stable release points.

Now, if your project depends on someone else's information, there are several ways that you
could attempt to synchronize that information with your own. Most painfully, you could issue or-
al or written instructions to all the contributors of your project, telling them to make sure that
they have the specific versions of that third-party information that your project needs. If the
third-party information is maintained in a Subversion repository, you could also use Subver-
sion's externals definitions to effectively “pin down” specific versions of that information to
some location in your own working copy directory (see the section called “Externals Defini-
tions”).

But sometimes you want to maintain custom modifications to third-party data in your own ver-
sion control system. Returning to the software development example, programmers might
need to make modifications to that third-party library for their own purposes. These modifica-
tions might include new functionality or bug fixes, maintained internally only until they become
part of an official release of the third-party library. Or the changes might never be relayed back
to the library maintainers, existing solely as custom tweaks to make the library further suit the
needs of the software developers.

Now you face an interesting situation. Your project could house its custom modifications to the
third-party data in some disjointed fashion, such as using patch files or full-fledged alternate
versions of files and directories. But these quickly become maintenance headaches, requiring
some mechanism by which to apply your custom changes to the third-party data, and necessit-
ating regeneration of those changes with each successive version of the third-party data that
you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in
your own version control system that contains information provided by a third-party entity, or
vendor. Each version of the vendor's data that you decide to absorb into your project is called
a vendor drop.

Vendor branches provide two key benefits. First, by storing the currently supported vendor
drop in your own version control system, the members of your project never need to question
whether they have the right version of the vendor's data. They simply receive that correct ver-
sion as part of their regular working copy updates. Secondly, because the data lives in your
own Subversion repository, you can store your custom changes to it in-place—you have no
more need of an automated (or worse, manual) method for swapping in your customizations.

General Vendor Branch Management Procedure
Managing vendor branches generally works like this. You create a top-level directory (such as
/vendor) to hold the vendor branches. Then you import the third party code into a subdirect-
ory of that top-level directory. You then copy that subdirectory into your main development
branch (for example, /trunk) at the appropriate location. You always make your local
changes in the main development branch. With each new release of the code you are tracking
you bring it into the vendor branch and merge the changes into /trunk, resolving whatever
conflicts occur between your local changes and the upstream changes.

Perhaps an example will help to clarify this algorithm. We'll use a scenario where your devel-
opment team is creating a calculator program that links against a third-party complex number
arithmetic library, libcomplex. We'll begin with the initial creation of the vendor branch, and the
import of the first vendor drop. We'll call our vendor branch directory libcomplex, and our
code drops will go into a subdirectory of our vendor branch called current. And since svn
import creates all the intermediate parent directories it needs, we can actually accomplish
both of these steps with a single command.

Branching and Merging

98

6And entirely bug-free, of course!

$ svn import /path/to/libcomplex-1.0 \
http://svn.example.com/repos/vendor/libcomplex/current \
-m 'importing initial 1.0 vendor drop'

…

We now have the current version of the libcomplex source code in /
vendor/libcomplex/current. Now, we tag that version (see the section called “Tags”)
and then copy it into the main development branch. Our copy will create a new directory called
libcomplex in our existing calc project directory. It is in this copied version of the vendor
data that we will make our customizations.

$ svn copy http://svn.example.com/repos/vendor/libcomplex/current \
http://svn.example.com/repos/vendor/libcomplex/1.0 \
-m 'tagging libcomplex-1.0'

…
$ svn copy http://svn.example.com/repos/vendor/libcomplex/1.0 \

http://svn.example.com/repos/calc/libcomplex \
-m 'bringing libcomplex-1.0 into the main branch'

…

We check out our project's main branch—which now includes a copy of the first vendor
drop—and we get to work customizing the libcomplex code. Before we know it, our modified
version of libcomplex is now completely integrated into our calculator program. 6

A few weeks later, the developers of libcomplex release a new version of their library—version
1.1—which contains some features and functionality that we really want. We'd like to upgrade
to this new version, but without losing the customizations we made to the existing version.
What we essentially would like to do is to replace our current baseline version of libcomplex
1.0 with a copy of libcomplex 1.1, and then re-apply the custom modifications we previously
made to that library to the new version. But we actually approach the problem from the other
direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to our modi-
fied copy of it.

To perform this upgrade, we checkout a copy of our vendor branch, and replace the code in
the current directory with the new libcomplex 1.1 source code. We quite literally copy new
files on top of existing files, perhaps exploding the libcomplex 1.1 release tarball atop our exist-
ing files and directories. The goal here is to make our current directory contain only the lib-
complex 1.1 code, and to ensure that all that code is under version control. Oh, and we want to
do this with as little version control history disturbance as possible.

After replacing the 1.0 code with 1.1 code, svn status will show files with local modifications
as well as, perhaps, some unversioned or missing files. If we did what we were supposed to
do, the unversioned files are only those new files introduced in the 1.1 release of libcom-
plex—we run svn add on those to get them under version control. The missing files are files
that were in 1.0 but not in 1.1, and on those paths we run svn delete. Finally, once our cur-
rent working copy contains only the libcomplex 1.1 code, we commit the changes we made to
get it looking that way.

Our current branch now contains the new vendor drop. We tag the new version (in the same
way we previously tagged the version 1.0 vendor drop), and then merge the differences
between the tag of the previous version and the new current version into our main develop-
ment branch.

Branching and Merging

99

$ cd working-copies/calc
$ svn merge http://svn.example.com/repos/vendor/libcomplex/1.0 \

http://svn.example.com/repos/vendor/libcomplex/current \
libcomplex

… # resolve all the conflicts between their changes and our changes
$ svn commit -m 'merging libcomplex-1.1 into the main branch'
…

In the trivial use case, the new version of our third-party tool would look, from a files-
and-directories point of view, just like the previous version. None of the libcomplex source files
would have been deleted, renamed or moved to different locations—the new version would
contain only textual modifications against the previous one. In a perfect world, our modifica-
tions would apply cleanly to the new version of the library, with absolutely no complications or
conflicts.

But things aren't always that simple, and in fact it is quite common for source files to get moved
around between releases of software. This complicates the process of ensuring that our modi-
fications are still valid for the new version of code, and can quickly degrade into a situation
where we have to manually recreate our customizations in the new version. Once Subversion
knows about the history of a given source file—including all its previous locations—the process
of merging in the new version of the library is pretty simple. But we are responsible for telling
Subversion how the source file layout changed from vendor drop to vendor drop.

svn_load_dirs.pl
Vendor drops that contain more than a few deletes, additions and moves complicate the pro-
cess of upgrading to each successive version of the third-party data. So Subversion supplies
the svn_load_dirs.pl script to assist with this process. This script automates the importing
steps we mentioned in the general vendor branch management procedure to make sure that
mistakes are minimized. You will still be responsible for using the merge commands to merge
the new versions of the third-party data into your main development branch, but
svn_load_dirs.pl can help you more quickly and easily arrive at that stage.

In short, svn_load_dirs.pl is an enhancement to svn import that has several important char-
acteristics:

• It can be run at any point in time to bring an existing directory in the repository to exactly
match an external directory, performing all the necessary adds and deletes, and optionally
performing moves, too.

• It takes care of complicated series of operations between which Subversion requires an in-
termediate commit—such as before renaming a file or directory twice.

• It will optionally tag the newly imported directory.

• It will optionally add arbitrary properties to files and directories that match a regular expres-
sion.

svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base
Subversion directory to work in. This argument is followed by the URL—relative to the first ar-
gument—into which the current vendor drop will be imported. Finally, the third argument is the
local directory to import. Using our previous example, a typical run of svn_load_dirs.pl might
look like:

Branching and Merging

100

$ svn_load_dirs.pl http://svn.example.com/repos/vendor/libcomplex \
current \
/path/to/libcomplex-1.1

…

You can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the -
t command-line option and specifying a tag name. This tag is another URL relative to the first
program argument.

$ svn_load_dirs.pl -t libcomplex-1.1 \
http://svn.example.com/repos/vendor/libcomplex \
current \
/path/to/libcomplex-1.1

…

When you run svn_load_dirs.pl, it examines the contents of your existing “current” vendor
drop, and compares them with the proposed new vendor drop. In the trivial case, there will be
no files that are in one version and not the other, and the script will perform the new import
without incident. If, however, there are discrepancies in the file layouts between versions,
svn_load_dirs.pl will prompt you for how you would like to resolve those differences. For ex-
ample, you will have the opportunity to tell the script that you know that the file math.c in ver-
sion 1.0 of libcomplex was renamed to arithmetic.c in libcomplex 1.1. Any discrepancies
not explained by moves are treated as regular additions and deletions.

The script also accepts a separate configuration file for setting properties on files and director-
ies matching a regular expression that are added to the repository. This configuration file is
specified to svn_load_dirs.pl using the -p command-line option. Each line of the configura-
tion file is a whitespace-delimited set of two or four values: a Perl-style regular expression to
match the added path against, a control keyword (either break or cont), and then optionally a
property name and value.

\.png$ break svn:mime-type image/png
\.jpe?g$ break svn:mime-type image/jpeg
\.m3u$ cont svn:mime-type audio/x-mpegurl
\.m3u$ break svn:eol-style LF
.* break svn:eol-style native

For each added path, the configured property changes whose regular expression matches the
path are applied in order, unless the control specification is break (which means that no more
property changes should be applied to that path). If the control specification is cont—an ab-
breviation for continue—then matching will continue with the next line of the configuration
file.

Any whitespace in the regular expression, property name, or property value must be surroun-
ded by either single or double quote characters. You can escape quote characters that are not
used for wrapping whitespace by preceding them with a backslash (\) character. The back-
slash escapes only quotes when parsing the configuration file, so do not protect any other
characters beyond what is necessary for the regular expression.

Summary
We've covered a lot of ground in this chapter. We've discussed the concepts of tags and
branches, and demonstrated how Subversion implements these concepts by copying director-

Branching and Merging

101

ies with the svn copy command. We've shown how to use svn merge to copy changes from
one branch to another, or roll back bad changes. We've gone over the use of svn switch to
create mixed-location working copies. And we've talked about how one might manage the or-
ganization and lifetimes of branches in a repository.

Remember the Subversion mantra: branches and tags are cheap. So use them liberally!

Branching and Merging

102

1This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious
realm beyond the working copy where everyone's data hangs out.

Chapter 5. Repository Administration
TODO: Heavy (re-)construction will be happenin' here!

The Subversion repository is the central storehouse of versioned data for any number of
projects. As such, it becomes an obvious candidate for all the love and attention an adminis-
trator can offer. While the repository is generally a low-maintenance item, it is important to un-
derstand how to properly configure and care for it so that potential problems are avoided, and
actual problems are safely resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository. We'll also
talk about repository maintenance, including the use of the svnlook and svnadmin tools
(which are provided with Subversion). We'll address some common questions and mistakes,
and give some suggestions on how to arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under
version control (that is, via a Subversion client), you can skip this chapter altogether. However,
if you are, or wish to become, a Subversion repository administrator, 1 you should definitely
pay attention to this chapter.

Repository Basics
Before jumping into the broader topic of repository administration, let's further define what a re-
pository is. How does it look? How does it feel? Does it take its tea hot or iced, sweetened, and
with lemon? As an administrator, you'll be expected to understand the composition of a reposit-
ory both from a logical perspective—dealing with how data is represented inside the reposit-
ory—and from a physical nuts-and-bolts perspective—how a repository looks and acts with re-
spect to non-Subversion tools. The following section covers some of these basic concepts at a
very high level.

Understanding Transactions and Revisions
Conceptually speaking, a Subversion repository is a sequence of directory trees. Each tree is a
snapshot of how the files and directories versioned in your repository looked at some point in
time. These snapshots are created as a result of client operations, and are called revisions.

Every revision begins life as a transaction tree. When doing a commit, a client builds a Subver-
sion transaction that mirrors their local changes (plus any additional changes that might have
been made to the repository since the beginning of the client's commit process), and then in-
structs the repository to store that tree as the next snapshot in the sequence. If the commit
succeeds, the transaction is effectively promoted into a new revision tree, and is assigned a
new revision number. If the commit fails for some reason, the transaction is destroyed and the
client is informed of the failure.

Updates work in a similar way. The client builds a temporary transaction tree that mirrors the
state of the working copy. The repository then compares that transaction tree with the revision
tree at the requested revision (usually the most recent, or “youngest” tree), and sends back in-
formation that informs the client about what changes are needed to transform their working
copy into a replica of that revision tree. After the update completes, the temporary transaction

103

2Pronounced “fuzz-fuzz”, if Jack Repenning has anything to say about it.

is deleted.

The use of transaction trees is the only way to make permanent changes to a repository's ver-
sioned filesystem. However, it's important to understand that the lifetime of a transaction is
completely flexible. In the case of updates, transactions are temporary trees that are immedi-
ately destroyed. In the case of commits, transactions are transformed into permanent revisions
(or removed if the commit fails). In the case of an error or bug, it's possible that a transaction
can be accidentally left lying around in the repository (not really affecting anything, but still tak-
ing up space).

In theory, someday whole workflow applications might revolve around more fine-grained con-
trol of transaction lifetime. It is feasible to imagine a system whereby each transaction slated to
become a revision is left in stasis well after the client finishes describing its changes to reposit-
ory. This would enable each new commit to be reviewed by someone else, perhaps a manager
or engineering QA team, who can choose to promote the transaction into a revision, or abort it.

Unversioned Properties
Transactions and revisions in the Subversion repository can have properties attached to them.
These properties are generic key-to-value mappings, and are generally used to store informa-
tion about the tree to which they are attached. The names and values of these properties are
stored in the repository's filesystem, along with the rest of your tree data.

Revision and transaction properties are useful for associating information with a tree that is not
strictly related to the files and directories in that tree—the kind of information that isn't man-
aged by client working copies. For example, when a new commit transaction is created in the
repository, Subversion adds a property to that transaction named svn:date—a datestamp
representing the time that the transaction was created. By the time the commit process is fin-
ished, and the transaction is promoted to a permanent revision, the tree has also been given a
property to store the username of the revision's author (svn:author) and a property to store
the log message attached to that revision (svn:log).

Revision and transaction properties are unversioned properties—as they are modified, their
previous values are permanently discarded. Also, while revision trees themselves are immut-
able, the properties attached to those trees are not. You can add, remove, and modify revision
properties at any time in the future. If you commit a new revision and later realize that you had
some misinformation or spelling error in your log message, you can simply replace the value of
the svn:log property with a new, corrected log message.

Repository Data Stores
As of Subversion 1.1, there are two options for storing data in a Subversion repository. One
type of repository stores everything in a Berkeley DB database; the other kind stores data in
ordinary flat files, using a custom format. Because Subversion developers often refer to a re-
pository as “the (versioned) filesystem”, they have adopted the habit of referring to the latter
type of repository as FSFS 2 —a versioned filesystem implementation that uses the native OS
filesystem to store data.

When a repository is created, an administrator must decide whether it will use Berkeley DB or
FSFS. There are advantages and disadvantages to each, which we'll describe in a bit. Neither
back-end is more “official” than another, and programs which access the repository are insu-
lated from this implementation detail. Programs have no idea how a repository is storing data;
they only see revision and transaction trees through the repository API.

Repository Administration

104

Table 5.1, “Repository Data Store Comparison” gives a comparative overview of Berkeley DB
and FSFS repositories. The next sections go into detail.

Table 5.1. Repository Data Store Comparison

Feature Berkeley DB FSFS

Sensitivity to interruptions very; crashes and permission
problems can leave the data-
base “wedged”, requiring
journaled recovery proced-
ures.

quite insensitive.

Usable from a read-only
mount

no yes

Platform-independent storage no yes

Usable over network filesys-
tems

no yes

Repository size slightly larger slightly smaller

Scalability: number of revision
trees

database; no problems some older native filesystems
don't scale well with thou-
sands of entries in a single dir-
ectory.

Scalability: directories with
many files

slower faster

Speed: checking out latest
code

faster slower

Speed: large commits slower, but work is spread
throughout commit

faster, but finalization delay
may cause client timeouts

Group permissions handling sensitive to user umask prob-
lems; best if accessed by only
one user.

works around umask prob-
lems

Code maturity in use since 2001 in use since 2004

Berkeley DB

When the initial design phase of Subversion was in progress, the developers decided to use
Berkeley DB for a variety of reasons, including its open-source license, transaction support, re-
liability, performance, API simplicity, thread-safety, support for cursors, and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple
processes accessing your Subversion repositories don't have to worry about accidentally clob-
bering each other's data. The isolation provided by the transaction system is such that for any
given operation, the Subversion repository code sees a static view of the database—not a
database that is constantly changing at the hand of some other process—and can make de-
cisions based on that view. If the decision made happens to conflict with what another process
is doing, the entire operation is rolled back as if it never happened, and Subversion gracefully
retries the operation against a new, updated (and yet still static) view of the database.

Another great feature of Berkeley DB is hot backups—the ability to backup the database envir-
onment without taking it “offline”. We'll discuss how to backup your repository in the section
called “Repository Backup”, but the benefits of being able to make fully functional copies of

Repository Administration

105

your repositories without any downtime should be obvious.

Berkeley DB is also a very reliable database system. Subversion uses Berkeley DB's logging
facilities, which means that the database first writes to on-disk log files a description of any
modifications it is about to make, and then makes the modification itself. This is to ensure that
if anything goes wrong, the database system can back up to a previous checkpoint—a location
in the log files known not to be corrupt—and replay transactions until the data is restored to a
usable state. See the section called “Managing Disk Space” for more about Berkeley DB log
files.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB.
First, Berkeley DB environments are not portable. You cannot simply copy a Subversion repos-
itory that was created on a Unix system onto a Windows system and expect it to work. While
much of the Berkeley DB database format is architecture independent, there are other aspects
of the environment that are not. Secondly, Subversion uses Berkeley DB in a way that will not
operate on Windows 95/98 systems—if you need to house a repository on a Windows ma-
chine, stick with Windows 2000 or Windows XP. Also, you should never keep a Berkeley DB
repository on a network share. While Berkeley DB promises to behave correctly on network
shares that meet a particular set of specifications, almost no known shares actually meet all
those specifications.

Finally, because Berkeley DB is a library linked directly into Subversion, it's more sensitive to
interruptions than a typical relational database system. Most SQL systems, for example, have
a dedicated server process that mediates all access to tables. If a program accessing the data-
base crashes for some reason, the database daemon notices the lost connection and cleans
up any mess left behind. And because the database daemon is the only process accessing the
tables, applications don't need to worry about permission conflicts. These things are not the
case with Berkeley DB, however. Subversion (and programs using Subversion libraries) ac-
cess the database tables directly, which means that a program crash can leave the database
in a temporarily inconsistent, inaccessible state. When this happens, an administrator needs to
ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance. Other things can
cause a repository to “wedge” besides crashed processes, such as programs conflicting over
ownership and permissions on the database files. So while a Berkeley DB repository is quite
fast and scalable, it's best used by a single server process running as one user—such as
Apache's httpd or svnserve (see Chapter 6, Server Configuration)—rather than accessing it
as many different users via file:/// or svn+ssh:// URLs. If using a Berkeley DB reposit-
ory directly as multiple users, be sure to read the section called “Supporting Multiple Reposit-
ory Access Methods”.

FSFS

In mid-2004, a second type of repository storage system came into being: one which doesn't
use a database at all. An FSFS repository stores a revision tree in a single file, and so all of a
repository's revisions can be found in a single subdirectory full of numbered files. Transactions
are created in separate subdirectories. When complete, a single transaction file is created and
moved to the revisions directory, thus guaranteeing that commits are atomic. And because a
revision file is permanent and unchanging, the repository also can be backed up while “hot”,
just like a Berkeley DB repository.

The revision-file format represents a revision's directory structure, file contents, and deltas
against files in other revision trees. Unlike a Berkeley DB database, this storage format is port-
able across different operating systems and isn't sensitive to CPU architecture. Because
there's no journaling or shared-memory files being used, the repository can be safely accessed
over a network filesystem and examined in a read-only environment. The lack of database
overhead also means that the overall repository size is a bit smaller.

FSFS has different performance characteristics too. When committing a directory with a huge

Repository Administration

106

number of files, FSFS uses an O(N) algorithm to append entries, while Berkeley DB uses an
O(N^2) algorithm to rewrite the whole directory. On the other hand, FSFS writes the latest ver-
sion of a file as a delta against an earlier version, which means that checking out the latest tree
is a bit slower than fetching the fulltexts stored in a Berkeley DB HEAD revision. FSFS also
has a longer delay when finalizing a commit, which could in extreme cases cause clients to
time out when waiting for a response.

The most important distinction, however, is FSFS's inability to be “wedged” when something
goes wrong. If a process using a Berkeley DB database runs into a permissions problem or
suddenly crashes, the database is left unusable until an administrator recovers it. If the same
scenarios happen to a process using an FSFS repository, the repository isn't affected at all. At
worst, some transaction data is left behind.

The only real argument against FSFS is its relative immaturity compared to Berkeley DB. It
hasn't been used or stress-tested nearly as much, and so a lot of these assertions about speed
and scalability are just that: assertions, based on good guesses. In theory, it promises a lower
barrier to entry for new administrators and is less susceptible to problems. In practice, only
time will tell.

Repository Creation and Configuration
Creating a Subversion repository is an incredibly simple task. The svnadmin utility, provided
with Subversion, has a subcommand for doing just that. To create a new repository, just run:

$ svnadmin create /path/to/repos

This creates a new repository in the directory /path/to/repos. This new repository begins
life at revision 0, which is defined to consist of nothing but the top-level root (/) filesystem dir-
ectory. Initially, revision 0 also has a single revision property, svn:date, set to the time at
which the repository was created.

In Subversion 1.2, a repository is created with an FSFS back-end by default (see the section
called “Repository Data Stores”). The back-end can be explicitly chosen with the --fs-type
argument:

$ svnadmin create --fs-type fsfs /path/to/repos
$ svnadmin create --fs-type bdb /path/to/other/repos

Warning

Do not create a Berkeley DB repository on a network share—it cannot exist on a
remote filesystem such as NFS, AFS, or Windows SMB. Berkeley DB requires that
the underlying filesystem implement strict POSIX locking semantics, and more im-
portantly, the ability to map files directly into process memory. Almost no network
filesystems provide these features. If you attempt to use Berkeley DB on a network
share, the results are unpredictable—you may see mysterious errors right away,
or it may be months before you discover that your repository database is subtly
corrupted.

If you need multiple computers to access the repository, you create an FSFS re-
pository on the network share, not a Berkeley DB repository. Or better yet, set up
a real server process (such as Apache or svnserve), store the repository on a loc-
al filesystem which the server can access, and make the repository available over

Repository Administration

107

a network. Chapter 6, Server Configuration covers this process in detail.

You may have noticed that the path argument to svnadmin was just a regular filesystem path
and not a URL like the svn client program uses when referring to repositories. Both svnadmin
and svnlook are considered server-side utilities—they are used on the machine where the re-
pository resides to examine or modify aspects of the repository, and are in fact unable to per-
form tasks across a network. A common mistake made by Subversion newcomers is trying to
pass URLs (even “local” file: ones) to these two programs.

So, after you've run the svnadmin create command, you have a shiny new Subversion repos-
itory in its own directory. Let's take a peek at what is actually created inside that subdirectory.

$ ls repos
conf/ dav/ db/ format hooks/ locks/ README.txt

With the exception of the README.txt and format files, the repository directory is a collec-
tion of subdirectories. As in other areas of the Subversion design, modularity is given high re-
gard, and hierarchical organization is preferred to cluttered chaos. Here is a brief description of
all of the items you see in your new repository directory:

conf
A directory containing repository configuration files.

dav
A directory provided to Apache and mod_dav_svn for their private housekeeping data.

db
Where all of your versioned data resides. This directory is either a Berkeley DB environ-
ment (full of DB tables and other things), or is an FSFS environment containing revision
files.

format
A file whose contents are a single integer value that dictates the version number of the re-
pository layout.

hooks
A directory full of hook script templates (and hook scripts themselves, once you've in-
stalled some).

locks
A directory for Subversion's repository locking data, used for tracking accessors to the re-
pository.

README.txt
A file which merely informs its readers that they are looking at a Subversion repository.

In general, you shouldn't tamper with your repository “by hand”. The svnadmin tool should be
sufficient for any changes necessary to your repository, or you can look to third-party tools
(such as Berkeley DB's tool suite) for tweaking relevant subsections of the repository. Some
exceptions exist, though, and we'll cover those here.

Hook Scripts

Repository Administration

108

A hook is a program triggered by some repository event, such as the creation of a new revision
or the modification of an unversioned property. Each hook is handed enough information to tell
what that event is, what target(s) it's operating on, and the username of the person who
triggered the event. Depending on the hook's output or return status, the hook program may
continue the action, stop it, or suspend it in some way.

The hooks subdirectory is, by default, filled with templates for various repository hooks.

$ ls repos/hooks/
post-commit.tmpl post-unlock.tmpl pre-revprop-change.tmpl
post-lock.tmpl pre-commit.tmpl pre-unlock.tmpl
post-revprop-change.tmpl pre-lock.tmpl start-commit.tmpl

There is one template for each hook that the Subversion repository implements, and by ex-
amining the contents of those template scripts, you can see what triggers each such script to
run and what data is passed to that script. Also present in many of these templates are ex-
amples of how one might use that script, in conjunction with other Subversion-supplied pro-
grams, to perform common useful tasks. To actually install a working hook, you need only
place some executable program or script into the repos/hooks directory which can be ex-
ecuted as the name (like start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a
Python program, a compiled C binary, or any number of other things) named exactly like the
name of the hook. Of course, the template files are present for more than just informational
purposes—the easiest way to install a hook on Unix platforms is to simply copy the appropriate
template file to a new file that lacks the .tmpl extension, customize the hook's contents, and
ensure that the script is executable. Windows, however, uses file extensions to determine
whether or not a program is executable, so you would need to supply a program whose base-
name is the name of the hook, and whose extension is one of the special extensions recog-
nized by Windows for executable programs, such as .exe or .com for programs, and .bat for
batch files.

Tip

For security reasons, the Subversion repository executes hook scripts with an
empty environment—that is, no environment variables are set at all, not even
$PATH or %PATH%. Because of this, a lot of administrators are baffled when their
hook script runs fine by hand, but doesn't work when run by Subversion. Be sure
to explicitly set environment variables in your hook and/or use absolute paths to
programs.

There are nine hooks implemented by the Subversion repository:

start-commit
This is run before the commit transaction is even created. It is typically used to decide if
the user has commit privileges at all. The repository passes two arguments to this pro-
gram: the path to the repository, and username which is attempting the commit. If the pro-
gram returns a non-zero exit value, the commit is stopped before the transaction is even
created. If the hook program writes data to stderr, it will be marshalled back to the client.

pre-commit
This is run when the transaction is complete, but before it is committed. Typically, this hook
is used to protect against commits that are disallowed due to content or location (for ex-
ample, your site might require that all commits to a certain branch include a ticket number

Repository Administration

109

from the bug tracker, or that the incoming log message is non-empty). The repository
passes two arguments to this program: the path to the repository, and the name of the
transaction being committed. If the program returns a non-zero exit value, the commit is
aborted and the transaction is removed. If the hook program writes data to stderr, it will be
marshalled back to the client.

The Subversion distribution includes some access control scripts (located in the tools/
hook-scripts directory of the Subversion source tree) that can be called from pre-
commit to implement fine-grained write-access control. Another option is to use the
mod_authz_svn Apache httpd module, which provides both read and write access control
on individual directories (see the section called “Per-Directory Access Control”). In a future
version of Subversion, we plan to implement access control lists (ACLs) directly in the
filesystem.

post-commit
This is run after the transaction is committed, and a new revision is created. Most people
use this hook to send out descriptive emails about the commit or to make a backup of the
repository. The repository passes two arguments to this program: the path to the reposit-
ory, and the new revision number that was created. The exit code of the program is ig-
nored.

The Subversion distribution includes mailer.py and commit-email.pl scripts (located in
the tools/hook-scripts/ directory of the Subversion source tree) that can be used to
send email with (and/or append to a log file) a description of a given commit. This mail
contains a list of the paths that were changed, the log message attached to the commit,
the author and date of the commit, as well as a GNU diff-style display of the changes
made to the various versioned files as part of the commit.

Another useful tool provided by Subversion is the hot-backup.py script (located in the
tools/backup/ directory of the Subversion source tree). This script performs hot
backups of your Subversion repository (a feature supported by the Berkeley DB database
back-end), and can be used to make a per-commit snapshot of your repository for archival
or emergency recovery purposes.

pre-revprop-change
Because Subversion's revision properties are not versioned, making modifications to such
a property (for example, the svn:log commit message property) will overwrite the previ-
ous value of that property forever. Since data can be potentially lost here, Subversion sup-
plies this hook (and its counterpart, post-revprop-change) so that repository adminis-
trators can keep records of changes to these items using some external means if they so
desire. As a precaution against losing unversioned property data, Subversion clients will
not be allowed to remotely modify revision properties at all unless this hook is implemented
for your repository.

This hook runs just before such a modification is made to the repository. The repository
passes four arguments to this hook: the path to the repository, the revision on which the to-
be-modified property exists, the authenticated username of the person making the change,
and the name of the property itself.

post-revprop-change
As mentioned earlier, this hook is the counterpart of the pre-revprop-change hook. In
fact, for the sake of paranoia this script will not run unless the pre-revprop-change
hook exists. When both of these hooks are present, the post-revprop-change hook
runs just after a revision property has been changed, and is typically used to send an email
containing the new value of the changed property. The repository passes four arguments
to this hook: the path to the repository, the revision on which the property exists, the au-
thenticated username of the person making the change, and the name of the property it-
self.

Repository Administration

110

The Subversion distribution includes a propchange-email.pl script (located in the tools/
hook-scripts/ directory of the Subversion source tree) that can be used to send email
with (and/or append to a log file) the details of a revision property change. This mail con-
tains the revision and name of the changed property, the user who made the change, and
the new property value.

pre-lock
This hook runs whenever someone attempts to lock a file. It can be used to prevent locks
altogether, or to create a more complex policy specifying exactly which users are allowed
to lock particular paths. If the hook notices a pre-existing lock, then it can also decide
whether a user is allowed to “steal” the existing lock. The repository passes three argu-
ments to the hook: the path to the repository, the path being locked, and the user attempt-
ing to perform the lock. If the program returns a non-zero exit value, the lock action is abor-
ted and anything printed to stderr is marshalled back to the client.

post-lock
This hook runs after a path is locked. The locked path is passed to the hook's stdin, and
the hook also receives two arguments: the path to the repository, and the user who per-
formed the lock. The hook is then free to send email notification or record the event in any
way it chooses. Because the lock already happened, the output of the hook is ignored.

pre-unlock
This hook runs whenever someone attempts to remove a lock on a file. It can be used to
create policies that specify which users are allowed to unlock particular paths. It's particu-
larly important for determining policies about lock breakage. If user A locks a file, is user B
allowed to break the lock? What if the lock is more than a week old? These sorts of things
can be decided and enforced by the hook. The repository passes three arguments to the
hook: the path to the repository, the path being unlocked, and the user attempting to re-
move the lock. If the program returns a non-zero exit value, the unlock action is aborted
and anything printed to stderr is marshalled back to the client.

post-unlock
This hook runs after a path is unlocked. The unlocked path is passed to the hook's stdin,
and the hook also receives two arguments: the path to the repository, and the user who re-
moved the lock. The hook is then free to send email notification or record the event in any
way it chooses. Because the lock removal already happened, the output of the hook is ig-
nored.

Warning

Do not attempt to modify the transaction using hook scripts. A common example of
this would be to automatically set properties such as svn:eol-style or
svn:mime-type during the commit. While this might seem like a good idea, it
causes problems. The main problem is that the client does not know about the
change made by the hook script, and there is no way to inform the client that it is
out-of-date. This inconsistency can lead to surprising and unexpected behavior.

Instead of attempting to modify the transaction, it is much better to check the
transaction in the pre-commit hook and reject the commit if it does not meet the
desired requirements.

Subversion will attempt to execute hooks as the same user who owns the process which is ac-
cessing the Subversion repository. In most cases, the repository is being accessed via Apache
HTTP server and mod_dav_svn, so this user is the same user that Apache runs as. The hooks
themselves will need to be configured with OS-level permissions that allow that user to ex-

Repository Administration

111

ecute them. Also, this means that any file or programs (including the Subversion repository it-
self) accessed directly or indirectly by the hook will be accessed as the same user. In other
words, be alert to potential permission-related problems that could prevent the hook from per-
forming the tasks you've written it to perform.

Berkeley DB Configuration
A Berkeley DB environment is an encapsulation of one or more databases, log files, region
files and configuration files. The Berkeley DB environment has its own set of default configura-
tion values for things like the number of database locks allowed to be taken out at any given
time, or the maximum size of the journaling log files, etc. Subversion's filesystem code addi-
tionally chooses default values for some of the Berkeley DB configuration options. However,
sometimes your particular repository, with its unique collection of data and access patterns,
might require a different set of configuration option values.

The folks at Sleepycat (the producers of Berkeley DB) understand that different databases
have different requirements, and so they have provided a mechanism for overriding at runtime
many of the configuration values for the Berkeley DB environment. Berkeley checks for the
presence of a file named DB_CONFIG in each environment directory, and parses the options
found in that file for use with that particular Berkeley environment.

The Berkeley configuration file for your repository is located in the db environment directory, at
repos/db/DB_CONFIG. Subversion itself creates this file when it creates the rest of the re-
pository. The file initially contains some default options, as well as pointers to the Berkeley DB
online documentation so you can read about what those options do. Of course, you are free to
add any of the supported Berkeley DB options to your DB_CONFIG file. Just be aware that
while Subversion never attempts to read or interpret the contents of the file, and makes no use
of the option settings in it, you'll want to avoid any configuration changes that may cause
Berkeley DB to behave in a fashion that is unexpected by the rest of the Subversion code.
Also, changes made to DB_CONFIG won't take effect until you recover the database environ-
ment (using svnadmin recover).

Repository Maintenance
Maintaining a Subversion repository can be a daunting task, mostly due to the complexities in-
herent in systems which have a database backend. Doing the task well is all about knowing
the tools—what they are, when to use them, and how to use them. This section will introduce
you to the repository administration tools provided by Subversion, and how to wield them to ac-
complish tasks such as repository migrations, upgrades, backups and cleanups.

An Administrator's Toolkit
Subversion provides a handful of utilities useful for creating, inspecting, modifying and repair-
ing your repository. Let's look more closely at each of those tools. Afterward, we'll briefly exam-
ine some of the utilities included in the Berkeley DB distribution that provide functionality spe-
cific to your repository's database backend not otherwise provided by Subversion's own tools.

svnlook

svnlook is a tool provided by Subversion for examining the various revisions and transactions
in a repository. No part of this program attempts to change the repository—it's a “read-only”
tool. svnlook is typically used by the repository hooks for reporting the changes that are about
to be committed (in the case of the pre-commit hook) or that were just committed (in the case
of the post-commit hook) to the repository. A repository administrator may use this tool for

Repository Administration

112

diagnostic purposes.

svnlook has a straightforward syntax:

$ svnlook help
general usage: svnlook SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]
Note: any subcommand which takes the '--revision' and '--transaction'

options will, if invoked without one of those options, act on
the repository's youngest revision.

Type "svnlook help <subcommand>" for help on a specific subcommand.
…

Nearly every one of svnlook's subcommands can operate on either a revision or a transaction
tree, printing information about the tree itself, or how it differs from the previous revision of the
repository. You use the --revision and --transaction options to specify which revision
or transaction, respectively, to examine. Note that while revision numbers appear as natural
numbers, transaction names are alphanumeric strings. Keep in mind that the filesystem only
allows browsing of uncommitted transactions (transactions that have not resulted in a new revi-
sion). Most repositories will have no such transactions, because transactions are usually either
committed (which disqualifies them from viewing) or aborted and removed.

In the absence of both the --revision and --transaction options, svnlook will examine
the youngest (or “HEAD”) revision in the repository. So the following two commands do exactly
the same thing when 19 is the youngest revision in the repository located at /
path/to/repos:

$ svnlook info /path/to/repos
$ svnlook info /path/to/repos --revision 19

The only exception to these rules about subcommands is the svnlook youngest subcom-
mand, which takes no options, and simply prints out the HEAD revision number.

$ svnlook youngest /path/to/repos
19

Output from svnlook is designed to be both human- and machine-parsable. Take as an ex-
ample the output of the info subcommand:

$ svnlook info /path/to/repos
sally
2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27
Added the usual
Greek tree.

The output of the info subcommand is defined as:

1. The author, followed by a newline.

2. The date, followed by a newline.

3. The number of characters in the log message, followed by a newline.

Repository Administration

113

4. The log message itself, followed by a newline.

This output is human-readable, meaning items like the datestamp are displayed using a textual
representation instead of something more obscure (such as the number of nanoseconds since
the Tasty Freeze guy drove by). But this output is also machine-parsable—because the log
message can contain multiple lines and be unbounded in length, svnlook provides the length
of that message before the message itself. This allows scripts and other wrappers around this
command to make intelligent decisions about the log message, such as how much memory to
allocate for the message, or at least how many bytes to skip in the event that this output is not
the last bit of data in the stream.

Another common use of svnlook is to actually view the contents of a revision or transaction
tree. The svnlook tree command displays the directories and files in the requested tree. If you
supply the --show-ids option, it will also show the filesystem node revision IDs for each of
those paths (which is generally of more use to developers than to users).

$ svnlook tree /path/to/repos --show-ids
/ <0.0.1>
A/ <2.0.1>
B/ <4.0.1>
lambda <5.0.1>
E/ <6.0.1>
alpha <7.0.1>
beta <8.0.1>
F/ <9.0.1>
mu <3.0.1>
C/ <a.0.1>
D/ <b.0.1>
gamma <c.0.1>
G/ <d.0.1>
pi <e.0.1>
rho <f.0.1>
tau <g.0.1>
H/ <h.0.1>
chi <i.0.1>
omega <k.0.1>
psi <j.0.1>

iota <1.0.1>

Once you've seen the layout of directories and files in your tree, you can use commands like
svnlook cat, svnlook propget, and svnlook proplist to dig into the details of those files and
directories.

svnlook can perform a variety of other queries, displaying subsets of bits of information we've
mentioned previously, reporting which paths were modified in a given revision or transaction,
showing textual and property differences made to files and directories, and so on. The follow-
ing is a brief description of the current list of subcommands accepted by svnlook, and the out-
put of those subcommands:

author
Print the tree's author.

cat
Print the contents of a file in the tree.

changed

Repository Administration

114

List all files and directories that changed in the tree.

date
Print the tree's datestamp.

diff
Print unified diffs of changed files.

dirs-changed
List the directories in the tree that were themselves changed, or whose file children were
changed.

history
Display interesting points in the history of a versioned path (places where modifications or
copies occurred).

info
Print the tree's author, datestamp, log message character count, and log message.

lock
If a path is locked, describe the lock attributes.

log
Print the tree's log message.

propget
Print the value of a property on a path in the tree.

proplist
Print the names and values of properties set on paths in the tree.

tree
Print the tree listing, optionally revealing the filesystem node revision IDs associated with
each path.

uuid
Print the repository's UUID— Universal Unique IDentifier.

youngest
Print the youngest revision number.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the abil-
ity to create Subversion repositories, this program allows you to perform several maintenance
operations on those repositories. The syntax of svnadmin is similar to that of svnlook:

$ svnadmin help
general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]
Type "svnadmin help <subcommand>" for help on a specific subcommand.

Available subcommands:
create
deltify
dump
help (?, h)

…

Repository Administration

115

We've already mentioned svnadmin's create subcommand (see the section called
“Repository Creation and Configuration”). Most of the others we will cover in more detail later
in this chapter. For now, let's just take a quick glance at what each of the available subcom-
mands offers.

create
Create a new Subversion repository.

deltify
Run over a specified revision range, performing predecessor deltification on the paths
changed in those revisions. If no revisions are specified, this command will simply deltify
the HEAD revision.

dump
Dump the contents of the repository, bounded by a given set of revisions, using a portable
dump format.

hotcopy
Make a hot copy of a repository. You can run this command at any time and make a safe
copy of the repository, regardless if other processes are using the repository.

list-dblogs
(Berkeley DB repositories only.) List the paths of Berkeley DB log files associated with the
repository. This list includes all log files—those still in use by Subversion, as well as those
no longer in use.

list-unused-dblogs
(Berkeley DB repositories only.) List the paths of Berkeley DB log files associated with, but
no longer used by, the repository. You may safely remove these log files from the reposit-
ory layout, possibly archiving them for use in the event that you ever need to perform a
catastrophic recovery of the repository.

load
Load a set of revisions into a repository from a stream of data that uses the same portable
dump format generated by the dump subcommand.

lslocks
List and describe any locks that exist in the repository.

lstxns
List the names of uncommitted Subversion transactions that currently exist in the reposit-
ory.

recover
Perform recovery steps on a repository that is in need of such, generally after a fatal error
has occurred that prevented a process from cleanly shutting down its communication with
the repository.

rmlocks
Unconditionally remove locks from listed paths.

rmtxns
Cleanly remove Subversion transactions from the repository (conveniently fed by output
from the lstxns subcommand).

setlog
Replace the current value of the svn:log (commit log message) property on a given revi-

Repository Administration

116

3That, by the way, is a feature, not a bug.

sion in the repository with a new value.

verify
Verify the contents of the repository. This includes, among other things, checksum com-
parisons of the versioned data stored in the repository.

svndumpfilter

Since Subversion stores everything in an opaque database system, attempting manual tweaks
is unwise, if not quite difficult. And once data has been stored in your repository, Subversion
generally doesn't provide an easy way to remove that data. 3 But inevitably, there will be times
when you would like to manipulate the history of your repository. You might need to strip out all
instances of a file that was accidentally added to the repository (and shouldn't be there for
whatever reason). Or, perhaps you have multiple projects sharing a single repository, and you
decide to split them up into their own repositories. To accomplish tasks like this, administrators
need a more manageable and malleable representation of the data in their repositories—the
Subversion repository dump format.

The Subversion repository dump format is a human-readable representation of the changes
that you've made to your versioned data over time. You use the svnadmin dump command to
generate the dump data, and svnadmin load to populate a new repository with it (see the sec-
tion called “Migrating a Repository”). The great thing about the human-readability aspect of the
dump format is that, if you aren't careless about it, you can manually inspect and modify it. Of
course, the downside is that if you have two years' worth of repository activity encapsulated in
what is likely to be a very large dump file, it could take you a long, long time to manually in-
spect and modify it.

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter
provides a very particular brand of useful functionality—the ability to quickly and easily modify
that dump data by acting as a path-based filter. Simply give it either a list of paths you wish to
keep, or a list of paths you wish to not keep, then pipe your repository dump data through this
filter. The result will be a modified stream of dump data that contains only the versioned paths
you (explicitly or implicitly) requested.

The syntax of svndumpfilter is as follows:

$ svndumpfilter help
general usage: svndumpfilter SUBCOMMAND [ARGS & OPTIONS ...]
Type "svndumpfilter help <subcommand>" for help on a specific subcommand.

Available subcommands:
exclude
include
help (?, h)

There are only two interesting subcommands. They allow you to make the choice between ex-
plicit or implicit inclusion of paths in the stream:

exclude
Filter out a set of paths from the dump data stream.

include
Allow only the requested set of paths to pass through the dump data stream.

Repository Administration

117

Let's look a realistic example of how you might use this program. We discuss elsewhere (see
the section called “Choosing a Repository Layout”) the process of deciding how to choose a
layout for the data in your repositories—using one repository per project or combining them,
arranging stuff within your repository, and so on. But sometimes after new revisions start flying
in, you rethink your layout and would like to make some changes. A common change is the de-
cision to move multiple projects which are sharing a single repository into separate repositories
for each project.

Our imaginary repository contains three projects: calc, calendar, and spreadsheet. They
have been living side-by-side in a layout like this:

/
calc/

trunk/
branches/
tags/

calendar/
trunk/
branches/
tags/

spreadsheet/
trunk/
branches/
tags/

To get these three projects into their own repositories, we first dump the whole repository:

$ svnadmin dump /path/to/repos > repos-dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
* Dumped revision 3.
…
$

Next, run that dump file through the filter, each time including only one of our top-level director-
ies, and resulting in three new dump files:

$ cat repos-dumpfile | svndumpfilter include calc > calc-dumpfile
…
$ cat repos-dumpfile | svndumpfilter include calendar > cal-dumpfile
…
$ cat repos-dumpfile | svndumpfilter include spreadsheet > ss-dumpfile
…
$

At this point, you have to make a decision. Each of your dump files will create a valid reposit-
ory, but will preserve the paths exactly as they were in the original repository. This means that
even though you would have a repository solely for your calc project, that repository would
still have a top-level directory named calc. If you want your trunk, tags, and branches dir-
ectories to live in the root of your repository, you might wish to edit your dump files, tweaking
the Node-path and Node-copyfrom-path headers to no longer have that first calc/ path
component. Also, you'll want to remove the section of dump data that creates the calc direct-
ory. It will look something like:

Repository Administration

118

Node-path: calc
Node-action: add
Node-kind: dir
Content-length: 0

Warning

If you do plan on manually editing the dump file to remove a top-level directory,
make sure that your editor is not set to automatically convert end-lines to the nat-
ive format (e.g. \r\n to \n) as the content will then not agree with the metadata and
this will render the dump file useless.

All that remains now is to create your three new repositories, and load each dump file into the
right repository:

$ svnadmin create calc; svnadmin load calc < calc-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.
* adding path : button.c ... done.

…
$ svnadmin create calendar; svnadmin load calendar < cal-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.
* adding path : cal.c ... done.

…
$ svnadmin create spreadsheet; svnadmin load spreadsheet < ss-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.
* adding path : ss.c ... done.

…
$

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty”
revisions. If a given revision contained only changes to paths that were filtered out, that now-
empty revision could be considered uninteresting or even unwanted. So to give the user con-
trol over what to do with those revisions, svndumpfilter provides the following command-line
options:

--drop-empty-revs
Do not generate empty revisions at all—just omit them.

--renumber-revs
If empty revisions are dropped (using the --drop-empty-revs option), change the revi-
sion numbers of the remaining revisions so that there are no gaps in the numeric se-
quence.

--preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author,
date, custom properties, etc.) for those empty revisions. Otherwise, empty revisions will
only contain the original datestamp, and a generated log message that indicates that this
revision was emptied by svndumpfilter.

Repository Administration

119

4While svnadmin dump has a consistent leading slash policy—to not include them—other programs which generate
dump data might not be so consistent.

While svndumpfilter can be very useful, and a huge timesaver, there are unfortunately a
couple of gotchas. First, this utility is overly sensitive to path semantics. Pay attention to
whether paths in your dump file are specified with or without leading slashes. You'll want to
look at the Node-path and Node-copyfrom-path headers.

…
Node-path: spreadsheet/Makefile
…

If the paths have leading slashes, you should include leading slashes in the paths you pass to
svndumpfilter include and svndumpfilter exclude (and if they don't, you shouldn't). Further,
if your dump file has an inconsistent usage of leading slashes for some reason, 4 you should
probably normalize those paths so they all have, or lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the re-
pository, where a new path is created by copying some already existing path. It is possible that
at some point in the lifetime of your repository, you might have copied a file or directory from
some location that svndumpfilter is excluding, to a location that it is including. In order to
make the dump data self-sufficient, svndumpfilter needs to still show the addition of the new
path—including the contents of any files created by the copy—and not represent that addition
as a copy from a source that won't exist in your filtered dump data stream. But because the
Subversion repository dump format only shows what was changed in each revision, the con-
tents of the copy source might not be readily available. If you suspect that you have any copies
of this sort in your repository, you might want to rethink your set of included/excluded paths.

Berkeley DB Utilities

If you're using a Berkeley DB repository, then all of your versioned filesystem's structure and
data live in a set of database tables within the db subdirectory of your repository. This subdir-
ectory is a regular Berkeley DB environment directory, and can therefore be used in conjunc-
tion with any of the Berkeley database tools (you can see the documentation for these tools at
Sleepycat's website, http://www.sleepycat.com/).

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically
needed for Subversion repositories has been duplicated in the svnadmin tool. For example,
svnadmin list-unused-dblogs and svnadmin list-dblogs perform a subset of what is
provided by the Berkeley db_archive command, and svnadmin recover reflects the common
use cases of the db_recover utility.

There are still a few Berkeley DB utilities that you might find useful. The db_dump and
db_load programs write and read, respectively, a custom file format which describes the keys
and values in a Berkeley DB database. Since Berkeley databases are not portable across ma-
chine architectures, this format is a useful way to transfer those databases from machine to
machine, irrespective of architecture or operating system. Also, the db_stat utility can provide
useful information about the status of your Berkeley DB environment, including detailed statist-
ics about the locking and storage subsystems.

Repository Cleanup
Your Subversion repository will generally require very little attention once it is configured to
your liking. However, there are times when some manual assistance from an administrator
might be in order. The svnadmin utility provides some helpful functionality to assist you in per-

Repository Administration

120

http://www.sleepycat.com/

forming such tasks as:

• modifying commit log messages,

• removing dead transactions,

• recovering “wedged” repositories, and

• migrating repository contents to a different repository.

Perhaps the most commonly used of svnadmin's subcommands is setlog. When a transac-
tion is committed to the repository and promoted to a revision, the descriptive log message as-
sociated with that new revision (and provided by the user) is stored as an unversioned property
attached to the revision itself. In other words, the repository remembers only the latest value of
the property, and discards previous ones.

Sometimes a user will have an error in her log message (a misspelling or some misinforma-
tion, perhaps). If the repository is configured (using the pre-revprop-change and post-
revprop-change hooks; see the section called “Hook Scripts”) to accept changes to this log
message after the commit is finished, then the user can “fix” her log message remotely using
the svn program's propset command (see Chapter 9, Subversion Complete Reference).
However, because of the potential to lose information forever, Subversion repositories are not,
by default, configured to allow changes to unversioned properties—except by an administrator.

If a log message needs to be changed by an administrator, this can be done using svnadmin
setlog. This command changes the log message (the svn:log property) on a given revision
of a repository, reading the new value from a provided file.

$ echo "Here is the new, correct log message" > newlog.txt
$ svnadmin setlog myrepos newlog.txt -r 388

The svnadmin setlog command alone is still bound by the same protections against modify-
ing unversioned properties as a remote client is—the pre- and post-revprop-change
hooks are still triggered, and therefore must be setup to accept changes of this nature. But an
administrator can get around these protections by passing the --bypass-hooks option to the
svnadmin setlog command.

Warning

Remember, though, that by bypassing the hooks, you are likely avoiding such
things as email notifications of property changes, backup systems which track un-
versioned property changes, and so on. In other words, be very careful about what
you are changing, and how you change it.

Another common use of svnadmin is to query the repository for outstanding—possibly
dead—Subversion transactions. In the event that a commit should fail, the transaction is usu-
ally cleaned up. That is, the transaction itself is removed from the repository, and any data as-
sociated with (and only with) that transaction is removed as well. Occasionally, though, a fail-
ure occurs in such a way that the cleanup of the transaction never happens. This could happen
for several reasons: perhaps the client operation was inelegantly terminated by the user, or a
network failure might have occurred in the middle of an operation, etc. Regardless of the reas-
on, dead transactions can happen. They don't do any real harm, other than consuming a small
bit of disk space. A fastidious administrator may nonetheless want to remove them.

Repository Administration

121

You can use svnadmin's lstxns command to list the names of the currently outstanding
transactions.

$ svnadmin lstxns myrepos
19
3a1
a45
$

Each item in the resultant output can then be used with svnlook (and its --transaction op-
tion) to determine who created the transaction, when it was created, what types of changes
were made in the transaction—in other words, whether or not the transaction is a safe candid-
ate for removal! If so, the transaction's name can be passed to svnadmin rmtxns, which will
perform the cleanup of the transaction. In fact, the rmtxns subcommand can take its input dir-
ectly from the output of lstxns!

$ svnadmin rmtxns myrepos `svnadmin lstxns myrepos`
$

If you use these two subcommands like this, you should consider making your repository tem-
porarily inaccessible to clients. That way, no one can begin a legitimate transaction before you
start your cleanup. The following is a little bit of shell-scripting that can quickly generate inform-
ation about each outstanding transaction in your repository:

Example 5.1. txn-info.sh (Reporting Outstanding Transactions)

#!/bin/sh

Generate informational output for all outstanding transactions in
a Subversion repository.

REPOS="${1}"
if ["x$REPOS" = x] ; then
echo "usage: $0 REPOS_PATH"
exit

fi

for TXN in `svnadmin lstxns ${REPOS}`; do
echo "---[Transaction ${TXN}]---"
svnlook info "${REPOS}" --transaction "${TXN}"

done

You can run the previous script using /path/to/txn-info.sh /path/to/repos. The output is basic-
ally a concatenation of several chunks of svnlook info output (see the section called
“svnlook”), and will look something like:

$ txn-info.sh myrepos
---[Transaction 19]---
sally
2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)
0

Repository Administration

122

---[Transaction 3a1]---
harry
2001-09-10 16:50:30 -0500 (Mon, 10 Sep 2001)
39
Trying to commit over a faulty network.
---[Transaction a45]---
sally
2001-09-12 11:09:28 -0500 (Wed, 12 Sep 2001)
0
$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A
transaction's datestamp can provide interesting information—for example, how likely is it that
an operation begun nine months ago is still active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of inform-
ation—including Apache's error and access logs, the logs of successful Subversion commits,
and so on—can be employed in the decision-making process. Finally, an administrator can of-
ten simply communicate with a seemingly dead transaction's owner (via email, for example) to
verify that the transaction is, in fact, in a zombie state.

Managing Disk Space
While the cost of storage has dropped incredibly in the past few years, disk usage is still a val-
id concern for administrators seeking to version large amounts of data. Every additional byte
consumed by the live repository is a byte that needs to be backed up offsite, perhaps multiple
times as part of rotating backup schedules. If using a Berkeley DB repository, the primary stor-
age mechanism is a complex database system, it is useful to know what pieces of data need to
remain on the live site, which need to be backed up, and which can be safely removed. This
section is specific to Berkeley DB; FSFS repositories have no extra data to be cleaned up or
reclaimed.

Until recently, the largest offender of disk space usage with respect to Subversion repositories
was the log files to which Berkeley DB performs its pre-writes before modifying the actual data-
base files. These files capture all the actions taken along the route of changing the database
from one state to another—while the database files reflect at any given time some state, the
log files contain all the many changes along the way between states. As such, they can start to
accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the
ability to remove its own unused log files without any external procedures. Any repositories
created using an svnadmin which is compiled against Berkeley DB version 4.2 or greater will
be configured for this automatic log file removal. If you don't want this feature enabled, simply
pass the --bdb-log-keep option to the svnadmin create command. If you forget to do this,
or change your mind at a later time, simple edit the DB_CONFIG file found in your repository's
db directory, comment out the line which contains the set_flags DB_LOG_AUTOREMOVE dir-
ective, and then run svnadmin recover on your repository to force the configuration changes
to take effect. See the section called “Berkeley DB Configuration” for more information about
database configuration.

Without some sort of automatic log file removal in place, log files will accumulate as you use
your repository. This is actually somewhat of a feature of the database system—you should be
able to recreate your entire database using nothing but the log files, so these files can be use-
ful for catastrophic database recovery. But typically, you'll want to archive the log files that are
no longer in use by Berkeley DB, and then remove them from disk to conserve space. Use the
svnadmin list-unused-dblogs command to list the unused log files:

Repository Administration

123

$ svnadmin list-unused-dblogs /path/to/repos
/path/to/repos/log.0000000031
/path/to/repos/log.0000000032
/path/to/repos/log.0000000033

$ svnadmin list-unused-dblogs /path/to/repos | xargs rm
disk space reclaimed!

To keep the size of the repository as small as possible, Subversion uses deltification (or,
“deltified storage”) within the repository itself. Deltification involves encoding the representation
of a chunk of data as a collection of differences against some other chunk of data. If the two
pieces of data are very similar, this deltification results in storage savings for the deltified
chunk—rather than taking up space equal to the size of the original data, it only takes up
enough space to say, “I look just like this other piece of data over here, except for the following
couple of changes”. Specifically, each time a new version of a file is committed to the reposit-
ory, Subversion encodes the previous version (actually, several previous versions) as a delta
against the new version. The result is that most of the repository data that tends to be siz-
able—namely, the contents of versioned files—is stored at a much smaller size than the origin-
al “fulltext” representation of that data.

Note

Because all of the Subversion repository data that is subject to deltification is
stored in a single Berkeley DB database file, reducing the size of the stored values
will not necessarily reduce the size of the database file itself. Berkeley DB will,
however, keep internal records of unused areas of the database file, and use
those areas first before growing the size of the database file. So while deltification
doesn't produce immediate space savings, it can drastically slow future growth of
the database.

Repository Recovery
As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be
left in frozen state if not closed properly. When this happens, an administrator needs to rewind
the database back into a consistent state.

In order to protect the data in your repository, Berkeley DB uses a locking mechanism. This
mechanism ensures that portions of the database are not simultaneously modified by multiple
database accessors, and that each process sees the data in the correct state when that data is
being read from the database. When a process needs to change something in the database, it
first checks for the existence of a lock on the target data. If the data is not locked, the process
locks the data, makes the change it wants to make, and then unlocks the data. Other pro-
cesses are forced to wait until that lock is removed before they are permitted to continue ac-
cessing that section of the database. (This has nothing to do with the locks that you, as a user,
can apply to versioned files within the repository; see Three meanings of “lock” for more in-
formation.)

In the course of using your Subversion repository, fatal errors (such as running out of disk
space or available memory) or interruptions can prevent a process from having the chance to
remove the locks it has placed in the database. The result is that the back-end database sys-
tem gets “wedged”. When this happens, any attempts to access the repository hang indefin-
itely (since each new accessor is waiting for a lock to go away—which isn't going to happen).

First, if this happens to your repository, don't panic. The Berkeley DB filesystem takes advant-

Repository Administration

124

5E.g.: hard drive + huge electromagnet = disaster.

age of database transactions and checkpoints and pre-write journaling to ensure that only the
most catastrophic of events 5 can permanently destroy a database environment. A sufficiently
paranoid repository administrator will be making off-site backups of the repository data in some
fashion, but don't call your system administrator to restore a backup tape just yet.

Secondly, use the following recipe to attempt to “unwedge” your repository:

1. Make sure that there are no processes accessing (or attempting to access) the repository.
For networked repositories, this means shutting down the Apache HTTP Server, too.

2. Become the user who owns and manages the repository. This is important, as recovering a
repository while running as the wrong user can tweak the permissions of the repository's
files in such a way that your repository will still be inaccessible even after it is “unwedged”.

3. Run the command svnadmin recover /path/to/repos. You should see output like this:

Repository lock acquired.
Please wait; recovering the repository may take some time...

Recovery completed.
The latest repos revision is 19.

This command may take many minutes to complete.

4. Restart the Subversion server.

This procedure fixes almost every case of repository lock-up. Make sure that you run this com-
mand as the user that owns and manages the database, not just as root. Part of the recovery
process might involve recreating from scratch various database files (shared memory regions,
for example). Recovering as root will create those files such that they are owned by root,
which means that even after you restore connectivity to your repository, regular users will be
unable to access it.

If the previous procedure, for some reason, does not successfully unwedge your repository,
you should do two things. First, move your broken repository out of the way and restore your
latest backup of it. Then, send an email to the Subversion user list (at
<users@subversion.tigris.org>) describing your problem in detail. Data integrity is an
extremely high priority to the Subversion developers.

Migrating a Repository
A Subversion filesystem has its data spread throughout various database tables in a fashion
generally understood by (and of interest to) only the Subversion developers themselves.
However, circumstances may arise that call for all, or some subset, of that data to be collected
into a single, portable, flat file format. Subversion provides such a mechanism, implemented in
a pair of svnadmin subcommands: dump and load.

The most common reason to dump and load a Subversion repository is due to changes in Sub-
version itself. As Subversion matures, there are times when certain changes made to the back-
end database schema cause Subversion to be incompatible with previous versions of the re-
pository. Other reasons for dumping and loading might be to migrate a Berkeley DB repository
to a new OS or CPU architecture, or to switch between Berkeley DB and FSFS back-ends.

Repository Administration

125

The recommended course of action is relatively simple:

1. Using your current version of svnadmin, dump your repositories to dump files.

2. Upgrade to the new version of Subversion.

3. Move your old repositories out of the way, and create new empty ones in their place using
your new svnadmin.

4. Again using your new svnadmin, load your dump files into their respective, just-created re-
positories.

5. Be sure to copy any customizations from your old repositories to the new ones, including
DB_CONFIG files and hook scripts. You'll want to pay attention to the release notes for the
new release of Subversion to see if any changes since your last upgrade affect those hooks
or configuration options.

6. If the migration process made your repository accessible at a different URL (e.g. moved to a
different computer, or is being accessed via a different schema), then you'll probably want to
tell your users to run svn switch --relocate on their existing working copies. See svn
switch.

svnadmin dump will output a range of repository revisions that are formatted using Subver-
sion's custom filesystem dump format. The dump format is printed to the standard output
stream, while informative messages are printed to the standard error stream. This allows you
to redirect the output stream to a file while watching the status output in your terminal window.
For example:

$ svnlook youngest myrepos
26
$ svnadmin dump myrepos > dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
…
* Dumped revision 25.
* Dumped revision 26.

At the end of the process, you will have a single file (dumpfile in the previous example) that
contains all the data stored in your repository in the requested range of revisions. Note that
svnadmin dump is reading revision trees from the repository just like any other “reader” pro-
cess would (svn checkout, for example). So it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a
Subversion repository dump file, and effectively replays those dumped revisions into the target
repository for that operation. It also gives informative feedback, this time using the standard
output stream:

$ svnadmin load newrepos < dumpfile
<<< Started new txn, based on original revision 1

* adding path : A ... done.
* adding path : A/B ... done.
…

------- Committed new rev 1 (loaded from original rev 1) >>>

Repository Administration

126

<<< Started new txn, based on original revision 2
* editing path : A/mu ... done.
* editing path : A/D/G/rho ... done.

------- Committed new rev 2 (loaded from original rev 2) >>>

…

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

------- Committed new rev 25 (loaded from original rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/zeta ... done.
* editing path : A/mu ... done.

------- Committed new rev 26 (loaded from original rev 26) >>>

The result of a load is new revisions added to a repository—the same thing you get by making
commits against that repository from a regular Subversion client. And just as in a commit, you
can use hook scripts to perform actions before and after each of the commits made during a
load process. By passing the --use-pre-commit-hook and --use-post-commit-hook
options to svnadmin load, you can instruct Subversion to execute the pre-commit and post-
commit hook scripts, respectively, for each loaded revision. You might use these, for example,
to ensure that loaded revisions pass through the same validation steps that regular commits
pass through. Of course, you should use these options with care—if your post-commit hook
sends emails to a mailing list for each new commit, you might not want to spew hundreds or
thousands of commit emails in rapid succession at that list for each of the loaded revisions!
You can read more about the use of hook scripts in the section called “Hook Scripts”.

Note that because svnadmin uses standard input and output streams for the repository dump
and load process, people who are feeling especially saucy can try things like this (perhaps
even using different versions of svnadmin on each side of the pipe):

$ svnadmin create newrepos
$ svnadmin dump myrepos | svnadmin load newrepos

By default, the dump file will be quite large—much larger than the repository itself. That's be-
cause every version of every file is expressed as a full text in the dump file. This is the fastest
and simplest behavior, and nice if you're piping the dump data directly into some other process
(such as a compression program, filtering program, or into a loading process). But if you're cre-
ating a dump file for longer-term storage, you'll likely want to save disk space by using the -
-deltas switch. With this option, successive revisions of files will be output as compressed,
binary differences—just as file revisions are stored in a repository. This option is slower, but
results in a dump file much closer in size to the original repository.

We mentioned previously that svnadmin dump outputs a range of revisions. Use the -
-revision option to specify a single revision to dump, or a range of revisions. If you omit this
option, all the existing repository revisions will be dumped.

$ svnadmin dump myrepos --revision 23 > rev-23.dumpfile
$ svnadmin dump myrepos --revision 100:200 > revs-100-200.dumpfile

Repository Administration

127

As Subversion dumps each new revision, it outputs only enough information to allow a future
loader to re-create that revision based on the previous one. In other words, for any given revi-
sion in the dump file, only the items that were changed in that revision will appear in the dump.
The only exception to this rule is the first revision that is dumped with the current svnadmin
dump command.

By default, Subversion will not express the first dumped revision as merely differences to be
applied to the previous revision. For one thing, there is no previous revision in the dump file!
And secondly, Subversion cannot know the state of the repository into which the dump data
will be loaded (if it ever, in fact, occurs). To ensure that the output of each execution of svnad-
min dump is self-sufficient, the first dumped revision is by default a full representation of every
directory, file, and property in that revision of the repository.

However, you can change this default behavior. If you add the --incremental option when
you dump your repository, svnadmin will compare the first dumped revision against the previ-
ous revision in the repository, the same way it treats every other revision that gets dumped. It
will then output the first revision exactly as it does the rest of the revisions in the dump
range—mentioning only the changes that occurred in that revision. The benefit of this is that
you can create several small dump files that can be loaded in succession, instead of one large
one, like so:

$ svnadmin dump myrepos --revision 0:1000 > dumpfile1
$ svnadmin dump myrepos --revision 1001:2000 --incremental > dumpfile2
$ svnadmin dump myrepos --revision 2001:3000 --incremental > dumpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadmin load newrepos < dumpfile1
$ svnadmin load newrepos < dumpfile2
$ svnadmin load newrepos < dumpfile3

Another neat trick you can perform with this --incremental option involves appending to an
existing dump file a new range of dumped revisions. For example, you might have a post-
commit hook that simply appends the repository dump of the single revision that triggered the
hook. Or you might have a script that runs nightly to append dump file data for all the revisions
that were added to the repository since the last time the script ran. Used like this, svnadmin's
dump and load commands can be a valuable means by which to backup changes to your re-
pository over time in case of a system crash or some other catastrophic event.

The dump format can also be used to merge the contents of several different repositories into
a single repository. By using the --parent-dir option of svnadmin load, you can specify a
new virtual root directory for the load process. That means if you have dump files for three re-
positories, say calc-dumpfile, cal-dumpfile, and ss-dumpfile, you can first create a
new repository to hold them all:

$ svnadmin create /path/to/projects
$

Then, make new directories in the repository which will encapsulate the contents of each of the
three previous repositories:

$ svn mkdir -m "Initial project roots" \

Repository Administration

128

6The Subversion repository dump format resembles an RFC-822 format, the same type of format used for most email.

file:///path/to/projects/calc \
file:///path/to/projects/calendar \
file:///path/to/projects/spreadsheet

Committed revision 1.
$

Lastly, load the individual dump files into their respective locations in the new repository:

$ svnadmin load /path/to/projects --parent-dir calc < calc-dumpfile
…
$ svnadmin load /path/to/projects --parent-dir calendar < cal-dumpfile
…
$ svnadmin load /path/to/projects --parent-dir spreadsheet < ss-dumpfile
…
$

We'll mention one final way to use the Subversion repository dump format—conversion from a
different storage mechanism or version control system altogether. Because the dump file
format is, for the most part, human-readable, 6 it should be relatively easy to describe generic
sets of changes—each of which should be treated as a new revision—using this file format. In
fact, the cvs2svn utility (see the section called “Converting a Repository from CVS to Subver-
sion”) uses the dump format to represent the contents of a CVS repository so that those con-
tents can be copied into a Subversion repository.

Repository Backup
Despite numerous advances in technology since the birth of the modern computer, one thing
unfortunately rings true with crystalline clarity—sometimes, things go very, very awry. Power
outages, network connectivity dropouts, corrupt RAM and crashed hard drives are but a taste
of the evil that Fate is poised to unleash on even the most conscientious administrator. And so
we arrive at a very important topic—how to make backup copies of your repository data.

There are generally two types of backup methods available for Subversion repository adminis-
trators—incremental and full. We discussed in an earlier section of this chapter how to use
svnadmin dump --incremental to perform an incremental backup (see the section called
“Migrating a Repository”). Essentially, the idea is to only backup at a given time the changes to
the repository since the last time you made a backup.

A full backup of the repository is quite literally a duplication of the entire repository directory
(which includes either Berkeley database or FSFS environment). Now, unless you temporarily
disable all other access to your repository, simply doing a recursive directory copy runs the risk
of generating a faulty backup, since someone might be currently writing to the database.

In the case of Berkeley DB, Sleepycat documents describe a certain order in which database
files can be copied that will guarantee a valid backup copy. And a similar ordering exists for
FSFS data. Better still, you don't have to implement these algorithms yourself, because the
Subversion development team has already done so. The hot-backup.py script is found in the
tools/backup/ directory of the Subversion source distribution. Given a repository path and
a backup location, hot-backup.py—which is really just a more intelligent wrapper around the
svnadmin hotcopy command—will perform the necessary steps for backing up your live re-
pository—without requiring that you bar public repository access at all—and then will clean out
the dead Berkeley log files from your live repository.

Repository Administration

129

7svnadmin setlog can be called in a way that bypasses the hook interface altogether.
8You know—the collective term for all of her “fickle fingers”.

Even if you also have an incremental backup, you might want to run this program on a regular
basis. For example, you might consider adding hot-backup.py to a program scheduler (such
as cron on Unix systems). Or, if you prefer fine-grained backup solutions, you could have your
post-commit hook script call hot-backup.py (see the section called “Hook Scripts”), which will
then cause a new backup of your repository to occur with every new revision created. Simply
add the following to the hooks/post-commit script in your live repository directory:

(cd /path/to/hook/scripts; ./hot-backup.py ${REPOS} /path/to/backups &)

The resulting backup is a fully functional Subversion repository, able to be dropped in as a re-
placement for your live repository should something go horribly wrong.

There are benefits to both types of backup methods. The easiest is by far the full backup,
which will always result in a perfect working replica of your repository. This again means that
should something bad happen to your live repository, you can restore from the backup with a
simple recursive directory copy. Unfortunately, if you are maintaining multiple backups of your
repository, these full copies will each eat up just as much disk space as your live repository.

Incremental backups using the repository dump format are excellent to have on hand if the
database schema changes between successive versions of Subversion itself. Since a com-
plete repository dump and load are generally required to upgrade your repository to the new
schema, it's very convenient to already have half of that process (the dump part) finished. Un-
fortunately, the creation of—and restoration from—incremental backups takes longer, as each
commit is effectively replayed into either the dump file or the repository.

In either backup scenario, repository administrators need to be aware of how modifications to
unversioned revision properties affect their backups. Since these changes do not themselves
generate new revisions, they will not trigger post-commit hooks, and may not even trigger the
pre-revprop-change and post-revprop-change hooks. 7 And since you can change revision
properties without respect to chronological order—you can change any revision's properties at
any time—an incremental backup of the latest few revisions might not catch a property modific-
ation to a revision that was included as part of a previous backup.

Generally speaking, only the truly paranoid would need to backup their entire repository, say,
every time a commit occurred. However, assuming that a given repository has some other re-
dundancy mechanism in place with relatively fine granularity (like per-commit emails), a hot
backup of the database might be something that a repository administrator would want to in-
clude as part of a system-wide nightly backup. For most repositories, archived commit emails
alone provide sufficient redundancy as restoration sources, at least for the most recent few
commits. But it's your data—protect it as much as you'd like.

Often, the best approach to repository backups is a diversified one. You can leverage combin-
ations of full and incremental backups, plus archives of commit emails. The Subversion de-
velopers, for example, back up the Subversion source code repository after every new revision
is created, and keep an archive of all the commit and property change notification emails. Your
solution might be similar, but should be catered to your needs and that delicate balance of con-
venience with paranoia. And while all of this might not save your hardware from the iron fist of
Fate, 8 it should certainly help you recover from those trying times.

Repository Administration

130

9The trunk, tags, and branches trio are sometimes referred to as “the TTB directories”.

Adding Projects
Once your repository is created and configured, all that remains is to begin using it. If you have
a collection of existing data that is ready to be placed under version control, you will more than
likely want to use the svn client program's import subcommand to accomplish that. Before
doing this, though, you should carefully consider your long-term plans for the repository. In this
section, we will offer some advice on how to plan the layout of your repository, and how to get
your data arranged in that layout.

Choosing a Repository Layout
While Subversion allows you to move around versioned files and directories without any loss of
information, doing so can still disrupt the workflow of those who access the repository often
and come to expect things to be at certain locations. Try to peer into the future a bit; plan
ahead before placing your data under version control. By “laying out” the contents of your re-
positories in an effective manner the first time, you can prevent a load of future headaches.

There are a few things to consider when setting up Subversion repositories. Let's assume that
as repository administrator, you will be responsible for supporting the version control system
for several projects. The first decision is whether to use a single repository for multiple
projects, or to give each project its own repository, or some compromise of these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of
duplicated maintenance. A single repository means that there is one set of hook scripts, one
thing to routinely backup, one thing to dump and load if Subversion releases an incompatible
new version, and so on. Also, you can move data between projects easily, and without losing
any historical versioning information.

The downside of using a single repository is that different projects may have different commit
mailing lists or different authentication and authorization requirements. Also, remember that
Subversion uses repository-global revision numbers. Some folks don't like the fact that even
though no changes have been made to their project lately, the youngest revision number for
the repository keeps climbing because other projects are actively adding new revisions.

A middle-ground approach can be taken, too. For example, projects can be grouped by how
well they relate to each other. You might have a few repositories with a handful of projects in
each repository. That way, projects that are likely to want to share data can do so easily, and
as new revisions are added to the repository, at least the developers know that those new revi-
sions are at least remotely related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want
to think about directory hierarchies in the repositories themselves. Because Subversion uses
regular directory copies for branching and tagging (see Chapter 4, Branching and Merging),
the Subversion community recommends that you choose a repository location for each project
root—the “top-most” directory which contains data related to that project—and then create
three subdirectories beneath that root: trunk, meaning the directory under which the main
project development occurs; branches, which is a directory in which to create various named
branches of the main development line; tags, which is a directory of branches that are cre-
ated, and perhaps destroyed, but never changed. 9

For example, your repository might look like:

/
calc/

Repository Administration

131

trunk/
tags/
branches/

calendar/
trunk/
tags/
branches/

spreadsheet/
trunk/
tags/
branches/

…

Note that it doesn't matter where in your repository each project root is. If you have only one
project per repository, the logical place to put each project root is at the root of that project's re-
spective repository. If you have multiple projects, you might want to arrange them in groups in-
side the repository, perhaps putting projects with similar goals or shared code in the same sub-
directory, or maybe just grouping them alphabetically. Such an arrangement might look like:

/
utils/

calc/
trunk/
tags/
branches/

calendar/
trunk/
tags/
branches/

…
office/

spreadsheet/
trunk/
tags/
branches/

…

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a
layout schema—in its eyes, a directory is a directory is a directory. Ultimately, you should
choose the repository arrangement that meets the needs of the people who work on the
projects that live there.

Creating the Layout, and Importing Initial Data
After deciding how to arrange the projects in your repository, you'll probably want to actually
populate the repository with that layout and with initial project data. There are a couple of ways
to do this in Subversion. You could use the svn mkdir command (see Chapter 9, Subversion
Complete Reference) to create each directory in your skeletal repository layout, one-by-one. A
quicker way to accomplish the same task is to use the svn import command (see the section
called “svn import”). By first creating the layout in a temporary location on your drive, you can
import the whole layout tree into the repository in a single commit:

$ mkdir tmpdir
$ cd tmpdir
$ mkdir projectA
$ mkdir projectA/trunk
$ mkdir projectA/branches

Repository Administration

132

$ mkdir projectA/tags
$ mkdir projectB
$ mkdir projectB/trunk
$ mkdir projectB/branches
$ mkdir projectB/tags
…
$ svn import . file:///path/to/repos --message "Initial repository layout"
Adding projectA
Adding projectA/trunk
Adding projectA/branches
Adding projectA/tags
Adding projectB
Adding projectB/trunk
Adding projectB/branches
Adding projectB/tags
…
Committed revision 1.
$ cd ..
$ rm -rf tmpdir
$

You can verify the results of the import by running the svn list command:

$ svn list --verbose file:///path/to/repos
1 harry May 08 21:48 projectA/
1 harry May 08 21:48 projectB/

…
$

Once you have your skeletal layout in place, you can begin importing actual project data into
your repository, if any such data exists yet. Once again, there are several ways to do this. You
could use the svn import command. You could checkout a working copy from your new repos-
itory, move and arrange project data inside the working copy, and use the svn add and svn
commit commands. But once we start talking about such things, we're no longer discussing
repository administration. If you aren't already familiar with the svn client program, see
Chapter 2, Basic Usage.

Summary
By now you should have a basic understanding of how to create, configure, and maintain Sub-
version repositories. We've introduced you to the various tools that will assist you with this
task. Throughout the chapter, we've noted common administration pitfalls, and suggestions for
avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finally,
how to make it available over a network. The next chapter is all about networking.

Repository Administration

133

Chapter 6. Server Configuration
A Subversion repository can be accessed simultaneously by clients running on the same ma-
chine on which the repository resides using the file:/// method. But the typical Subversion
setup involves a single server machine being accessed from clients on computers all over the
office—or, perhaps, all over the world.

This section describes how to get your Subversion repository exposed outside its host ma-
chine for use by remote clients. We will cover Subversion's currently available server mechan-
isms, discussing the configuration and use of each. After reading this section, you should be
able to decide which networking setup is right for your needs, and understand how to enable
such a setup on your host computer.

Overview
Subversion was designed with an abstract network layer. This means that a repository can be
programmatically accessed by any sort of server process, and the client “repository access”
API allows programmers to write plugins that speak relevant network protocols. In theory, Sub-
version can use an infinite number of network implementations. In practice, there are only two
servers at the time of writing.

Apache is an extremely popular webserver; using the mod_dav_svn module, Apache can ac-
cess a repository and make it available to clients via the WebDAV/DeltaV protocol, which is an
extension of HTTP. In the other corner is svnserve: a small, standalone server program that
speaks a custom protocol with clients. Table 6.1, “Network Server Comparison” presents a
comparison of the two servers.

Table 6.1. Network Server Comparison

Feature Apache + mod_dav_svn svnserve

Authentication options HTTP(S) basic auth, X.509
certificates, LDAP, NTLM, or
any other mechanism avail-
able to Apache httpd

CRAM-MD5 or SSH

User account options private 'users' file private 'users' file, or existing
system (SSH) accounts

Authorization options read/write access can be
granted over whole repository,
or specified per-path.

read/write access can be
granted over whole repository,
or specified per-path.

Encryption via optional SSL via optional SSH tunnel

Logging full Apache logs of each HTTP
request, with optional
“high-level” logging of general
client operations

no logging

Interoperability partially usable by other Web-
DAV clients

only talks to svn clients

Web viewing limited built-in support, or via
3rd-party tools such as
ViewVC

only via 3rd-party tools such
as ViewVC

Speed somewhat slower somewhat faster

134

Feature Apache + mod_dav_svn svnserve

Initial setup somewhat complex fairly simple

The Apache HTTP Server

How it works:
Install and configure and standard Apache 2.0 server, then activate a special subversion-serv-
er module. Clients speak to server via HTTP or HTTPS, using the WebDAV protocol.

Why you might want to use it:

• Allows Subversion to use any of the numerous authentication systems already integ-
rated with Apache.

• No need to create system accounts on server.

• Full Apache logging.

• Network traffic can be encrypted via SSL.

• HTTP(S) can usually go through corporate firewalls.

• Built-in repository browsing via web browser.

• Repository can be mounted as a network drive for transparent version control. (See the
section called “Autoversioning”.)

Why you might want to avoid it:

• Noticeably slower than svnserve, because HTTP is a stateless protocol and requires
more turnarounds.

• Initial setup can be complex.

The svnserve Server

How it works:
A lightweight serve process which can run either as a persistent daemon, or as something
automatically launched by inetd when necessary. Clients authenticate via CRAM-MD5 al-
gorithm and speak a custom network protocol.

Why you might want to use it:

• Quick and easy to set up.

• Network protocol is stateful and noticeably faster than WebDAV.

• No need to create system accounts on server.

• Password is not passed over the network.

Why you might want to avoid it:

• Network protocol is not encrypted.

Server Configuration

135

• Only one choice of authentication method.

• Password is stored in the clear on the server.

• No logging of any kind, not even errors.

svnserve over SSH

How it works:
Each client uses an existing SSH (system) account to spawn a temporary svnserve pro-
cess (running as themselves) on the server machine. The svnserve process accesses the
repository, communicates with the client over the SSH tunnel, then dies when the SSH
connection is closed. (There is no long-running svnserve process.)

Why you might want to use it:

• Network protocol is stateful and noticeably faster than WebDAV.

• You can take advantage of existing ssh accounts and user infrastructure.

• All network traffic is encrypted.

Why you might want to avoid it:

• Only one choice of authentication method.

• No logging of any kind, not even errors.

• Requires users to be in same system group, or use a shared ssh key.

• Can lead to file permissions problems.

Choosing the Best Server Configuration
So, which server should you use? Which is best?

Obviously, there's no right answer to that question. Every team has different needs, and the
different servers all represent different sets of tradeoffs. The Subversion project itself doesn't
endorse one server or another, or consider either server more “official” than another.

In general, the authors of this book recommend a vanilla svnserve installation for small teams
just trying to get started with a Subversion server; it's the simplest to set up, and has the few-
est maintenance issues. Remember, you can always switch to a more complex server deploy-
ment as your needs change.

Here are some general recommendations, based on years of supporting users:

• If you're trying to set up the simplest possible server for your group, then a vanilla svnserve
installation is the easiest, fastest route. Note, however, that your repository data will be
transmitted in the clear over the network. If your deployment is entirely within your com-
pany's LAN or VPN, this isn't an issue. If the repository is exposed to the wide-open internet,
then you might want to make sure the repository's contents aren't sensitive (e.g. it contains
only open-source code.)

Server Configuration

136

• If you need to integrate with existing identity systems (LDAP, Active Directory, NTLM, X.509,
etc.), then an Apache-based server is your only real option. Similarly, if you absolutely need
server-side logs of either server errors or client activities, then an Apache-based server is re-
quired.

• If you've decided to use either Apache or stock svnserve, create a single svn user on your
system and run the server process as that user. Be sure to make the repository directory
wholly owned by the svn user as well. From a security point of view, this keeps the reposit-
ory data nicely siloed and protected by operating system filesystem permissions, change-
able by only the Subversion server process itself.

• If you have an existing infrastructure heavily based on SSH accounts, and if your users
already have system accounts on your server machine, then it makes sense to deploy an
svnserve-over-ssh solution. Otherwise, we don't widely recommend this option to the public.
It's generally considered safer to have your users access the repository via (imaginary) ac-
counts managed by svnserve or Apache, rather than by full-blown system accounts. If your
deep desire for encrypted communication still draws you to this option, we recommend using
Apache with SSL instead.

• Do not be seduced by the simple idea of having all of your users access a repository directly
via file:/// URLs. Even if the repository is readily available to everyone via network
share, this is a bad idea. It removes any layers of protection between the users and the re-
pository: users can accidentally (or intentionally) corrupt the repository database, it becomes
hard to take the repository offline for inspection or upgrade, and it can lead to a mess of file-
permissions problems (see the section called “Supporting Multiple Repository Access Meth-
ods”.) Note that this is also one of the reasons we warn against accessing repositories via
svn+ssh:// URLs — from a security standpoint, it's effectively the same as local users ac-
cessing via file:///, and can entail all the same problems if the administrator isn't care-
ful.)

Network Model
This section is a general discussion of how a Subversion client and server interact with one an-
other, regardless of the network implementation you're using. After reading, you'll have a good
understanding of how a server can behave and the different ways in which a client can be con-
figured to respond.

Requests and Responses
The Subversion client spends most of its time managing working copies. When it needs in-
formation from a repository, however, it makes a network request, and the server responds
with an appropriate answer. The details of the network protocol are hidden from the user; the
client attempts to access a URL, and depending on the URL schema, a particular protocol is
used to contact the server (see Repository URLs). Users can run svn --version to see which
URL schemas and protocols the client knows how to use.

When the server process receives a client request, it typically demands that the client identify
itself. It issues an authentication challenge to the client, and the client responds by providing
credentials back to the server. Once authentication is complete, the server responds with the
original information the client asked for. Notice that this system is different from systems like
CVS, where the client pre-emptively offers credentials (“logs in”) to the server before ever mak-
ing a request. In Subversion, the server “pulls” credentials by challenging the client at the ap-
propriate moment, rather than the client “pushing” them. This makes certain operations more
elegant. For example, if a server is configured to allow anyone in the world to read a reposit-

Server Configuration

137

1This problem is actually a FAQ, resulting from a misconfigured server setup.

ory, then the server will never issue an authentication challenge when a client attempts to svn
checkout.

If the client's network request writes new data to the repository (e.g. svn commit), then a new
revision tree is created. If the client's request was authenticated, then the authenticated user's
name is stored as the value of the svn:author property on the new revision (see the section
called “Unversioned Properties”). If the client was not authenticated (in other words, the server
never issued an authentication challenge), then the revision's svn:author property is empty.
1

Client Credentials Caching
Many servers are configured to require authentication on every request. This can become a
big annoyance to users, who are forced to type their passwords over and over again.

Happily, the Subversion client has a remedy for this: a built-in system for caching authentica-
tion credentials on disk. By default, whenever the command-line client successfully responds
to a server's authentication challenge, it saves the credentials in the user's private runtime con-
figuration area—in ~/.subversion/auth/ on Unix-like systems or
%APPDATA%/Subversion/auth/ on Windows. (The runtime area is covered in more detail in
the section called “Runtime Configuration Area”.) Successful credentials are cached on disk,
keyed on a combination of hostname, port, and authentication realm.

When the client receives an authentication challenge, it first looks for the appropriate creden-
tials in the user's disk cache; if not present, or if the cached credentials fail to authenticate,
then the client simply prompts the user for the information.

Security-conscious people may be thinking to themselves, “Caching passwords on disk? That's
terrible! You should never do that!” Please remain calm, it's not as dangerous as it sounds.

• On Windows 2000 and later, the Subversion client uses standard Windows cryptography
services to encrypt the password on disk. Because the encryption key is managed by Win-
dows and is tied to the user's own login credentials, only the user can decrypt the cached
password. (Note: if the user's Windows account password is reset by an administrator, all of
the cached passwords become undecipherable. The Subversion client will behave as if they
don't exist, prompting for passwords when required.)

• Similarly, on Mac OS X, the Subversion client stores all repository passwords in the Key-
chain service, protected by the user's account passsword.

• For other Unix-like operating systems, no standard such “keychain” services exist. However,
the auth/ caching area is still permission-protected so that only the user (owner) can read
data from it, not the world at large. The operating system's own file permissions are protect-
ing the password.

• For the truly paranoid willing to sacrifice convenience, it's always possible to disable creden-
tial caching altogether.

To disable caching for a single command, pass the --no-auth-cache option:

$ svn commit -F log_msg.txt --no-auth-cache
Authentication realm: <svn://host.example.com:3690> example realm
Username: joe
Password for 'joe':

Server Configuration

138

Adding newfile
Transmitting file data .
Committed revision 2324.

password was not cached, so a second commit still prompts us

$ svn delete newfile
$ svn commit -F new_msg.txt
Authentication realm: <svn://host.example.com:3690> example realm
Username: joe
…

Or, if you want to disable credential caching permanently, you can edit your runtime config
file (located next to the auth/ directory). Simply set store-auth-creds to no, and no cre-
dentials will be cached on disk, ever.

[auth]
store-auth-creds = no

Sometimes users will want to remove specific credentials from the disk cache. To do this, you
need to navigate into the auth/ area and manually delete the appropriate cache file. Creden-
tials are cached in individual files; if you look inside each file, you will see keys and values. The
svn:realmstring key describes the particular server realm that the file is associated with:

$ ls ~/.subversion/auth/svn.simple/
5671adf2865e267db74f09ba6f872c28
3893ed123b39500bca8a0b382839198e
5c3c22968347b390f349ff340196ed39

$ cat ~/.subversion/auth/svn.simple/5671adf2865e267db74f09ba6f872c28

K 8
username
V 3
joe
K 8
password
V 4
blah
K 15
svn:realmstring
V 45
<https://svn.domain.com:443> Joe's repository
END

Once you have located the proper cache file, just delete it.

One last word about client authentication behavior: a bit of explanation about the --username
and --password options is needed. Many client subcommands accept these options;
however it is important to understand using these options does not automatically send creden-
tials to the server. As discussed earlier, the server “pulls” credentials from the client when it
deems necessary; the client cannot “push” them at will. If a username and/or password are
passed as options, they will only be presented to the server if the server requests them. 2 Typ-
ically, these options are used when:

Server Configuration

139

2Again, a common mistake is to misconfigure a server so that it never issues an authentication challenge. When users
pass --username and --password options to the client, they're surprised to see that they're never used, i.e. new re-
visions still appear to have been committed anonymously!

• the user wants to authenticate as a different user than her system login name, or

• a script wants to authenticate without using cached credentials.

Here is a final summary that describes how a Subversion client behaves when it receives an
authentication challenge:

1. Check whether the user specified any credentials as command-line options, via -
-username and/or --password. If not, or if these options fail to authenticate successfully,
then

2. Look up the server's realm in the runtime auth/ area, to see if the user already has the ap-
propriate credentials cached. If not, or if the cached credentials fail to authenticate, then

3. Resort to prompting the user.

If the client successfully authenticates by any of the methods listed above, it will attempt to
cache the credentials on disk (unless the user has disabled this behavior, as mentioned earli-
er).

svnserve, a custom server
The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP us-
ing a custom, stateful protocol. Clients contact an svnserve server by using URLs that begin
with the svn:// or svn+ssh:// schema. This section will explain the different ways of run-
ning svnserve, how clients authenticate themselves to the server, and how to configure appro-
priate access control to your repositories.

Invoking the Server
There are a few different ways to run the svnserve program:

• Run svnserve as a standalone daemon, listening for requests.

• Have the Unix inetd daemon temporarily spawn svnserve whenever a request comes in on
a certain port.

• Have SSH invoke a temporary svnserve over an encrypted tunnel.

• Run svnserve as a Windows service.

svnserve as Daemon

The easiest option is to run svnserve as a standalone “daemon” process. Use the -d option
for this:

$ svnserve -d

Server Configuration

140

$ # svnserve is now running, listening on port 3690

When running svnserve in daemon mode, you can use the --listen-port= and -
-listen-host= options to customize the exact port and hostname to “bind” to.

Once the svnserve program is running, it makes every repository on your system available to
the network. A client needs to specify an absolute path in the repository URL. For example, if a
repository is located at /usr/local/repositories/project1, then a client would reach it
via svn://host.example.com/usr/local/repositories/project1. To increase se-
curity, you can pass the -r option to svnserve, which restricts it to exporting only repositories
below that path. For example:

$ svnserve -d -r /usr/local/repositories
…

Using the -r option effectively modifies the location that the program treats as the root of the
remote filesystem space. Clients then use URLs that have that path portion removed from
them, leaving much shorter (and much less revealing) URLs:

$ svn checkout svn://host.example.com/project1
…

svnserve via inetd

If you want inetd launch the process, then you can pass the -i (--inetd) option:

$ svnserve -i
(success (1 2 (ANONYMOUS) (edit-pipeline)))

When invoked with the --inetd option, svnserve attempts to speak with a Subversion client
via stdin and stdout using a custom protocol. This is the standard behavior for a program being
run via inetd. The IANA has reserved port 3690 for the Subversion protocol, so on a Unix-like
system you can add lines to /etc/services like these (if they don't already exist):

svn 3690/tcp # Subversion
svn 3690/udp # Subversion

And if your system is using a classic Unix-like inetd daemon, you can add this line to /
etc/inetd.conf:

svn stream tcp nowait svnowner /usr/bin/svnserve svnserve -i

Make sure “svnowner” is a user which has appropriate permissions to access your repositor-
ies. Now, when a client connection comes into your server on port 3690, inetd will spawn an
svnserve process to service it. Of course, you may also want to add -r to the configuration
line as well, to restrict which repositories are exported.

svnserve over a Tunnel

Server Configuration

141

A third way to invoke svnserve is in “tunnel mode”, with the -t option. This mode assumes
that a remote-service program such as RSH or SSH has successfully authenticated a user and
is now invoking a private svnserve process as that user. The svnserve program behaves nor-
mally (communicating via stdin and stdout), and assumes that the traffic is being automatically
redirected over some sort of tunnel back to the client. When svnserve is invoked by a tunnel
agent like this, be sure that the authenticated user has full read and write access to the reposit-
ory database files. It's essentially the same as a local user accessing the repository via
file:/// URLs.

This option is described in much more detail in the section called “SSH authentication and au-
thorization”.

svnserve as Windows Service

If your Windows system is a descendant of Windows NT (2000, 2003, XP, Vista), then you can
run svnserve as a standard Windows service. You'll need to define the service using a com-
mand-line tool SC.EXE. Much like the inetd configuration line, you must specify an exact in-
vocation of svnserve for Windows to run at start-up time:

C:\> sc create svn
binpath= "C:\svn\bin\svnserve.exe --service [args]"
displayname= "Subversion Server"
depend= Tcpip
start= auto

This defines a new Windows service named “svn”, and which executes a particular svn-
serve.exe command when started. There are a number of caveats in the prior example,
however.

First, notice that the svnserve.exe program is always invoked with the --service option.
You must always specify this option, and you may not specify other conflicting options such as
--daemon, --tunnel, or --inetd. Options such as -r or --listen-port are fine.
Second, be careful about spaces when invoking the SC.EXE command: the key= value pat-
terns must have no spaces between key= and exactly one space before the value. Lastly, be
careful about spaces in your command-line to be invoked. If a directory name contains spaces
(or other characters that need escaping), place the entire inner value of binpath in double-
quotes, by escaping them:

C:\> sc create svn
binpath= "\"C:\program files\svn\bin\svnserve.exe\" --service [args]"
displayname= "Subversion Server"
depend= Tcpip
start= auto

Once the service is defined, it can stopped, started, or queried using standard GUI tools (The
Services administrative control panel), or at the command line as well:

C:\> net stop svn
C:\> net start svn

The service can also be uninstalled (i.e. undefined) by deleting its definition: sc delete svn.
Just be sure to stop the service first! The SC.EXE program has many other subcommands and
options, run sc /? to learn more about it.

Server Configuration

142

3See RFC 2195.

Built-in authentication and authorization
When a client connects to an svnserve process, the following things happen:

• The client selects a specific repository.

• The server processes the repository's conf/svnserve.conf file, and begins to enforce
any authentication and authorization policies defined therein.

• Depending on the situation and authorization policies,

• the client may be allowed to make requests anonymously, without ever receiving an au-
thentication challenge, OR

• the client may be challenged for authentication at any time, OR

• if operating in “tunnel mode”, the client will declare itself to be already externally authentic-
ated.

At the time of writing, the server only knows how to send a CRAM-MD5 3 authentication chal-
lenge. In essence, the server sends a small amount of data to the client. The client uses the
MD5 hash algorithm to create a fingerprint of the data and password combined, then sends the
fingerprint as a response. The server performs the same computation with the stored pass-
word to verify that the result is identical. At no point does the actual password travel over the
network.

It's also possible, of course, for the client to be externally authenticated via a tunnel agent,
such as SSH. In that case, the server simply examines the user it's running as, and uses it as
the authenticated username. For more on this, see the section called “SSH authentication and
authorization”.

As you've already guessed, a repository's svnserve.conf file is the central mechanism for
controlling authentication and authorization policies. The file has the same format as other con-
figuration files (see the section called “Runtime Configuration Area”): section names are
marked by square brackets ([and]), comments begin with hashes (#), and each section con-
tains specific variables that can be set (variable = value). Let's walk through this file and
learn how to use them.

Create a 'users' file and realm

For now, the [general] section of the svnserve.conf has all the variables you need. Be-
gin by defining a file which contains usernames and passwords, and an authentication realm:

[general]
password-db = userfile
realm = example realm

The realm is a name that you define. It tells clients which sort of “authentication namespace”
they're connecting to; the Subversion client displays it in the authentication prompt, and uses it
as a key (along with the server's hostname and port) for caching credentials on disk (see the
section called “Client Credentials Caching”). The password-db variable points to a separate
file that contains a list of usernames and passwords, using the same familiar format. For ex-

Server Configuration

143

ample:

[users]
harry = foopassword
sally = barpassword

The value of password-db can be an absolute or relative path to the users file. For many ad-
mins, it's easy to keep the file right in the conf/ area of the repository, alongside svn-
serve.conf. On the other hand, it's possible you may want to have two or more repositories
share the same users file; in that case, the file should probably live in a more public place. The
repositories sharing the users file should also be configured to have the same realm, since the
list of users essentially defines an authentication realm. Wherever the file lives, be sure to set
the file's read and write permissions appropriately. If you know which user(s) svnserve will run
as, restrict read access to the user file as necessary.

Set access controls

There are two more variables to set in the svnserve.conf file: they determine what unau-
thenticated (anonymous) and authenticated users are allowed to do. The variables anon-
access and auth-access can be set to the values none, read, or write. Setting the value
to none restricts all access of any kind; read allows read-only access to the repository, and
write allows complete read/write access to the repository. For example:

[general]
password-db = userfile
realm = example realm

anonymous users can only read the repository
anon-access = read

authenticated users can both read and write
auth-access = write

The example settings are, in fact, the default values of the variables, should you forget to
define them. If you want to be even more conservative, you can block anonymous access
completely:

[general]
password-db = userfile
realm = example realm

anonymous users aren't allowed
anon-access = none

authenticated users can both read and write
auth-access = write

The server process not only understands these “blanket” access controls to the repository, but
also finer-grained access restrictions placed on specific files and directories within the reposit-
ory. To make use of this feature, you need to define a file containing more detailed rules, and
then set the authz-db variable to point to it:

[general]
password-db = userfile

Server Configuration

144

realm = example realm

Specific access rules for specific locations
authz-db = authzfile

The syntax of the authzfile file is discussed in detail in the section called “Path-Based Au-
thorization”. Note that the authz-db variable isn't mutually exclusive with the anon-access
and auth-access variables; if all the variables are defined at once, then all of the rules must
be satisfied before access is allowed.

SSH authentication and authorization
svnserve's built-in authentication can be very handy, because it avoids the need to create real
system accounts. On the other hand, some administrators already have well-established SSH
authentication frameworks in place. In these situations, all of the project's users already have
system accounts and the ability to “SSH into” the server machine.

It's easy to use SSH in conjunction with svnserve. The client simply uses the svn+ssh://
URL schema to connect:

$ whoami
harry

$ svn list svn+ssh://host.example.com/repos/project
harry@host.example.com's password: *****

foo
bar
baz
…

In this example, the Subversion client is invoking a local ssh process, connecting to
host.example.com, authenticating as the user harry, then spawning a private svnserve
process on the remote machine running as the user harry. The svnserve command is being
invoked in tunnel mode (-t) and its network protocol is being “tunneled” over the encrypted
connection by ssh, the tunnel-agent. svnserve is aware that it's running as the user harry,
and if the client performs a commit, the authenticated username will be attributed as the author
of the new revision.

The important thing to understand here is that the Subversion client is not connecting to a run-
ning svnserve daemon. This method of access doesn't require a daemon, nor does it notice
one if present. It relies wholly on the ability of ssh to spawn a temporary svnserve process,
which then terminates when the network connection is closed.

When using svn+ssh:// URLs to access a repository, remember that it's the ssh program
prompting for authentication, and not the svn client program. That means there's no automatic
password caching going on (see the section called “Client Credentials Caching”). The Subver-
sion client often makes multiple connections to the repository, though users don't normally no-
tice this due to the password caching feature. When using svn+ssh:// URLs, however,
users may be annoyed by ssh repeatedly asking for a password for every outbound connec-
tion. The solution is to use a separate SSH password-caching tool like ssh-agent on a Unix-
like system, or pageant on Windows.

When running over a tunnel, authorization is primarily controlled by operating system permis-
sions to the repository's database files; it's very much the same as if Harry were accessing the

Server Configuration

145

4Note that using any sort of svnserve-enforced access control at all is a bit pointless; the user already has direct ac-
cess to the repository database.

repository directly via a file:/// URL. If multiple system users are going to be accessing the
repository directly, you may want to place them into a common group, and you'll need to be
careful about umasks. (Be sure to read the section called “Supporting Multiple Repository Ac-
cess Methods”.) But even in the case of tunneling, the svnserve.conf file can still be used
to block access, by simply setting auth-access = read or auth-access = none. 4

You'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows
you to create custom tunnel behaviors in your run-time config file (see the section called
“Runtime Configuration Area”). For example, suppose you want to use RSH instead of SSH. In
the [tunnels] section of your config file, simply define it like this:

[tunnels]
rsh = rsh

And now, you can use this new tunnel definition by using a URL schema that matches the
name of your new variable: svn+rsh://host/path. When using the new URL schema, the
Subversion client will actually be running the command rsh host svnserve -t behind the
scenes. If you include a username in the URL (for example,
svn+rsh://username@host/path) the client will also include that in its command (rsh
username@host svnserve -t). But you can define new tunneling schemes to be much more
clever than that:

[tunnels]
joessh = $JOESSH /opt/alternate/ssh -p 29934

This example demonstrates a couple of things. First, it shows how to make the Subversion cli-
ent launch a very specific tunneling binary (the one located at /opt/alternate/ssh) with
specific options. In this case, accessing a svn+joessh:// URL would invoke the particular
SSH binary with -p 29934 as arguments—useful if you want the tunnel program to connect to
a non-standard port.

Second, it shows how to define a custom environment variable that can override the name of
the tunneling program. Setting the SVN_SSH environment variable is a convenient way to over-
ride the default SSH tunnel agent. But if you need to have several different overrides for differ-
ent servers, each perhaps contacting a different port or passing a different set of options to
SSH, you can use the mechanism demonstrated in this example. Now if we were to set the
JOESSH environment variable, its value would override the entire value of the tunnel
variable—$JOESSH would be executed instead of /opt/alternate/ssh -p 29934.

SSH configuration tricks
It's not only possible to control the way in which the client invokes ssh, but also to control the
behavior of sshd on your server machine. In this section, we'll show how to control the exact
svnserve command executed by sshd, as well as how to have multiple users share a single
system account.

Initial setup

To begin, locate the home directory of the account you'll be using to launch svnserve. Make
sure the account has an SSH public/private keypair installed, and that the user can log in via

Server Configuration

146

public-key authentication. Password authentication will not work, since all of the following SSH
tricks revolve around using the SSH authorized_keys file.

If it doesn't already exist, create the authorized_keys file (on Unix, typically
~/.ssh/authorized_keys). Each line in this file describes a public key that is allowed to
connect. The lines are typically of the form:

ssh-dsa AAAABtce9euch… user@example.com

The first field describes the type of key, the second field is the uuencoded key itself, and the
third field is a comment. However, it's a lesser known fact that the entire line can be preceded
by a command field:

command="program" ssh-dsa AAAABtce9euch… user@example.com

When the command field is set, the SSH daemon will run the named program instead of the
typical svnserve -t invocation that the Subversion client asks for. This opens the door to a
number of server-side tricks. In the following examples, we abbreviate the lines of the file as:

command="program" TYPE KEY COMMENT

Controlling the invoked command

Because we can specify the executed server-side command, it's easy to name a specific svn-
serve binary to run and to pass it extra arguments:

command="/path/to/svnserve -t -r /virtual/root" TYPE KEY COMMENT

In this example, /path/to/svnserve might be a custom wrapper script around svnserve
which sets the umask (see the section called “Supporting Multiple Repository Access
Methods”). It also shows how to anchor svnserve in a virtual root directory, just as one often
does when running svnserve as a daemon process. This might be done either to restrict ac-
cess to parts of the system, or simply to relieve the user of having to type an absolute path in
the svn+ssh:// URL.

It's also possible to have multiple users share a single account. Instead of creating a separate
system account for each user, generate a public/private keypair for each person. Then place
each public key into the authorized_users file, one per line, and use the --tunnel-user
option:

command="svnserve -t --tunnel-user=harry" TYPE1 KEY1 harry@example.com
command="svnserve -t --tunnel-user=sally" TYPE2 KEY2 sally@example.com

This example allows both Harry and Sally to connect to the same account via public-key au-
thentication. Each of them has a custom command that will be executed; the --tunnel-user
option tells svnserve -t to assume that the named argument is the authenticated user. Without
--tunnel-user, it would appear as though all commits were coming from the one shared
system account.

A final word of caution: giving a user access to the server via public-key in a shared account

Server Configuration

147

5They really hate doing that.

might still allow other forms of SSH access, even if you've set the command value in author-
ized_keys. For example, the user may still get shell access through SSH, or be able to per-
form X11 or general port-forwarding through your server. To give the user as little permission
as possible, you may want to specify a number of restrictive options immediately after the
command:

command="svnserve -t --tunnel-user=harry",no-port-forwarding,\
no-agent-forwarding,no-X11-forwarding,no-pty \
TYPE1 KEY1 harry@example.com

httpd, the Apache HTTP server
The Apache HTTP Server is a “heavy duty” network server that Subversion can leverage. Via
a custom module, httpd makes Subversion repositories available to clients via the WebDAV/
DeltaV protocol, which is an extension to HTTP 1.1 (see http://www.webdav.org/ for more in-
formation). This protocol takes the ubiquitous HTTP protocol that is the core of the World Wide
Web, and adds writing—specifically, versioned writing—capabilities. The result is a standard-
ized, robust system that is conveniently packaged as part of the Apache 2.0 software, is sup-
ported by numerous operating systems and third-party products, and doesn't require network
administrators to open up yet another custom port. 5 While an Apache-Subversion server has
more features than svnserve, it's also a bit more difficult to set up. With flexibility often comes
more complexity.

Much of the following discussion includes references to Apache configuration directives. While
some examples are given of the use of these directives, describing them in full is outside the
scope of this chapter. The Apache team maintains excellent documentation, publicly available
on their website at http://httpd.apache.org. For example, a general reference for the configura-
tion directives is located at http://httpd.apache.org/docs-2.0/mod/directives.html.

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a
mistake will be made. If you are not already familiar with Apache's logging subsystem, you
should become aware of it. In your httpd.conf file are directives that specify the on-disk loc-
ations of the access and error logs generated by Apache (the CustomLog and ErrorLog dir-
ectives, respectively). Subversion's mod_dav_svn uses Apache's error logging interface as
well. You can always browse the contents of those files for information that might reveal the
source of a problem that is not clearly noticeable otherwise.

Why Apache 2?

If you're a system administrator, it's very likely that you're already running the Apache
web server and have some prior experience with it. At the time of writing, Apache 1.3 is
by far the most popular version of Apache. The world has been somewhat slow to up-
grade to the Apache 2.X series for various reasons: some people fear change, especially
changing something as critical as a web server. Other people depend on plug-in modules
that only work against the Apache 1.3 API, and are waiting for a 2.X port. Whatever the
reason, many people begin to worry when they first discover that Subversion's Apache
module is written specifically for the Apache 2 API.

The proper response to this problem is: don't worry about it. It's easy to run Apache 1.3
and Apache 2 side-by-side; simply install them to separate places, and use Apache 2 as
a dedicated Subversion server that runs on a port other than 80. Clients can access the
repository by placing the port number into the URL:

Server Configuration

148

http://www.webdav.org/
http://httpd.apache.org
 http://httpd.apache.org/docs-2.0/mod/directives.html

$ svn checkout http://host.example.com:7382/repos/project
…

Prerequisites
To network your repository over HTTP, you basically need four components, available in two
packages. You'll need Apache httpd 2.0, the mod_dav DAV module that comes with it, Sub-
version, and the mod_dav_svn filesystem provider module distributed with Subversion. Once
you have all of those components, the process of networking your repository is as simple as:

• getting httpd 2.0 up and running with the mod_dav module,

• installing the mod_dav_svn plugin to mod_dav, which uses Subversion's libraries to access
the repository, and

• configuring your httpd.conf file to export (or expose) the repository.

You can accomplish the first two items either by compiling httpd and Subversion from source
code, or by installing pre-built binary packages of them on your system. For the most up-
to-date information on how to compile Subversion for use with the Apache HTTP Server, as
well as how to compile and configure Apache itself for this purpose, see the INSTALL file in
the top level of the Subversion source code tree.

Basic Apache Configuration
Once you have all the necessary components installed on your system, all that remains is the
configuration of Apache via its httpd.conf file. Instruct Apache to load the mod_dav_svn
module using the LoadModule directive. This directive must precede any other Subversion-re-
lated configuration items. If your Apache was installed using the default layout, your
mod_dav_svn module should have been installed in the modules subdirectory of the Apache
install location (often /usr/local/apache2). The LoadModule directive has a simple syn-
tax, mapping a named module to the location of a shared library on disk:

LoadModule dav_svn_module modules/mod_dav_svn.so

Note that if mod_dav was compiled as a shared object (instead of statically linked directly to
the httpd binary), you'll need a similar LoadModule statement for it, too. Be sure that it comes
before the mod_dav_svn line:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so

At a later location in your configuration file, you now need to tell Apache where you keep your
Subversion repository (or repositories). The Location directive has an XML-like notation,
starting with an opening tag, and ending with a closing tag, with various other configuration dir-
ectives in the middle. The purpose of the Location directive is to instruct Apache to do
something special when handling requests that are directed at a given URL or one of its chil-
dren. In the case of Subversion, you want Apache to simply hand off support for URLs that

Server Configuration

149

point at versioned resources to the DAV layer. You can instruct Apache to delegate the hand-
ling of all URLs whose path portions (the part of the URL that follows the server's name and
the optional port number) begin with /repos/ to a DAV provider whose repository is located
at /absolute/path/to/repository using the following httpd.conf syntax:

<Location /repos>
DAV svn
SVNPath /absolute/path/to/repository

</Location>

If you plan to support multiple Subversion repositories that will reside in the same parent dir-
ectory on your local disk, you can use an alternative directive, the SVNParentPath directive,
to indicate that common parent directory. For example, if you know you will be creating mul-
tiple Subversion repositories in a directory /usr/local/svn that would be accessed via
URLs like http://my.server.com/svn/repos1, ht-
tp://my.server.com/svn/repos2, and so on, you could use the httpd.conf configura-
tion syntax in the following example:

<Location /svn>
DAV svn

any "/svn/foo" URL will map to a repository /usr/local/svn/foo
SVNParentPath /usr/local/svn

</Location>

Using the previous syntax, Apache will delegate the handling of all URLs whose path portions
begin with /svn/ to the Subversion DAV provider, which will then assume that any items in
the directory specified by the SVNParentPath directive are actually Subversion repositories.
This is a particularly convenient syntax in that, unlike the use of the SVNPath directive, you
don't have to restart Apache in order to create and network new repositories.

Be sure that when you define your new Location, it doesn't overlap with other exported Loc-
ations. For example, if your main DocumentRoot is exported to /www, do not export a Subver-
sion repository in <Location /www/repos>. If a request comes in for the URI /
www/repos/foo.c, Apache won't know whether to look for a file repos/foo.c in the Docu-
mentRoot, or whether to delegate mod_dav_svn to return foo.c from the Subversion repos-
itory.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files
and directories. As part of the sanity checking done by the Apache modules, the source
of the copy is expected to be located on the same machine as the destination of the
copy. To satisfy this requirement, you might need to tell mod_dav the name you use as
the hostname of your server. Generally, you can use the ServerName directive in ht-
tpd.conf to accomplish this.

ServerName svn.example.com

If you are using Apache's virtual hosting support via the NameVirtualHost directive,
you may need to use the ServerAlias directive to specify additional names that your
server is known by. Again, refer to the Apache documentation for full details.

Server Configuration

150

At this stage, you should strongly consider the question of permissions. If you've been running
Apache for some time now as your regular web server, you probably already have a collection
of content—web pages, scripts and such. These items have already been configured with a set
of permissions that allows them to work with Apache, or more appropriately, that allows
Apache to work with those files. Apache, when used as a Subversion server, will also need the
correct permissions to read and write to your Subversion repository.

You will need to determine a permission system setup that satisfies Subversion's requirements
without messing up any previously existing web page or script installations. This might mean
changing the permissions on your Subversion repository to match those in use by other things
that Apache serves for you, or it could mean using the User and Group directives in ht-
tpd.conf to specify that Apache should run as the user and group that owns your Subversion
repository. There is no single correct way to set up your permissions, and each administrator
will have different reasons for doing things a certain way. Just be aware that permission-re-
lated problems are perhaps the most common oversight when configuring a Subversion repos-
itory for use with Apache.

Authentication Options
At this point, if you configured httpd.conf to contain something like

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn

</Location>

…then your repository is “anonymously” accessible to the world. Until you configure some au-
thentication and authorization policies, the Subversion repositories you make available via the
Location directive will be generally accessible to everyone. In other words,

• anyone can use their Subversion client to checkout a working copy of a repository URL (or
any of its subdirectories),

• anyone can interactively browse the repository's latest revision simply by pointing their web
browser to the repository URL, and

• anyone can commit to the repository.

Basic HTTP Authentication

The easiest way to authenticate a client is via the HTTP Basic authentication mechanism,
which simply uses a username and password to verify that a user is who she says she is.
Apache provides an htpasswd utility for managing the list of acceptable usernames and pass-
words, those to whom you wish to grant special access to your Subversion repository. Let's
grant commit access to Sally and Harry. First, we need to add them to the password file.

$ ### First time: use -c to create the file
$ ### Use -m to use MD5 encryption of the password, which is more secure
$ htpasswd -cm /etc/svn-auth-file harry
New password: *****
Re-type new password: *****
Adding password for user harry
$ htpasswd -m /etc/svn-auth-file sally

Server Configuration

151

6While self-signed server certificates are still vulnerable to a “man in the middle” attack, such an attack is still much
more difficult for a casual observer to pull off, compared to sniffing unprotected passwords.

New password: *******
Re-type new password: *******
Adding password for user sally
$

Next, you need to add some more httpd.conf directives inside your Location block to tell
Apache what to do with your new password file. The AuthType directive specifies the type of
authentication system to use. In this case, we want to specify the Basic authentication sys-
tem. AuthName is an arbitrary name that you give for the authentication domain. Most
browsers will display this name in the pop-up dialog box when the browser is querying the user
for his name and password. Finally, use the AuthUserFile directive to specify the location of
the password file you created using htpasswd.

After adding these three directives, your <Location> block should look something like this:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /etc/svn-auth-file

</Location>

This <Location> block is not yet complete, and will not do anything useful. It's merely telling
Apache that whenever authorization is required, Apache should harvest a username and pass-
word from the Subversion client. What's missing here, however, are directives that tell Apache
which sorts of client requests require authorization. Wherever authorization is required,
Apache will demand authentication as well. The simplest thing to do is protect all requests.
Adding Require valid-user tells Apache that all requests require an authenticated user:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /etc/svn-auth-file
Require valid-user

</Location>

Be sure to read the next section (the section called “Authorization Options”) for more detail on
the Require directive and other ways to set authorization policies.

One word of warning: HTTP Basic Auth passwords pass in very nearly plain-text over the net-
work, and thus are extremely insecure. If you're worried about password snooping, it may be
best to use some sort of SSL encryption, so that clients authenticate via https:// instead of
http://; at a bare minimum, you can configure Apache to use a self-signed server certificate.
6 Consult Apache's documentation (and OpenSSL documentation) about how to do that.

SSL Certificate Management

Businesses that need to expose their repositories for access outside the company firewall
should be conscious of the possibility that unauthorized parties could be “sniffing” their network

Server Configuration

152

traffic. SSL makes that kind of unwanted attention less likely to result in sensitive data leaks.

If a Subversion client is compiled to use OpenSSL, then it gains the ability to speak to an
Apache server via https:// URLs. The Neon library used by the Subversion client is not only
able to verify server certificates, but can also supply client certificates when challenged. When
the client and server have exchanged SSL certificates and successfully authenticated one an-
other, all further communication is encrypted via a session key.

It's beyond the scope of this book to describe how to generate client and server certificates,
and how to configure Apache to use them. Many other books, including Apache's own docu-
mentation, describe this task. But what can be covered here is how to manage server and cli-
ent certificates from an ordinary Subversion client.

When speaking to Apache via https://, a Subversion client can receive two different types
of information:

• a server certificate

• a demand for a client certificate

If the client receives a server certificate, it needs to verify that it trusts the certificate: is the
server really who it claims to be? The OpenSSL library does this by examining the signer of
the server certificate, or certifying authority (CA). If OpenSSL is unable to automatically trust
the CA, or if some other problem occurs (such as an expired certificate or hostname mis-
match), the Subversion command-line client will ask you whether you want to trust the server
certificate anyway:

$ svn list https://host.example.com/repos/project

Error validating server certificate for 'https://host.example.com:443':
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!

Certificate information:
- Hostname: host.example.com
- Valid: from Jan 30 19:23:56 2004 GMT until Jan 30 19:23:56 2006 GMT
- Issuer: CA, example.com, Sometown, California, US
- Fingerprint: 7d:e1:a9:34:33:39:ba:6a:e9:a5:c4:22:98:7b:76:5c:92:a0:9c:7b

(R)eject, accept (t)emporarily or accept (p)ermanently?

This dialogue should look familiar; it's essentially the same question you've probably seen
coming from your web browser (which is just another HTTP client like Subversion!). If you
choose the (p)ermanent option, the server certificate will be cached in your private run-time
auth/ area in just the same way your username and password are cached (see the section
called “Client Credentials Caching”). If cached, Subversion will automatically remember to trust
this certificate in future negotiations.

Your run-time servers file also gives you the ability to make your Subversion client automat-
ically trust specific CAs, either globally or on a per-host basis. Simply set the ssl-au-
thority-files variable to a semicolon-separated list of PEM-encoded CA certificates:

[global]
ssl-authority-files = /path/to/CAcert1.pem;/path/to/CAcert2.pem

Server Configuration

153

7More security-conscious folk might not want to store the client certificate password in the runtime servers file.

Many OpenSSL installations also have a pre-defined set of “default” CAs that are nearly uni-
versally trusted. To make the Subversion client automatically trust these standard authorities,
set the ssl-trust-default-ca variable to true.

When talking to Apache, a Subversion client might also receive a challenge for a client certific-
ate. Apache is asking the client to identify itself: is the client really who it says it is? If all goes
correctly, the Subversion client sends back a private certificate signed by a CA that Apache
trusts. A client certificate is usually stored on disk in encrypted format, protected by a local
password. When Subversion receives this challenge, it will ask you for both a path to the certi-
ficate and the password which protects it:

$ svn list https://host.example.com/repos/project

Authentication realm: https://host.example.com:443
Client certificate filename: /path/to/my/cert.p12
Passphrase for '/path/to/my/cert.p12': ********
…

Notice that the client certificate is a “p12” file. To use a client certificate with Subversion, it
must be in PKCS#12 format, which is a portable standard. Most web browsers are already
able to import and export certificates in that format. Another option is to use the OpenSSL
command-line tools to convert existing certificates into PKCS#12.

Again, the runtime servers file allows you to automate this challenge on a per-host basis.
Either or both pieces of information can be described in runtime variables:

[groups]
examplehost = host.example.com

[examplehost]
ssl-client-cert-file = /path/to/my/cert.p12
ssl-client-cert-password = somepassword

Once you've set the ssl-client-cert-file and ssl-client-cert-password vari-
ables, the Subversion client can automatically respond to a client certificate challenge without
prompting you. 7

Authorization Options
At this point, you've configured authentication, but not authorization. Apache is able to chal-
lenge clients and confirm identities, but it has not been told how to allow or restrict access to
the clients bearing those identities. This section describes two strategies for controlling access
to your repositories.

Blanket Access Control

The simplest form of access control is to authorize certain users for either read-only access to
a repository, or read/write access to a repository.

You can restrict access on all repository operations by adding the Require valid-user dir-
ective to your <Location> block. Using our previous example, this would mean that only cli-
ents that claimed to be either harry or sally, and provided the correct password for their re-

Server Configuration

154

spective username, would be allowed to do anything with the Subversion repository:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

only authenticated users may access the repository
Require valid-user

</Location>

Sometimes you don't need to run such a tight ship. For example, Subversion's own source
code repository at http://svn.collab.net/repos/svn allows anyone in the world to perform read-
only repository tasks (like checking out working copies and browsing the repository with a web
browser), but restricts all write operations to authenticated users. To do this type of selective
restriction, you can use the Limit and LimitExcept configuration directives. Like the Loca-
tion directive, these blocks have starting and ending tags, and you would nest them inside
your <Location> block.

The parameters present on the Limit and LimitExcept directives are HTTP request types
that are affected by that block. For example, if you wanted to disallow all access to your repos-
itory except the currently supported read-only operations, you would use the LimitExcept
directive, passing the GET, PROPFIND, OPTIONS, and REPORT request type parameters. Then
the previously mentioned Require valid-user directive would be placed inside the
<LimitExcept> block instead of just inside the <Location> block.

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

For any operations other than these, require an authenticated user.
<LimitExcept GET PROPFIND OPTIONS REPORT>
Require valid-user

</LimitExcept>
</Location>

These are only a few simple examples. For more in-depth information about Apache access
control and the Require directive, take a look at the Security section of the Apache docu-
mentation's tutorials collection at http://httpd.apache.org/docs-2.0/misc/tutorials.html.

Per-Directory Access Control

It's possible to set up finer-grained permissions using a second Apache httpd module,
mod_authz_svn. This module grabs the various opaque URLs passing from client to server,
asks mod_dav_svn to decode them, and then possibly vetoes requests based on access
policies defined in a configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and in-

Server Configuration

155

http://svn.collab.net/repos/svn
http://httpd.apache.org/docs-2.0/misc/tutorials.html

stalled alongside mod_dav_svn. Many binary distributions install it automatically as well. To
verify that it's installed correctly, make sure it comes right after mod_dav_svn's LoadModule
directive in httpd.conf:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so
LoadModule authz_svn_module modules/mod_authz_svn.so

To activate this module, you need to configure your Location block to use the AuthzSVNAc-
cessFile directive, which specifies a file containing the permissions policy for paths within
your repositories. (In a moment, we'll discuss the format of that file.)

Apache is flexible, so you have the option to configure your block in one of three general pat-
terns. To begin, choose one of these basic configuration patterns. (The examples below are
very simple; look at Apache's own documentation for much more detail on Apache authentica-
tion and authorization options.)

The simplest block is to allow open access to everyone. In this scenario, Apache never sends
authentication challenges, so all users are treated as “anonymous”.

Example 6.1. A sample configuration for anonymous access.

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

our access control policy
AuthzSVNAccessFile /path/to/access/file

</Location>

On the opposite end of the paranoia scale, you can configure your block to demand authentic-
ation from everyone. All clients must supply credentials to identify themselves. Your block un-
conditionally requires authentication via the Require valid-user directive, and defines a
means to authenticate.

Example 6.2. A sample configuration for authenticated access.

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

our access control policy
AuthzSVNAccessFile /path/to/access/file

only authenticated users may access the repository
Require valid-user

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

Server Configuration

156

</Location>

A third very popular pattern is to allow a combination of authenticated and anonymous access.
For example, many administrators want to allow anonymous users to read certain repository
directories, but want only authenticated users to read (or write) more sensitive areas. In this
setup, all users start out accessing the repository anonymously. If your access control policy
demands a real username at any point, Apache will demand authentication from the client. To
do this, you use both the Satisfy Any and Require valid-user directives together.

Example 6.3. A sample configuration for mixed authenticated/anonymous
access.

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

our access control policy
AuthzSVNAccessFile /path/to/access/file

try anonymous access first, resort to real
authentication if necessary.
Satisfy Any
Require valid-user

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

</Location>

Once you've settled on one of these three basic httpd.conf templates, you need to create
your file containing access rules for particular paths within the repository. This is described in
the section called “Path-Based Authorization”.

Disabling Path-based Checks

The mod_dav_svn module goes through a lot of work to make sure that data you've marked
“unreadable” doesn't get accidentally leaked. This means that it needs to closely monitor all of
the paths and file-contents returned by commands like svn checkout or svn update com-
mands. If these commands encounter a path that isn't readable according to some authoriza-
tion policy, then the path is typically omitted altogether. In the case of history or rename tra-
cing—e.g. running a command like svn cat -r OLD foo.c on a file that was renamed long
ago—the rename tracking will simply halt if one of the object's former names is determined to
be read-restricted.

All of this path-checking can sometimes be quite expensive, especially in the case of svn log.
When retrieving a list of revisions, the server looks at every changed path in each revision and
checks it for readability. If an unreadable path is discovered, then it's omitted from the list of
the revision's changed paths (normally seen with the --verbose option), and the whole log
message is suppressed. Needless to say, this can be time-consuming on revisions that affect

Server Configuration

157

a large number of files. This is the cost of security: even if you haven't configured a module like
mod_authz_svn at all, the mod_dav_svn module is still asking Apache httpd to run authoriz-
ation checks on every path. The mod_dav_svn module has no idea what authorization mod-
ules have been installed, so all it can do is ask Apache to invoke whatever might be present.

On the other hand, there's also an escape-hatch of sorts, one which allows you to trade secur-
ity features for speed. If you're not enforcing any sort of per-directory authorization (i.e. not us-
ing mod_authz_svn or similar module), then you can disable all of this path-checking. In your
httpd.conf file, use the SVNPathAuthz directive:

Example 6.4. Disabling path checks altogether

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

SVNPathAuthz off
</Location>

The SVNPathAuthz directive is “on” by default. When set “off”, all path-based authorization
checking is disabled; mod_dav_svn stops invoking authorization checks on every path it dis-
covers.

Extra Goodies
We've covered most of the authentication and authorization options for Apache and
mod_dav_svn. But there are a few other nice features that Apache provides.

Repository Browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion re-
pository is that the youngest revisions of your versioned files and directories are immediately
available for viewing via a regular web browser. Since Subversion uses URLs to identify ver-
sioned resources, those URLs used for HTTP-based repository access can be typed directly
into a Web browser. Your browser will issue an HTTP GET request for that URL, and based on
whether that URL represents a versioned directory or file, mod_dav_svn will respond with a
directory listing or with file contents.

Since the URLs do not contain any information about which version of the resource you wish to
see, mod_dav_svn will always answer with the youngest version. This functionality has the
wonderful side-effect that you can pass around Subversion URLs to your peers as references
to documents, and those URLs will always point at the latest manifestation of that document.
Of course, you can even use the URLs as hyperlinks from other web sites, too.

Can I view older revisions?

With an ordinary web browser? In one word: nope. At least, not with mod_dav_svn as
your only tool.

Your web browser only speaks ordinary HTTP. That means it only knows how to GET
public URLs, which represent the latest versions of files and directories. According to the

Server Configuration

158

8Back then, it was called “ViewCVS”.

WebDAV/DeltaV spec, each server defines a private URL syntax for older versions of re-
sources, and that syntax is opaque to clients. To find an older version of a file, a client
must follow a specific procedure to “discover” the proper URL; the procedure involves is-
suing a series of WebDAV PROPFIND requests and understanding DeltaV concepts.
This is something your web browser simply can't do.

So to answer the question, one obvious way to see older revisions of files and directories
is by passing the --revision argument to the svn list and svn cat commands. To
browse old revisions with your web browser, however, you can use third-party software.
A good example of this is ViewVC (http://viewvc.tigris.org/). ViewVC was originally written
to display CVS repositories through the web, 8 and the latest releases are able to under-
stand Subversion repositories as well.

Proper MIME Type

When browsing a Subversion repository, the web browser gets a clue about how to render a
file's contents by looking at the Content-Type: header returned in Apache's response to the
HTTP GET request. The value of this header is some sort of MIME type. By default, Apache
will tell the web browsers that all repository files are of the “default” MIME type, typically text/
plain. This can be frustrating, however, if a user wishes repository files to render as
something more meaningful — for example, it might be nice to have a foo.html file in the re-
pository actually render as HTML when browsing.

To make this happen, you only need to make sure that your files have the proper
svn:mime-type set. This is discussed in more detail in the section called “File Content
Type”, and you can even configure your client to automatically attach proper svn:mime-type
properties to files entering the repository for the first time; see the section called “Automatic
Property Setting”.

So in our example, if one were to set the svn:mime-type property to text/html on file
foo.html, then Apache would properly tell your web browser to render the file as HTML. One
could also attach proper image/* mime-type properties to images, and by doing this, ulti-
mately get an entire web site to be viewable directly from a repository! There's generalyl no
problem with doing this, as long as the website doesn't contain any dynamically-generated
content.

Customizing the Look

You generally will get more use out of URLs to versioned files—after all, that's where the inter-
esting content tends to lie. But you might have occasion to browse a Subversion directory list-
ing, where you'll quickly note that the generated HTML used to display that listing is very basic,
and certainly not intended to be aesthetically pleasing (or even interesting). To enable custom-
ization of these directory displays, Subversion provides an XML index feature. A single
SVNIndexXSLT directive in your repository's Location block of httpd.conf will instruct
mod_dav_svn to generate XML output when displaying a directory listing, and to reference the
XSLT stylesheet of your choice:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
SVNIndexXSLT "/svnindex.xsl"
…

</Location>

Server Configuration

159

http://viewvc.tigris.org/

Using the SVNIndexXSLT directive and a creative XSLT stylesheet, you can make your direct-
ory listings match the color schemes and imagery used in other parts of your website. Or, if
you'd prefer, you can use the sample stylesheets provided in the Subversion source distribu-
tion's tools/xslt/ directory. Keep in mind that the path provided to the SVNIndexXSLT dir-
ectory is actually a URL path—browsers need to be able to read your stylesheets in order to
make use of them!

Listing Repositories

If you're serving a colllection of repositories from a single URL via the SVNParentPath direct-
ive, then it's also possible to have Apache display all available repositories to a web browser.
Just activate the SVNListParentPath directive:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
SVNListParentPath on
…

</Location>

If a user now points her web browser to the URL http://host.example.com/svn/, she'll
see list of all Subversion repositories sitting in /usr/local/svn. Obviously, this can be a se-
curity problem, so this feature is turned off by default.

Apache Logging

Because Apache is an HTTP server at heart, it contains fantastically flexible logging feature.
It's beyond the scope of this book to discuss all ways logging can be configured, but we should
point out that even the most generic httpd.conf file will cause Apache to produce two logs:
error_log and access_log. These logs may appear in different places, but are typically
created in the logging area of your Apache installation. (On Unix, they often live in /
usr/local/apache2/logs/.)

The error_log describes any interal errors that Apache runs into as it works. The ac-
cess_log file records every incoming HTTP request received by Apache. This makes it easy
to see, for example, which IP addresses Subversion clients are coming from, how often partic-
ular clients use the server, which users are authenticating properly, and which requests suc-
ceed or fail.

Unfortunately, because HTTP is a stateless protocol, even the simplest Subversion client oper-
ation generates multiple network requests. It's very difficult to look at the access_log and de-
duce what the client was doing — most operations look like a series of cryptic PROPPATCH,
GET, PUT, and REPORT requests. To make things worse, many client operations send nearly-
identical series of requests, so it's even harder to tell them apart.

mod_dav_svn, however, can come to your aid. By activating an “operational logging” feature,
you can ask mod_dav_svn to create a separate log file describing what sort of high-level op-
erations your clients are performing.

To do this, you need to make use of Apache's CustomLog directive (which is explained in
more detail in Apache's own documentation). Be sure to invoke this directive outside of your
Subversion Location block:

Server Configuration

160

<Location /svn>
DAV svn
…

</Location>

CustomLog logs/svn_logfile "%t %u %{SVN-ACTION}e" env=SVN-ACTION

In this example, we're asking Apache to create a special logfile svn_logfile in the standard
Apache logs directory. The %t and %u variables are replaced by the time and username of
the request, respectively. The really important part are the two instances of SVN-ACTION.
When Apache sees that variable, it substitutes the value of the SVN-ACTION environment vari-
able, which is automatically set by mod_dav_svn whenever it detects a high-level client ac-
tion.

So instead of having to interpret a traditional access_log like this:

[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/vcc/default HTTP/1.1" 207 398
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/bln/59 HTTP/1.1" 207 449
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc HTTP/1.1" 207 647
[26/Jan/2007:22:25:29 -0600] "REPORT /svn/calc/!svn/vcc/default HTTP/1.1" 200 607
[26/Jan/2007:22:25:31 -0600] "OPTIONS /svn/calc HTTP/1.1" 200 188
[26/Jan/2007:22:25:31 -0600] "MKACTIVITY /svn/calc/!svn/act/e6035ef7-5df0-4ac0-b811-4be7c823f998 HTTP/1.1" 201 227
…

… you can instead peruse a much more intelligible svn_logfile like this:

[26/Jan/2007:22:24:20 -0600] - list-dir '/'
[26/Jan/2007:22:24:27 -0600] - update '/'
[26/Jan/2007:22:25:29 -0600] - remote-status '/'
[26/Jan/2007:22:25:31 -0600] sally commit r60

Other Features

Several of the features already provided by Apache in its role as a robust Web server can be
leveraged for increased functionality or security in Subversion as well. Subversion communic-
ates with Apache using Neon, which is a generic HTTP/WebDAV library with support for such
mechanisms as SSL (the Secure Socket Layer, discussed earlier) and Deflate compression
(the same algorithm used by the gzip and PKZIP programs to “shrink” files into smaller chunks
of data). You need only to compile support for the features you desire into Subversion and
Apache, and properly configure the programs to use those features.

Deflate compression places a small burden on the client and server to compress and decom-
press network transmissions as a way to minimize the size of the actual transmission. In cases
where network bandwidth is in short supply, this kind of compression can greatly increase the
speed at which communications between server and client can be sent. In extreme cases, this
minimized network transmission could be the difference between an operation timing out or
completing successfully.

Less interesting, but equally useful, are other features of the Apache and Subversion relation-
ship, such as the ability to specify a custom port (instead of the default HTTP port 80) or a vir-
tual domain name by which the Subversion repository should be accessed, or the ability to ac-
cess the repository through a proxy. These things are all supported by Neon, so Subversion
gets that support for free.

Server Configuration

161

9A common theme in this book!

Finally, because mod_dav_svn is speaking a semi-complete dialect of WebDAV/DeltaV, it's
possible to access the repository via third-party DAV clients. Most modern operating systems
(Win32, OS X, and Linux) have the built-in ability to mount a DAV server as a standard net-
work “share”. This is a complicated topic; for details, read Appendix C, WebDAV and Autover-
sioning.

Path-Based Authorization
Both Apache and svnserve are capable of granting (or denying) permissions to users. Typic-
ally this is done over the entire repository: a user can read the repository (or not), and she can
write to the repository (or not). It's also possible, however, to define finer-grained access rules.
One set of users may have permssion to write to a certain directory in the repository, but not
others; another directory might not even be readable by all but a few special people.

Both servers use a common file format to describe these path-based access rules. In the case
of Apache, one needs to load the mod_authz_svn module and then add the AuthzSVNAc-
cessFile directive (within the httpd.conf file) pointing to your own rules-file. (For a full ex-
planation, see the section called “Per-Directory Access Control”.) If you're using svnserve,
then you need to make the authz-db variable (within svnserve.conf) point to your rules-
file.

Best practice: do you really need path-based access control?

A lot of administrators setting up Subversion for the first time tend to jump into path-
based access control without giving it a lot of thought. The administrator usually knows
which teams of people are working on which projects, so it's easy to jump in and grant
certain teams access to certain directories and not others. It seems like a natural thing,
and it appeases the administrator's desire to maintain tight control of the repository.

Note, though, that there are often invisible costs associated with this feature. Most of the
time, while certain users shouldn't be committing changes to certain parts of the reposit-
ory, that social contract doesn't need to be technologically enforced. Teams can some-
times spontaneously collaborate with each other; someone may want to help someone
else out by committing to an area she doesn't normally work on. By preventing this sort of
thing at the server level, you're setting up barriers to unexpected collaboration. You're
also creating a bunch of rules that need to be maintained as projects develop, new users
are added, and so on. It's a bunch of extra work to maintain.

Remember that this is a version control system! Even if somebody accidentally commits
a change to something they shouldn't, it's easy to undo the change. And if a user com-
mits to the wrong place with deliberate malice, then it's a social problem anyway, and that
the problem needs to be dealt with outside of Subversion.

So before you begin restricting users' access rights, ask yourself if there's a real, honest
need for this, or if it's just something that “sounds good” to an administrator. Remember
that there's very little risk involved, and that it's bad to become dependent on technology
as a crutch for social problems.9.

As an example to ponder, consider that the Subversion project itself has always a notion
of who is allowed to commit where, but it's always been enforced socially. This is a good
model of community trust, especially for open-source projects. Of course, sometimes
there are truly legitimate needs for path-based access control; within corporations, for ex-
ample, certain types of data really can be sensitive, and access needs to be genuinely

Server Configuration

162

restricted to small groups of people.

Once your server knows where to find your rules-file, it's time to define the rules.

The syntax of the file is the same familiar one used by svnserve.conf and the runtime config-
uration files. Lines that start with a hash (#) are ignored. In its simplest form, each section
names a repository and path within it, and the authenticated usernames are the option names
within each section. The value of each option describes the user's level of access to the repos-
itory path: either r (read-only) or rw (read-write). If the user is not mentioned at all, no access
is allowed.

To be more specific: the value of the section-names are either of the form
[repos-name:path] or the form [path]. If you're using the SVNParentPath directive,
then it's important to specify the repository names in your sections. If you omit them, then a
section like [/some/dir] will match the path /some/dir in every repository. If you're using
the SVNPath directive, however, then it's fine to only define paths in your sections—after all,
there's only one repository.

[calc:/branches/calc/bug-142]
harry = rw
sally = r

In this first example, the user harry has full read and write access on the /
branches/calc/bug-142 directory in the calc repository, but the user sally has read-
only access. Any other users are blocked from accessing this directory.

Of course, permissions are inherited from parent to child directory. That means that we can
specify a subdirectory with a different access policy for Sally:

[calc:/branches/calc/bug-142]
harry = rw
sally = r

give sally write access only to the 'testing' subdir
[calc:/branches/calc/bug-142/testing]
sally = rw

Now Sally can write to the testing subdirectory of the branch, but can still only read other
parts. Harry, meanwhile, continues to have complete read-write access to the whole branch.

It's also possible to explicitly deny permission to someone via inheritance rules, by setting the
username variable to nothing:

[calc:/branches/calc/bug-142]
harry = rw
sally = r

[calc:/branches/calc/bug-142/secret]
harry =

In this example, Harry has read-write access to the entire bug-142 tree, but has absolutely no
access at all to the secret subdirectory within it.

Server Configuration

163

The thing to remember is that the most specific path always matches first. The
mod_authz_svn module tries to match the path itself, and then the parent of the path, then
the parent of that, and so on. The net effect is that mentioning a specific path in the accessfile
will always override any permissions inherited from parent directories.

By default, nobody has any access to the repository at all. That means that if you're starting
with an empty file, you'll probably want to give at least read permission to all users at the root
of the repository. You can do this by using the asterisk variable (*), which means “all users”:

[/]
* = r

This is a common setup; notice that there's no repository name mentioned in the section name.
This makes all repositories world readable to all users, whether you're using SVNPath or SVN-
ParentPath. Once all users have read-access to the repositories, you can give explicit rw
permission to certain users on specific subdirectories within specific repositories.

The asterisk variable (*) is also worth special mention here: it's the only pattern which matches
an anonymous user. If you've configured your Location block to allow a mixture of anonym-
ous and authenticated access, all users start out accessing Apache anonymously.
mod_authz_svn looks for a * value defined for the path being accessed; if it can't find one,
then Apache demands real authentication from the client.

The access file also allows you to define whole groups of users, much like the Unix /
etc/group file:

[groups]
calc-developers = harry, sally, joe
paint-developers = frank, sally, jane
everyone = harry, sally, joe, frank, sally, jane

Groups can be granted access control just like users. Distinguish them with an “at” (@) prefix:

[calc:/projects/calc]
@calc-developers = rw

[paint:/projects/paint]
@paint-developers = rw
jane = r

Groups can also be defined to contain other groups:

[groups]
calc-developers = harry, sally, joe
paint-developers = frank, sally, jane
everyone = @calc-developers, @paint-developers

…and that's pretty much all there is to it.

Supporting Multiple Repository Access Meth-

Server Configuration

164

ods
You've seen how a repository can be accessed in many different ways. But is it possible—or
safe—for your repository to be accessed by multiple methods simultaneously? The answer is
yes, provided you use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

• regular system users using a Subversion client (as themselves) to access the repository dir-
ectly via file:/// URLs;

• regular system users connecting to SSH-spawned private svnserve processes (running as
themselves) which access the repository;

• an svnserve process—either a daemon or one launched by inetd—running as a particular
fixed user;

• an Apache httpd process, running as a particular fixed user.

The most common problem administrators run into is repository ownership and permissions.
Does every process (or user) in the previous list have the rights to read and write the Berkeley
DB files? Assuming you have a Unix-like operating system, a straightforward approach might
be to place every potential repository user into a new svn group, and make the repository
wholly owned by that group. But even that's not enough, because a process may write to the
database files using an unfriendly umask—one that prevents access by other users.

So the next step beyond setting up a common group for repository users is to force every re-
pository-accessing process to use a sane umask. For users accessing the repository directly,
you can make the svn program into a wrapper script that first sets umask 002 and then runs
the real svn client program. You can write a similar wrapper script for the svnserve program,
and add a umask 002 command to Apache's own startup script, apachectl. For example:

$ cat /usr/bin/svn

#!/bin/sh

umask 002
/usr/bin/svn-real "$@"

Another common problem is often encountered on Unix-like systems. As a repository is used,
Berkeley DB occasionally creates new log files to journal its actions. Even if the repository is
wholly owned by the svn group, these newly created files won't necessarily be owned by that
same group, which then creates more permissions problems for your users. A good work-
around is to set the group SUID bit on the repository's db directory. This causes all newly-
created log files to have the same group owner as the parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the ne-
cessary processes. It may seem a bit messy and complicated, but the problems of having mul-
tiple users sharing write-access to common files are classic ones that are not often elegantly
solved.

Fortunately, most repository administrators will never need to have such a complex configura-
tion. Users who wish to access repositories that live on the same machine are not limited to
using file:// access URLs—they can typically contact the Apache HTTP server or svn-

Server Configuration

165

serve using localhost for the server name in their http:// or svn:// URLs. And to main-
tain multiple server processes for your Subversion repositories is likely to be more of a head-
ache than necessary. We recommend you choose the server that best meets your needs and
stick with it!

The svn+ssh:// server checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repos-
itory without permissions problems. If you're confused about all the things that you (as an
administrator) need to do on a Unix-like system, here's a quick checklist that resummar-
izes some of things discussed in this section:

• All of your SSH users need to be able to read and write to the repository. Put all the
SSH users into a single group. Make the repository wholly owned by that group, and
set the group permissions to read/write.

• Your users need to use a sane umask when accessing the repository. Make sure that
svnserve (/usr/bin/svnserve, or wherever it lives in $PATH) is actually a wrapper
script which sets umask 002 and executes the real svnserve binary. Take similar
measures when using svnlook and svnadmin. Either run them with a sane umask, or
wrap them as described above.

Server Configuration

166

1The APPDATA environment variable points to the Application Data area, so you can always refer to this folder as
%APPDATA%\Subversion.

Chapter 7. Customizing Your
Subversion Experience

TODO: Chapter opening

TODO: Gut the runtime config stuff like I did the property stuff, making larger topical sec-
tions to which the runtime config stuff generally refers. Like already exists for external diff/diff3,
add, for example, a section on external editors. ###

Runtime Configuration Area
Subversion provides many optional behaviors that can be controlled by the user. Many of
these options are of the kind that a user would wish to apply to all Subversion operations. So,
rather than forcing users to remember command-line arguments for specifying these options,
and to use them for each and every operation they perform, Subversion uses configuration
files, segregated into a Subversion configuration area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values.
Usually, this boils down to a special directory that contains configuration files (the first tier),
which are just text files in standard INI format (with “sections” providing the second tier). These
files can be easily edited using your favorite text editor (such as Emacs or vi), and contain dir-
ectives read by the client to determine which of several optional behaviors the user prefers.

Configuration Area Layout
The first time that the svn command-line client is executed, it creates a per-user configuration
area. On Unix-like systems, this area appears as a directory named .subversion in the
user's home directory. On Win32 systems, Subversion creates a folder named Subversion,
typically inside the Application Data area of the user's profile directory (which, by the way,
is usually a hidden directory). However, on this platform the exact location differs from system
to system, and is dictated by the Windows registry. 1 We will refer to the per-user configuration
area using its Unix name, .subversion.

In addition to the per-user configuration area, Subversion also recognizes the existence of a
system-wide configuration area. This gives system administrators the ability to establish de-
faults for all users on a given machine. Note that the system-wide configuration area does not
alone dictate mandatory policy—the settings in the per-user configuration area override those
in the system-wide one, and command-line arguments supplied to the svn program have the
final word on behavior. On Unix-like platforms, the system-wide configuration area is expected
to be the /etc/subversion directory; on Windows machines, it looks for a Subversion dir-
ectory inside the common Application Data location (again, as specified by the Windows
Registry). Unlike the per-user case, the svn program does not attempt to create the system-
wide configuration area.

The per-user configuration area currently contains three files—two configuration files (config
and servers), and a README.txt file which describes the INI format. At the time of their cre-
ation, the files contain default values for each of the supported Subversion options, mostly
commented out and grouped with textual descriptions about how the values for the key affect
Subversion's behavior. To change a certain behavior, you need only to load the appropriate
configuration file into a text editor, and modify the desired option's value. If at any time you

167

wish to have the default configuration settings restored, you can simply remove (or rename)
your configuration directory and then run some innocuous svn command, such as svn -
-version. A new configuration directory with the default contents will be created.

The per-user configuration area also contains a cache of authentication data. The auth direct-
ory holds a set of subdirectories that contain pieces of cached information used by Subver-
sion's various supported authentication methods. This directory is created in such a way that
only the user herself has permission to read its contents.

Configuration and the Windows Registry
In addition to the usual INI-based configuration area, Subversion clients running on Windows
platforms may also use the Windows registry to hold the configuration data. The option names
and their values are the same as in the INI files. The “file/section” hierarchy is preserved as
well, though addressed in a slightly different fashion—in this schema, files and sections are
just levels in the registry key tree.

Subversion looks for system-wide configuration values under the
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion key. For example, the
global-ignores option, which is in the miscellany section of the config file, would be
found at
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Config\Miscellany\gl
obal-ignores. Per-user configuration values should be stored under
HKEY_CURRENT_USER\Software\Tigris.org\Subversion.

Registry-based configuration options are parsed before their file-based counterparts, so are
overridden by values found in the configuration files. In other words, configuration priority is
granted in the following order on a Windows system:

1. Command-line options

2. The per-user INI files

3. The per-user Registry values

4. The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented
out”. However, Subversion will ignore any option key whose name begins with a hash (#) char-
acter. This allows you to effectively comment out a Subversion option without deleting the en-
tire key from the Registry, obviously simplifying the process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry, and will not at-
tempt to create a default configuration area there. You can create the keys you need using the
REGEDIT program. Alternatively, you can create a .reg file, and then double-click on that file
from the Explorer shell, which will cause the data to be merged into your registry.

Example 7.1. Sample Registration Entries (.reg) File.

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\groups]

Customizing Your Subversion Experience

168

[HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\global]
"#http-proxy-host"=""
"#http-proxy-port"=""
"#http-proxy-username"=""
"#http-proxy-password"=""
"#http-proxy-exceptions"=""
"#http-timeout"="0"
"#http-compression"="yes"
"#neon-debug-mask"=""
"#ssl-authority-files"=""
"#ssl-trust-default-ca"=""
"#ssl-client-cert-file"=""
"#ssl-client-cert-password"=""

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auth]
"#store-auth-creds"="no"

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\helpers]
"#editor-cmd"="notepad"
"#diff-cmd"=""
"#diff3-cmd"=""
"#diff3-has-program-arg"=""

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\miscellany]
"#global-ignores"="*.o *.lo *.la #*# .*.rej *.rej .*~ *~ .#* .DS_Store"
"#log-encoding"=""
"#use-commit-times"=""
"#template-root"=""
"#enable-auto-props"=""

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\tunnels]

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auto-props]

The previous example shows the contents of a .reg file which contains some of the most
commonly used configuration options and their default values. Note the presence of both sys-
tem-wide (for network proxy-related options) and per-user settings (editor programs and pass-
word storage, among others). Also note that all the options are effectively commented out. You
need only to remove the hash (#) character from the beginning of the option names, and set
the values as you desire.

Configuration Options
TODO: Rework and move this section to the Reference

In this section, we will discuss the specific run-time configuration options that are currently sup-
ported by Subversion.

Servers

The servers file contains Subversion configuration options related to the network layers.
There are two special section names in this file—groups and global. The groups section is
essentially a cross-reference table. The keys in this section are the names of other sections in
the file; their values are globs—textual tokens which possibly contain wildcard characters—that
are compared against the hostnames of the machine to which Subversion requests are sent.

Customizing Your Subversion Experience

169

[groups]
beanie-babies = *.red-bean.com
collabnet = svn.collab.net

[beanie-babies]
…

[collabnet]
…

When Subversion is used over a network, it attempts to match the name of the server it is try-
ing to reach with a group name under the groups section. If a match is made, Subversion
then looks for a section in the servers file whose name is the matched group's name. From
that section it reads the actual network configuration settings.

The global section contains the settings that are meant for all of the servers not matched by
one of the globs under the groups section. The options available in this section are exactly
the same as those valid for the other server sections in the file (except, of course, the special
groups section), and are as follows:

http-proxy-host
This specifies the hostname of the proxy computer through which your HTTP-based Sub-
version requests must pass. It defaults to an empty value, which means that Subversion
will not attempt to route HTTP requests through a proxy computer, and will instead attempt
to contact the destination machine directly.

http-proxy-port
This specifies the port number on the proxy host to use. It defaults to an empty value.

http-proxy-username
This specifies the username to supply to the proxy machine. It defaults to an empty value.

http-proxy-password
This specifies the password to supply to the proxy machine. It defaults to an empty value.

http-timeout
This specifies the amount of time, in seconds, to wait for a server response. If you experi-
ence problems with a slow network connection causing Subversion operations to timeout,
you should increase the value of this option. The default value is 0, which instructs the un-
derlying HTTP library, Neon, to use its default timeout setting.

http-compression
This specifies whether or not Subversion should attempt to compress network requests
made to DAV-ready servers. The default value is yes (though compression will only occur
if that capability is compiled into the network layer). Set this to no to disable compression,
such as when debugging network transmissions.

neon-debug-mask
This is an integer mask that the underlying HTTP library, Neon, uses for choosing what
type of debugging output to yield. The default value is 0, which will silence all debugging
output. For more information about how Subversion makes use of Neon, see Chapter 8,
Developer Information.

ssl-authority-files
This is a semicolon-delimited list of paths to files containing certificates of the certificate
authorities (or CAs) that are accepted by the Subversion client when accessing the reposit-
ory over HTTPS.

Customizing Your Subversion Experience

170

ssl-trust-default-ca
Set this variable to yes if you want Subversion to automatically trust the set of default CAs
that ship with OpenSSL.

ssl-client-cert-file
If a host (or set of hosts) requires an SSL client certificate, you'll normally be prompted for
a path to your certificate. By setting this variable to that same path, Subversion will be able
to find your client certificate automatically without prompting you. There's no standard
place to store your certificate on disk; Subversion will grab it from any path you specify.

ssl-client-cert-password
If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you
for the passphrase whenever the certificate is used. If you find this annoying (and don't
mind storing the password in the servers file), then you can set this variable to the certi-
ficate's passphrase. You won't be prompted anymore.

Config

The config file contains the rest of the currently available Subversion run-time options, those
not related to networking. There are only a few options in use at this time, but they are again
grouped into sections in expectation of future additions.

The auth section contains settings related to Subversion's authentication and authorization
against the repository. It contains:

store-passwords
This instructs Subversion to cache, or not to cache, passwords that are supplied by the
user in response to server authentication challenges. The default value is yes. Set this to
no to disable this on-disk password caching. You can override this option for a single in-
stance of the svn command using the --no-auth-cache command-line parameter (for
those subcommands that support it). For more information, see the section called “Client
Credentials Caching”.

store-auth-creds
This setting is the same as store-passwords, except that it enables or disables disk-
caching of all authentication information: usernames, passwords, server certificates, and
any other types of cacheable credentials.

The helpers section controls which external applications Subversion uses to accomplish its
tasks. Valid options in this section are:

editor-cmd
This specifies the program Subversion will use to query the user for a log message during
a commit operation, such as when using svn commit without either the --message (-m)
or --file (-F) options. This program is also used with the svn propedit command—a
temporary file is populated with the current value of the property the user wishes to edit,
and the edits take place right in the editor program (see the section called “Properties”).
This option's default value is empty. The order of priority for determining the editor com-
mand is:

1. Command-line option --editor-cmd

2. Environment variable SVN_EDITOR

Customizing Your Subversion Experience

171

2Anyone for potluck dinner?

3. Configuration option editor-cmd

4. Environment variable VISUAL

5. Environment variable EDITOR

6. Possibly, a default value built in to Subversion (not present in the official builds)

The value of any of these options or variables is (unlike diff-cmd) the beginning of a
command line to be executed by the shell. Subversion appends a space and the pathname
of the temporary file to be edited. The editor should modify the temporary file and return a
zero exit code to indicate success.

diff-cmd
This specifies the absolute path of a differencing program, used when Subversion gener-
ates “diff” output (such as when using the svn diff command). By default Subversion uses
an internal differencing library—setting this option will cause it to perform this task using an
external program. See the section called “Using External Differencing Tools” for more de-
tails on using such programs.

diff3-cmd
This specifies the absolute path of a three-way differencing program. Subversion uses this
program to merge changes made by the user with those received from the repository. By
default Subversion uses an internal differencing library—setting this option will cause it to
perform this task using an external program. See the section called “Using External Differ-
encing Tools” for more details on using such programs.

diff3-has-program-arg
This flag should be set to true if the program specified by the diff3-cmd option accepts
a --diff-program command-line parameter.

The tunnels section allows you to define new tunnel schemes for use with svnserve and
svn:// client connections. For more details, see the section called “SSH authentication and
authorization”.

The miscellany section is where everything that doesn't belong elsewhere winds up. 2 In
this section, you can find:

global-ignores
When running the svn status command, Subversion lists unversioned files and directories
along with the versioned ones, annotating them with a ? character (see the section called
“svn status”). Sometimes, it can be annoying to see uninteresting, unversioned items—for
example, object files that result from a program's compilation—in this display. The glob-
al-ignores option is a list of whitespace-delimited globs which describe the names of
files and directories that Subversion should not display unless they are versioned. The de-
fault value is *.o *.lo *.la #*# .*.rej *.rej .*~ *~ .#* .DS_Store.

As well as svn status, the svn add and svn import commands also ignore files that
match the list when they are scanning a directory. You can override this behaviour for a
single instance of any of these commands by explicitly specifying the file name, or by using
the --no-ignore command-line flag.

For information on more fine-grained control of ignored items, see the section called
“Ignoring Unversioned Items”.

Customizing Your Subversion Experience

172

enable-auto-props
This instructs Subversion to automatically set properties on newly added or imported files.
The default value is no, so set this to yes to enable Auto-props. The auto-props section
of this file specifies which properties are to be set on which files.

log-encoding
This variable sets the default character set encoding for commit log messages. It's a per-
manent form of the --encoding option (see the section called “svn Switches”). The Sub-
version repository stores log messages in UTF-8, and assumes that your log message is
written using your operating system's native locale. You should specify a different encod-
ing if your commit messages are written in any other encoding.

use-commit-times
Normally your working copy files have timestamps that reflect the last time they were
touched by any process, whether that be your own editor or by some svn subcommand.
This is generally convenient for people developing software, because build systems often
look at timestamps as a way of deciding which files need to be recompiled.

In other situations, however, it's sometimes nice for the working copy files to have
timestamps that reflect the last time they were changed in the repository. The svn export
command always places these “last-commit timestamps” on trees that it produces. By set-
ting this config variable to yes, the svn checkout, svn update, svn switch, and svn re-
vert commands will also set last-commit timestamps on files that they touch.

The auto-props section controls the Subversion client's ability to automatically set properties
on files when they are added or imported. It contains any number of key-value pairs in the
format PATTERN = PROPNAME=PROPVALUE where PATTERN is a file pattern that matches a
set of filenames and the rest of the line is the property and its value. Multiple matches on a file
will result in multiple propsets for that file; however, there is no guarantee that auto-props will
be applied in the order in which they are listed in the config file, so you can't have one rule
“override” another. You can find several examples of auto-props usage in the config file.
Lastly, don't forget to set enable-auto-props to yes in the miscellany section if you
want to enable auto-props.

Localization
Localization is the act of making programs behave in a region-specific way. When a program
formats numbers or dates in a way specific to your part of the world, or prints messages (or ac-
cepts input) in your native language, the program is said to be localized. This section describes
steps Subversion has made towards localization.

Understanding locales
Most modern operating systems have a notion of the “current locale”—that is, the region or
country whose localization conventions are honored. These conventions—typically chosen by
some runtime configuration mechanism on the computer—affect the way in which programs
present data to the user, as well as the way in which they accept user input.

On Unix-like systems, you can check the values of the locale-related runtime configuration op-
tions by running the locale command:

$ locale
LANG=
LC_COLLATE="C"

Customizing Your Subversion Experience

173

LC_CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC_NUMERIC="C"
LC_TIME="C"
LC_ALL="C"

The output is a list of locale-related environment variables and their current values. In this ex-
ample, the variables are all set to the default C locale, but users can set these variables to spe-
cific country/language code combinations. For example, if one were to set the LC_TIME vari-
able to fr_CA, then programs would know to present time and date information formatted ac-
cording a French-speaking Canadian's expectations. And if one were to set the LC_MESSAGES
variable to zh_TW, then programs would know to present human-readable messages in Tradi-
tional Chinese. Setting the LC_ALL variable has the effect of changing every locale variable to
the same value. The value of LANG is used as a default value for any locale variable that is un-
set. To see the list of available locales on a Unix system, run the command locale -a.

On Windows, locale configuration is done via the “Regional and Language Options” control
panel item. There you can view and select the values of individual settings from the available
locales, and even customize (at a sickening level of detail) several of the display formatting
conventions.

Subversion's use of locales
The Subversion client, svn, honors the current locale configuration in two ways. First, it notices
the value of the LC_MESSAGES variable and attempts to print all messages in the specified lan-
guage. For example:

$ export LC_MESSAGES=de_DE
$ svn help cat
cat: Gibt den Inhalt der angegebenen Dateien oder URLs aus.
Aufruf: cat ZIEL[@REV]...
…

This behavior works identically on both Unix and Windows systems. Note, though, that while
your operating system might have support for a certain locale, the Subversion client still may
not be able to speak the particular language. In order to produce localized messages, human
volunteers must provide translations for each language. The translations are written using the
GNU gettext package, which results in translation modules that end with the .mo filename ex-
tension. For example, the German translation file is named de.mo. These translation files are
installed somewhere on your system. On Unix, they typically live in /usr/share/locale/,
while on Windows they're often found in the \share\locale\ folder in Subversion's installa-
tion area. Once installed, a module is named after the program it provides translations for. For
example, the de.mo file may ultimately end up installed as /
usr/share/locale/de/LC_MESSAGES/subversion.mo. By browsing the installed .mo
files, you can see which languages the Subversion client is able to speak.

The second way in which the locale is honored involves how svn interprets your input. The re-
pository stores all paths, filenames, and log messages in Unicode, encoded as UTF-8. In that
sense, the repository is internationalized—that is, the repository is ready to accept input in any
human language. This means, however, that the Subversion client is responsible for sending
only UTF-8 filenames and log messages into the repository. In order to do this, it must convert
the data from the native locale into UTF-8.

For example, suppose you create a file named caffè.txt, and then when committing the file,

Customizing Your Subversion Experience

174

3Subversion developers are good, but even the best make mistakes.

you write the log message as “Adesso il caffè è più forte”. Both the filename and log message
contain non-ASCII characters, but because your locale is set to it_IT, the Subversion client
knows to interpret them as Italian. It uses an Italian character set to convert the data to UTF-8
before sending them off to the repository.

Note that while the repository demands UTF-8 filenames and log messages, it does not pay at-
tention to file contents. Subversion treats file contents as opaque strings of bytes, and neither
client nor server makes an attempt to understand the character set or encoding of the con-
tents.

Character set conversion errors

While using Subversion, you might get hit with an error related to character set conver-
sions:

svn: Can't convert string from native encoding to 'UTF-8':
…
svn: Can't convert string from 'UTF-8' to native encoding:
…

Errors like this typically occur when the Subversion client has received a UTF-8 string
from the repository, but not all of the characters in that string can be represented using
the encoding of the current locale. For example, if your locale is en_US but a collaborator
has committed a Japanese filename, you're likely to see this error when you receive the
file during an svn update.

The solution is either to set your locale to something which can represent the incoming
UTF-8 data, or to change the filename or log message in the repository. (And don't forget
to slap your collaborator's hand—projects should decide on common languages ahead of
time, so that all participants are using the same locale.)

Using External Differencing Tools
The presence of --diff-cmd and --diff3-cmd options, and similarly named runtime con-
figuration parameters (see the section called “Config”), can lead to a false notion of how easy it
is to use external differencing (or “diff”) and merge tools with Subversion. While Subversion
can use most of popular such tools available, the effort invested in setting this up often turns
out to be non-trivial.

The interface between Subversion and external diff and merge tools harkens back to a time
when Subversion's only contextual differencing capabilities were built around invocations of the
GNU diffutils toolchain, specifically the diff and diff3 utilities. To get the kind of behavior Sub-
version needed, it called these utilities with more than a handful of options and parameters,
most of which were quite specific to the utilities. Some time later, Subversion grew its own in-
ternal differencing library, and as a failover mechanism, 3 the --diff-cmd and --diff3-cmd
options were added to the Subversion command-line client so users could more easily indicate
that they preferred to use the GNU diff and diff3 utilities instead of the newfangled internal diff
library. If those options were used, Subversion would simply ignore the internal diff library, and
fall back to running those external programs, lengthy argument lists and all. And that's where
things remain today.

It didn't take long for folks to realize that having such easy configuration mechanisms for spe-

Customizing Your Subversion Experience

175

4The GNU diff manual page puts it this way: “An exit status of 0 means no differences were found, 1 means some dif-
ferences were found, and 2 means trouble.”

cifying that Subversion should use the external GNU diff and diff3 utilities located at a particu-
lar place on the system could be applied toward the use of other diff and merge tools, too.
After all, Subversion didn't actually verify that the things it was being told to run were members
of the GNU diffutils toolchain. But the only configurable aspect of using those external tools is
their location on the system—not the option set, parameter order, etc. Subversion continues
throwing all those GNU utility options at your external diff tool regardless of whether or not that
program can understand those options. And that's where things get unintuitive for most users.

The key to using external diff and merge tools (other than GNU diff and diff3, of course) with
Subversion is to use wrapper scripts which convert the input from Subversion into something
that your differencing tool can understand, and then to convert the output of your tool back into
a format which Subversion expects—the format that the GNU tools would have used. The fol-
lowing sections cover the specifics of those expectations.

Note

The decision on when to fire off a contextual diff or merge as part of a larger Sub-
version operation is made entirely by Subversion, and is affected by, among other
things, whether or not the files being operated on are human-readable as determ-
ined by their svn:mime-type property. This means, for example, that even if you
had the niftiest Microsoft Word-aware differencing or merging tool in the Universe,
it would never be invoked by Subversion so long as your versioned Word docu-
ments had a configured MIME type that denoted that they were not human-read-
able (such as application/msword). For more about MIME type settings, see
the section called “File Content Type”

External diff
Subversion calls external diff programs with parameters suitable for the GNU diff utility, and
expects only that the external program return with a successful error code. For most alternative
diff program, only the sixth and seventh arguments, the paths of the files which represent the
left and right sides of the diff, respectively, are of interest. Note that Subversion runs the diff
program once per modified file covered by the Subversion operation, so if your program runs in
an asynchronous fashion (or “backgrounded”), you might have several instances of it all run-
ning simultaneously. Finally, Subversion expects that your program return an errorcode of 1 if
your program detected differences, or 0 if it did not—any other errorcode is considered a fatal
error. 4

Example 7.2, “diffwrap.sh” and Example 7.3, “diffwrap.bat” are templates for external diff tool
wrappers in the Bourne shell and Windows batch scripting languages, respectively.

Example 7.2. diffwrap.sh

#!/bin/sh

Configure your favorite diff program here.
DIFF="/usr/local/bin/my-diff-tool"

Subversion provides the paths we need as the sixth and seventh
parameters.

Customizing Your Subversion Experience

176

LEFT=${6}
RIGHT=${7}

Call the diff command (change the following line to make sense for
your merge program).
$DIFF --left $LEFT --right $RIGHT

Return an errorcode of 0 if no differences were detected, 1 if some were.
Any other errorcode will be treated as fatal.

Example 7.3. diffwrap.bat

@ECHO OFF

REM Configure your favorite diff program here.
SET DIFF="C:\Program Files\Funky Stuff\My Diff Tool.exe"

REM Subversion provides the paths we need as the sixth and seventh
REM parameters.
SET LEFT=%6
SET RIGHT=%7

REM Call the diff command (change the following line to make sense for
REM your merge program).
%DIFF% --left %LEFT% --right %RIGHT%

REM Return an errorcode of 0 if no differences were detected, 1 if some were.
REM Any other errorcode will be treated as fatal.

External diff3
Subversion calls external merge programs with parameters suitable for the GNU diff3 utility,
expecting that the external program return with a successful error code and that the full file
contents which result from the completed merge operation are printed on the standard output
stream (so that Subversion can redirect them into the appropriate version controlled file). For
most alternative merge programs, only the ninth, tenth, and eleventh arguments, the paths of
the files which represent the “mine”, “older”, and “yours” inputs, respectively, are of interest.
Note that because Subversion depends on the output of your merge program, you wrapper
script must not exit before that output has been delivered to Subversion. When it finally does
exit, it should return an errorcode of 0 if the merge was successful, or 1 if unresolved conflicts
remain in the output—any other errorcode is considered a fatal error.

Example 7.4, “diff3wrap.sh” and Example 7.5, “diff3wrap.bat” are templates for external merge
tool wrappers in the Bourne shell and Windows batch scripting languages, respectively.

Example 7.4. diff3wrap.sh

#!/bin/sh

Configure your favorite diff3/merge program here.
DIFF3="/usr/local/bin/my-merge-tool"

Customizing Your Subversion Experience

177

Subversion provides the paths we need as the ninth, tenth, and eleventh
parameters.
MINE=${9}
OLDER=${10}
YOURS=${11}

Call the merge command (change the following line to make sense for
your merge program).
$DIFF3 --older $OLDER --mine $MINE --yours $YOURS

After performing the merge, this script needs to print the contents
of the merged file to stdout. Do that in whatever way you see fit.
Return an errorcode of 0 on successful merge, 1 if unresolved conflicts
remain in the result. Any other errorcode will be treated as fatal.

Example 7.5. diff3wrap.bat

@ECHO OFF

REM Configure your favorite diff3/merge program here.
SET DIFF3="C:\Program Files\Funky Stuff\My Merge Tool.exe"

REM Subversion provides the paths we need as the ninth, tenth, and eleventh
REM parameters. But we only have access to nine parameters at a time, so we
REM shift our nine-parameter window twice to let us get to what we need.
SHIFT
SHIFT
SET MINE=%7
SET OLDER=%8
SET YOURS=%9

REM Call the merge command (change the following line to make sense for
REM your merge program).
%DIFF3% --older %OLDER% --mine %MINE% --yours %YOURS%

REM After performing the merge, this script needs to print the contents
REM of the merged file to stdout. Do that in whatever way you see fit.
REM Return an errorcode of 0 on successful merge, 1 if unresolved conflicts
REM remain in the result. Any other errorcode will be treated as fatal.

Customizing Your Subversion Experience

178

Chapter 8. Developer Information
Subversion has a modular design, implemented as a collection of C libraries. Each library has
a well-defined purpose and interface, and those interfaces are available not only for Subver-
sion itself to use, but for any software that wishes to embed or otherwise programmatically
control Subversion. Most of those interfaces are available not only in C, but also in higher-level
languages such as Python or Java.

This chapter is for those who wish to interact with Subversion through its public Application
Programming Interface (API) or various language bindings. If you wish to write robust wrapper
scripts around Subversion functionality to simplify your own life, are trying to develop more
complex integrations between Subversion and other pieces of software, or just have an in-
terest in Subversion's various library modules and what they offer, this chapter is for you. If,
however, you don't foresee yourself participating with Subversion at such a level, feel free to
skip this chapter with the confidence that your experience as a Subversion user will not be af-
fected.

Layered Library Design
Each of Subversion's core libraries can be said to exist in one of three main layers—the Re-
pository Layer, the Repository Access (RA) Layer, or the Client Layer. We will examine these
layers shortly, but first, see our brief inventory of Subversion's libraries in Table 8.1, “A Brief In-
ventory of the Subversion Libraries”. For the sake of consistency, we will refer to the libraries
by their extensionless Unix library names (e.g.: libsvn_fs, libsvn_wc, mod_dav_svn).

Table 8.1. A Brief Inventory of the Subversion Libraries

Library Description

libsvn_client Primary interface for client programs

libsvn_delta Tree and byte-stream differencing routines

libsvn_diff Contextual differencing and merging routines

libsvn_fs Filesystem commons and module loader

libsvn_fs_base The Berkeley DB filesystem back-end

libsvn_fs_fs The native filesystem (FSFS) back-end

libsvn_ra Repository Access commons and module
loader

libsvn_ra_dav The WebDAV Repository Access module

libsvn_ra_local The local Repository Access module

libsvn_ra_svn The custom protocol Repository Access mod-
ule

libsvn_repos Repository interface

libsvn_subr Miscellaneous helpful subroutines

libsvn_wc The working copy management library

mod_authz_svn Apache authorization module for Subversion
repositories access via WebDAV

mod_dav_svn Apache module for mapping WebDAV opera-
tions to Subversion ones

179

The fact that the word “miscellaneous” only appears once in Table 8.1, “A Brief Inventory of the
Subversion Libraries” is a good sign. The Subversion development team is serious about mak-
ing sure that functionality lives in the right layer and libraries. Perhaps the greatest advantage
of the modular design is its lack of complexity from a developer's point of view. As a developer,
you can quickly formulate that kind of “big picture” that allows you to pinpoint the location of
certain pieces of functionality with relative ease.

Another benefit of modularity is the ability to replace a given module with a whole new library
that implements the same API without affecting the rest of the code base. In some sense, this
happens within Subversion already. The libsvn_ra_dav, libsvn_ra_local, and libsvn_ra_svn all
implement the same interface. And all three communicate with the Repository Lay-
er—libsvn_ra_dav and libsvn_ra_svn do so across a network, and libsvn_ra_local connects to
it directly. The libsvn_fs_base and libsvn_fs_fs libraries are another example of this.

The client itself also highlights modularity in the Subversion design. While Subversion itself
comes with only a command-line client program, there are several third party programs which
provide various forms of client GUI. These GUIs use the same APIs that the stock command-
line client does. Subversion's libsvn_client library is the one-stop shop for most of the function-
ality necessary for designing a working Subversion client (see the section called “Client
Layer”).

Repository Layer
When referring to Subversion's Repository Layer, we're generally talking about two librar-
ies—the repository library, and the filesystem library. These libraries provide the storage and
reporting mechanisms for the various revisions of your version-controlled data. This layer is
connected to the Client Layer via the Repository Access Layer, and is, from the perspective of
the Subversion user, the stuff at the “other end of the line.”

The Subversion Filesystem is accessed via the libsvn_fs API, and is not a kernel-level filesys-
tem that one would install in an operating system (like the Linux ext2 or NTFS), but a virtual
filesystem. Rather than storing “files” and “directories” as real files and directories (as in, the
kind you can navigate through using your favorite shell program), it uses one of two available
abstract storage backends—either a Berkeley DB database environment, or a flat-file repres-
entation. (To learn more about the two repository back-ends, see the section called
“Repository Data Stores”.) However, there has been considerable interest by the development
community in giving future releases of Subversion the ability to use other back-end database
systems, perhaps through a mechanism such as Open Database Connectivity (ODBC).

The filesystem API exported by libsvn_fs contains the kinds of functionality you would expect
from any other filesystem API: you can create and remove files and directories, copy and move
them around, modify file contents, and so on. It also has features that are not quite as com-
mon, such as the ability to add, modify, and remove metadata (“properties”) on each file or dir-
ectory. Furthermore, the Subversion Filesystem is a versioning filesystem, which means that
as you make changes to your directory tree, Subversion remembers what your tree looked like
before those changes. And before the previous changes. And the previous ones. And so on, all
the way back through versioning time to (and just beyond) the moment you first started adding
things to the filesystem.

All the modifications you make to your tree are done within the context of a Subversion trans-
action. The following is a simplified general routine for modifying your filesystem:

1. Begin a Subversion transaction.

2. Make your changes (adds, deletes, property modifications, etc.).

Developer Information

180

3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently
stored as historical artifacts. Each of these cycles generates a single new revision of your tree,
and each revision is forever accessible as an immutable snapshot of “the way things were.”

The Transaction Distraction

The notion of a Subversion transaction, especially given its close proximity to the data-
base code in libsvn_fs, can become easily confused with the transaction support
provided by the underlying database itself. Both types of transaction exist to provide
atomicity and isolation. In other words, transactions give you the ability to perform a set
of actions in an “all or nothing” fashion—either all the actions in the set complete with
success, or they all get treated as if none of them ever happened—and in a way that
does not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the
modification of data in the database itself (such as changing the contents of a table row).
Subversion transactions are larger in scope, encompassing higher-level operations like
making modifications to a set of files and directories which are intended to be stored as
the next revision of the filesystem tree. If that isn't confusing enough, consider this: Sub-
version uses a database transaction during the creation of a Subversion transaction (so
that if the creation of Subversion transaction fails, the database will look as if we had nev-
er attempted that creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the data-
base system itself is hidden almost entirely from view (as should be expected from a
properly modularized library scheme). It is only when you start digging into the imple-
mentation of the filesystem itself that such things become visible (or interesting).

Most of the functionality provided by the filesystem interface comes as an action that occurs on
a filesystem path. That is, from outside of the filesystem, the primary mechanism for describing
and accessing the individual revisions of files and directories comes through the use of path
strings like /foo/bar, just as if you were addressing files and directories through your favorite
shell program. You add new files and directories by passing their paths-to-be to the right API
functions. You query for information about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify a file or dir-
ectory in Subversion. Think of a directory tree as a two-dimensional system, where a node's
siblings represent a sort of left-and-right motion, and descending into subdirectories a down-
ward motion. Figure 8.1, “Files and directories in two dimensions” shows a typical representa-
tion of a tree as exactly that.

Figure 8.1. Files and directories in two dimensions

Developer Information

181

1We understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was
actually the fourth dimension, and we apologize for any emotional trauma induced by our assertion of a different the-
ory.

Of course, the Subversion filesystem has a nifty third dimension that most filesystems do not
have—Time! 1 In the filesystem interface, nearly every function that has a path argument also
expects a root argument. This svn_fs_root_t argument describes either a revision or a Sub-
version transaction (which is usually just a revision-to-be), and provides that third-dimensional
context needed to understand the difference between /foo/bar in revision 32, and the same
path as it exists in revision 98. Figure 8.2, “Versioning time—the third dimension!” shows revi-
sion history as an added dimension to the Subversion filesystem universe.

Figure 8.2. Versioning time—the third dimension!

As we mentioned earlier, the libsvn_fs API looks and feels like any other filesystem, except
that it has this wonderful versioning capability. It was designed to be usable by any program in-
terested in a versioning filesystem. Not coincidentally, Subversion itself is interested in that
functionality. But while the filesystem API should be sufficient for basic file and directory ver-
sioning support, Subversion wants more—and that is where libsvn_repos comes in.

Developer Information

182

The Subversion repository library (libsvn_repos) is basically a wrapper library around the
filesystem functionality. This library is responsible for creating the repository layout, making
sure that the underlying filesystem is initialized, and so on. Libsvn_repos also implements a set
of hooks—scripts that are executed by the repository code when certain actions take place.
These scripts are useful for notification, authorization, or whatever purposes the repository ad-
ministrator desires. This type of functionality, and other utilities provided by the repository lib-
rary, are not strictly related to implementing a versioning filesystem, which is why it was placed
into its own library.

Developers who wish to use the libsvn_repos API will find that it is not a complete wrapper
around the filesystem interface. That is, only certain major events in the general cycle of
filesystem activity are wrapped by the repository interface. Some of these include the creation
and commit of Subversion transactions, and the modification of revision properties. These par-
ticular events are wrapped by the repository layer because they have hooks associated with
them. In the future, other events may be wrapped by the repository API. All of the remaining
filesystem interaction will continue to occur directly via the libsvn_fs API, though.

For example, here is a code segment that illustrates the use of both the repository and filesys-
tem interfaces to create a new revision of the filesystem in which a directory is added. Note
that in this example, the SVN_ERR() macro simply checks for a non-successful error return
from the function it wraps, and returns that error if it exists.

Example 8.1. Using the Repository Layer

/* Create a new directory at the path NEW_DIRECTORY in the Subversion
repository located at REPOS_PATH. Perform all memory allocation in
POOL. This function will create a new revision for the addition of
NEW_DIRECTORY. */

static svn_error_t *
make_new_directory (const char *repos_path,

const char *new_directory,
apr_pool_t *pool)

{
svn_error_t *err;
svn_repos_t *repos;
svn_fs_t *fs;
svn_revnum_t youngest_rev;
svn_fs_txn_t *txn;
svn_fs_root_t *txn_root;
const char *conflict_str;

/* Open the repository located at REPOS_PATH. */
SVN_ERR (svn_repos_open (&repos, repos_path, pool));

/* Get a pointer to the filesystem object that is stored in
REPOS. */

fs = svn_repos_fs (repos);

/* Ask the filesystem to tell us the youngest revision that
currently exists. */

SVN_ERR (svn_fs_youngest_rev (&youngest_rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST_REV. We are
less likely to have our later commit rejected as conflicting if we
always try to make our changes against a copy of the latest snapshot
of the filesystem tree. */

SVN_ERR (svn_fs_begin_txn (&txn, fs, youngest_rev, pool));

Developer Information

183

/* Now that we have started a new Subversion transaction, get a root
object that represents that transaction. */

SVN_ERR (svn_fs_txn_root (&txn_root, txn, pool));

/* Create our new directory under the transaction root, at the path
NEW_DIRECTORY. */

SVN_ERR (svn_fs_make_dir (txn_root, new_directory, pool));

/* Commit the transaction, creating a new revision of the filesystem
which includes our added directory path. */

err = svn_repos_fs_commit_txn (&conflict_str, repos,
&youngest_rev, txn, pool);

if (! err)
{
/* No error? Excellent! Print a brief report of our success. */
printf ("Directory '%s' was successfully added as new revision "

"'%ld'.\n", new_directory, youngest_rev);
}

else if (err->apr_err == SVN_ERR_FS_CONFLICT)
{
/* Uh-oh. Our commit failed as the result of a conflict

(someone else seems to have made changes to the same area
of the filesystem that we tried to modify). Print an error
message. */

printf ("A conflict occurred at path '%s' while attempting "
"to add directory '%s' to the repository at '%s'.\n",
conflict_str, new_directory, repos_path);

}
else
{
/* Some other error has occurred. Print an error message. */
printf ("An error occurred while attempting to add directory '%s' "

"to the repository at '%s'.\n",
new_directory, repos_path);

}

/* Return the result of the attempted commit to our caller. */
return err;

}

In the previous code segment, calls were made to both the repository and filesystem inter-
faces. We could just as easily have committed the transaction using svn_fs_commit_txn().
But the filesystem API knows nothing about the repository library's hook mechanism. If you
want your Subversion repository to automatically perform some set of non-Subversion tasks
every time you commit a transaction (like, for example, sending an email that describes all the
changes made in that transaction to your developer mailing list), you need to use the libs-
vn_repos-wrapped version of that function—svn_repos_fs_commit_txn(). This function
will actually first run the pre-commit hook script if one exists, then commit the transaction,
and finally will run a post-commit hook script. The hooks provide a special kind of reporting
mechanism that does not really belong in the core filesystem library itself. (For more informa-
tion regarding Subversion's repository hooks, see the section called “Hook Scripts”.)

The hook mechanism requirement is but one of the reasons for the abstraction of a separate
repository library from the rest of the filesystem code. The libsvn_repos API provides several
other important utilities to Subversion. These include the abilities to:

1. create, open, destroy, and perform recovery steps on a Subversion repository and the
filesystem included in that repository.

Developer Information

184

2. describe the differences between two filesystem trees.

3. query for the commit log messages associated with all (or some) of the revisions in which a
set of files was modified in the filesystem.

4. generate a human-readable “dump” of the filesystem, a complete representation of the revi-
sions in the filesystem.

5. parse that dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to
offer increased functionality and configurable option support.

Repository Access Layer
If the Subversion Repository Layer is at “the other end of the line”, the Repository Access Lay-
er is the line itself. Charged with marshalling data between the client libraries and the reposit-
ory, this layer includes the libsvn_ra module loader library, the RA modules themselves (which
currently includes libsvn_ra_dav, libsvn_ra_local, and libsvn_ra_svn), and any additional librar-
ies needed by one or more of those RA modules, such as the mod_dav_svn Apache module
with which libsvn_ra_dav communicates or libsvn_ra_svn's server, svnserve.

Since Subversion uses URLs to identify its repository resources, the protocol portion of the
URL schema (usually file:, http:, https:, or svn:) is used to determine which RA mod-
ule will handle the communications. Each module registers a list of the protocols it knows how
to “speak” so that the RA loader can, at runtime, determine which module to use for the task at
hand. You can determine which RA modules are available to the Subversion command-line cli-
ent, and what protocols they claim to support, by running svn --version:

$ svn --version
svn, version 1.2.3 (r15833)

compiled Sep 13 2005, 22:45:22

Copyright (C) 2000-2005 CollabNet.
Subversion is open source software, see http://subversion.tigris.org/
This product includes software developed by CollabNet (http://www.Collab.Net/).

The following repository access (RA) modules are available:

* ra_dav : Module for accessing a repository via WebDAV (DeltaV) protocol.
- handles 'http' scheme
- handles 'https' scheme

* ra_svn : Module for accessing a repository using the svn network protocol.
- handles 'svn' scheme

* ra_local : Module for accessing a repository on local disk.
- handles 'file' scheme

RA-DAV (Repository Access Using HTTP/DAV)

The libsvn_ra_dav library is designed for use by clients that are being run on different ma-
chines than the servers with which they communicating, specifically servers reached using
URLs that contain the http: or https: protocol portions. To understand how this module
works, we should first mention a couple of other key components in this particular configuration
of the Repository Access Layer—the powerful Apache HTTP Server, and the Neon HTTP/
WebDAV client library.

Developer Information

185

Subversion's primary network server is the Apache HTTP Server. Apache is a time-tested, ex-
tensible open-source server process that is ready for serious use. It can sustain a high network
load and runs on many platforms. The Apache server supports a number of different standard
authentication protocols, and can be extended through the use of modules to support many
others. It also supports optimizations like network pipelining and caching. By using Apache as
a server, Subversion gets all of these features for free. And since most firewalls already allow
HTTP traffic to pass through, system administrators typically don't even have to change their
firewall configurations to allow Subversion to work.

Subversion uses HTTP and WebDAV (with DeltaV) to communicate with an Apache server.
You can read more about this in the WebDAV section of this chapter, but in short, WebDAV
and DeltaV are extensions to the standard HTTP 1.1 protocol that enable sharing and version-
ing of files over the web. Apache 2.0 and later versions come with mod_dav, an Apache mod-
ule that understands the DAV extensions to HTTP. Subversion itself supplies mod_dav_svn,
though, which is another Apache module that works in conjunction with (really, as a back-end
to) mod_dav to provide Subversion's specific implementations of WebDAV and DeltaV.

When communicating with a repository over HTTP, the RA loader library chooses libs-
vn_ra_dav as the proper access module. The Subversion client makes calls into the generic
RA interface, and libsvn_ra_dav maps those calls (which embody rather large-scale Subver-
sion actions) to a set of HTTP/WebDAV requests. Using the Neon library, libsvn_ra_dav trans-
mits those requests to the Apache server. Apache receives these requests (exactly as it does
generic HTTP requests that your web browser might make), notices that the requests are dir-
ected at a URL that is configured as a DAV location (using the <Location> directive in ht-
tpd.conf), and hands the request off to its own mod_dav module. When properly configured,
mod_dav knows to use Subversion's mod_dav_svn for any filesystem-related needs, as op-
posed to the generic mod_dav_fs that comes with Apache. So ultimately, the client is commu-
nicating with mod_dav_svn, which binds directly to the Subversion Repository Layer.

That was a simplified description of the actual exchanges taking place, though. For example,
the Subversion repository might be protected by Apache's authorization directives. This could
result in initial attempts to communicate with the repository being rejected by Apache on au-
thorization grounds. At this point, libsvn_ra_dav gets back the notice from Apache that insuffi-
cient identification was supplied, and calls back into the Client Layer to get some updated au-
thentication data. If the data is supplied correctly, and the user has the permissions that
Apache seeks, libsvn_ra_dav's next automatic attempt at performing the original operation will
be granted, and all will be well. If sufficient authentication information cannot be supplied, the
request will ultimately fail, and the client will report the failure to the user.

By using Neon and Apache, Subversion gets free functionality in several other complex areas,
too. For example, if Neon finds the OpenSSL libraries, it allows the Subversion client to at-
tempt to use SSL-encrypted communications with the Apache server (whose own mod_ssl can
“speak the language”). Also, both Neon itself and Apache's mod_deflate can understand the
“deflate” algorithm (the same one used by the PKZIP and gzip programs), so requests can be
sent in smaller, compressed chunks across the wire. Other complex features that Subversion
hopes to support in the future include the ability to automatically handle server-specified redir-
ects (for example, when a repository has been moved to a new canonical URL) and taking ad-
vantage of HTTP pipelining.

RA-SVN (Custom Protocol Repository Access)

In addition to the standard HTTP/WebDAV protocol, Subversion also provides an RA imple-
mentation that uses a custom protocol. The libsvn_ra_svn module implements its own network
socket connectivity, and communicates with a stand-alone server—the svnserve pro-
gram—on the machine that hosts the repository. Clients access the repository using the
svn:// schema.

Developer Information

186

This RA implementation lacks most of the advantages of Apache mentioned in the previous
section; however, it may be appealing to some system administrators nonetheless. It is dra-
matically easier to configure and run; setting up an svnserve process is nearly instantaneous.
It is also much smaller (in terms of lines of code) than Apache, making it much easier to audit,
for security reasons or otherwise. Furthermore, some system administrators may already have
an SSH security infrastructure in place, and want Subversion to use it. Clients using ra_svn
can easily tunnel the protocol over SSH.

RA-Local (Direct Repository Access)

Not all communications with a Subversion repository require a powerhouse server process and
a network layer. For users who simply wish to access the repositories on their local disk, they
may do so using file: URLs and the functionality provided by libsvn_ra_local. This RA mod-
ule binds directly with the repository and filesystem libraries, so no network communication is
required at all.

Subversion requires that the server name included as part of the file: URL be either loc-
alhost or empty, and that there be no port specification. In other words, your URLs should
look like either file://localhost/path/to/repos or file:///path/to/repos.

Also, be aware that Subversion's file: URLs cannot be used in a regular web browser the
way typical file: URLs can. When you attempt to view a file: URL in a regular web
browser, it reads and displays the contents of the file at that location by examining the filesys-
tem directly. However, Subversion's resources exist in a virtual filesystem (see the section
called “Repository Layer”), and your browser will not understand how to read that filesystem.

Your RA Library Here

For those who wish to access a Subversion repository using still another protocol, that is pre-
cisely why the Repository Access Layer is modularized! Developers can simply write a new lib-
rary that implements the RA interface on one side and communicates with the repository on
the other. Your new library can use existing network protocols, or you can invent your own.
You could use inter-process communication (IPC) calls, or—let's get crazy, shall we?—you
could even implement an email-based protocol. Subversion supplies the APIs; you supply the
creativity.

Client Layer
On the client side, the Subversion working copy is where all the action takes place. The bulk of
functionality implemented by the client-side libraries exists for the sole purpose of managing
working copies—directories full of files and other subdirectories which serve as a sort of local,
editable “reflection” of one or more repository locations—and propagating changes to and from
the Repository Access layer.

Subversion's working copy library, libsvn_wc, is directly responsible for managing the data in
the working copies. To accomplish this, the library stores administrative information about each
working copy directory within a special subdirectory. This subdirectory, named .svn, is
present in each working copy directory and contains various other files and directories which
record state and provide a private workspace for administrative action. For those familiar with
CVS, this .svn subdirectory is similar in purpose to the CVS administrative directories found in
CVS working copies. For more information about the .svn administrative area, see the section
called “Inside the Working Copy Administration Area”in this chapter.

The Subversion client library, libsvn_client, has the broadest responsibility; its job is to mingle
the functionality of the working copy library with that of the Repository Access Layer, and then
to provide the highest-level API to any application that wishes to perform general revision con-

Developer Information

187

trol actions. For example, the function svn_client_checkout() takes a URL as an argu-
ment. It passes this URL to the RA layer and opens an authenticated session with a particular
repository. It then asks the repository for a certain tree, and sends this tree into the working
copy library, which then writes a full working copy to disk (.svn directories and all).

The client library is designed to be used by any application. While the Subversion source code
includes a standard command-line client, it should be very easy to write any number of GUI cli-
ents on top of the client library. New GUIs (or any new client, really) for Subversion need not
be clunky wrappers around the included command-line client—they have full access via the
libsvn_client API to same functionality, data, and callback mechanisms that the command-line
client uses.

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with a libsvn_client instead of acting as a
wrapper around a command-line program? Besides simply being more efficient, this can
address potential correctness issues as well. A command-line program (like the one sup-
plied with Subversion) that binds to the client library needs to effectively translate feed-
back and requested data bits from C types to some form of human-readable output. This
type of translation can be lossy. That is, the program may not display all of the informa-
tion harvested from the API, or may combine bits of information for compact representa-
tion.

If you wrap such a command-line program with yet another program, the second program
has access only to already-interpreted (and as we mentioned, likely incomplete) informa-
tion, which it must again translate into its representation format. With each layer of wrap-
ping, the integrity of the original data is potentially tainted more and more, much like the
result of making a copy of a copy (of a copy …) of a favorite audio or video cassette.

Using the APIs
Developing applications against the Subversion library APIs is fairly straightforward. All of the
public header files live in the subversion/include directory of the source tree. These head-
ers are copied into your system locations when you build and install Subversion itself from
source. These headers represent the entirety of the functions and types meant to be access-
ible by users of the Subversion libraries.

The first thing you might notice is that Subversion's datatypes and functions are namespace
protected. Every public Subversion symbol name begins with svn_, followed by a short code
for the library in which the symbol is defined (such as wc, client, fs, etc.), followed by a
single underscore (_) and then the rest of the symbol name. Semi-public functions (used
among source files of a given library but not by code outside that library, and found inside the
library directories themselves) differ from this naming scheme in that instead of a single under-
score after the library code, they use a double underscore (__). Functions that are private to a
given source file have no special prefixing, and are declared static. Of course, a compiler
isn't interested in these naming conventions, but they help to clarify the scope of a given func-
tion or datatype.

The Apache Portable Runtime Library
Along with Subversion's own datatypes, you will see many references to datatypes that begin
with apr_—symbols from the Apache Portable Runtime (APR) library. APR is Apache's port-
ability library, originally carved out of its server code as an attempt to separate the OS-specific

Developer Information

188

2Subversion uses ANSI system calls and datatypes as much as possible.
3Neon and Berkeley DB are examples of such libraries.

bits from the OS-independent portions of the code. The result was a library that provides a
generic API for performing operations that differ mildly—or wildly—from OS to OS. While the
Apache HTTP Server was obviously the first user of the APR library, the Subversion de-
velopers immediately recognized the value of using APR as well. This means that there are
practically no OS-specific code portions in Subversion itself. Also, it means that the Subversion
client compiles and runs anywhere that the server does. Currently this list includes all flavors of
Unix, Win32, BeOS, OS/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating
systems, 2 APR gives Subversion immediate access to many custom datatypes, such as dy-
namic arrays and hash tables. Subversion uses these types extensively throughout the code-
base. But perhaps the most pervasive APR datatype, found in nearly every Subversion API
prototype, is the apr_pool_t—the APR memory pool. Subversion uses pools internally for all its
memory allocation needs (unless an external library requires a different memory management
schema for data passed through its API), 3 and while a person coding against the Subversion
APIs is not required to do the same, they are required to provide pools to the API functions that
need them. This means that users of the Subversion API must also link against APR, must call
apr_initialize() to initialize the APR subsystem, and then must create and manage
pools for use with Subversion API calls, typically by using svn_pool_create(),
svn_pool_clear(), and svn_pool_destroy().

URL and Path Requirements
With remote version control operation as the whole point of Subversion's existence, it makes
sense that some attention has been paid to internationalization (i18n) support. After all, while
“remote” might mean “across the office”, it could just as well mean “across the globe.” To facil-
itate this, all of Subversion's public interfaces that accept path arguments expect those paths
to be canonicalized, and encoded in UTF-8. This means, for example, that any new client bin-
ary that drives the libsvn_client interface needs to first convert paths from the locale-specific
encoding to UTF-8 before passing those paths to the Subversion libraries, and then re-convert
any resultant output paths from Subversion back into the locale's encoding before using those
paths for non-Subversion purposes. Fortunately, Subversion provides a suite of functions (see
subversion/include/svn_utf.h) that can be used by any program to do these conver-
sions.

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of
passing file:///home/username/My File.txt as the URL of a file named My
File.txt, you need to pass file:///home/username/My%20File.txt. Again, Subver-
sion supplies helper functions that your application can use—svn_path_uri_encode() and
svn_path_uri_decode(), for URI encoding and decoding, respectively.

Using Languages Other than C and C++
If you are interested in using the Subversion libraries in conjunction with something other than
a C program—say a Python or Perl script—Subversion has some support for this via the Sim-
plified Wrapper and Interface Generator (SWIG). The SWIG bindings for Subversion are loc-
ated in subversion/bindings/swig and whilst still maturing, they are in a usable state.
These bindings allow you to call Subversion API functions indirectly, using wrappers that trans-
late the datatypes native to your scripting language into the datatypes needed by Subversion's
C libraries.

There is an obvious benefit to accessing the Subversion APIs via a language bind-
ing—simplicity. Generally speaking, languages such as Python and Perl are much more flex-
ible and easy to use than C or C++. The sort of high-level datatypes and context-driven type

Developer Information

189

checking provided by these languages are often better at handling information that comes from
users. As you know, humans are proficient at botching up input to a program, and scripting lan-
guages tend to handle that misinformation more gracefully. Of course, often that flexibility
comes at the cost of performance. That is why using a tightly-optimized, C-based interface and
library suite, combined with a powerful, flexible binding language, is so appealing.

Let's look at a sample program that uses Subversion's Python SWIG bindings to recursively
crawl the youngest repository revision, and print the various paths reached during the crawl.

Example 8.2. Using the Repository Layer with Python

#!/usr/bin/python

"""Crawl a repository, printing versioned object path names."""

import sys
import os.path
import svn.fs, svn.core, svn.repos

def crawl_filesystem_dir(root, directory, pool):
"""Recursively crawl DIRECTORY under ROOT in the filesystem, and return
a list of all the paths at or below DIRECTORY. Use POOL for all
allocations."""

Print the name of this path.
print directory + "/"

Get the directory entries for DIRECTORY.
entries = svn.fs.svn_fs_dir_entries(root, directory, pool)

Use an iteration subpool.
subpool = svn.core.svn_pool_create(pool)

Loop over the entries.
names = entries.keys()
for name in names:

Clear the iteration subpool.
svn.core.svn_pool_clear(subpool)

Calculate the entry's full path.
full_path = directory + '/' + name

If the entry is a directory, recurse. The recursion will return
a list with the entry and all its children, which we will add to
our running list of paths.
if svn.fs.svn_fs_is_dir(root, full_path, subpool):

crawl_filesystem_dir(root, full_path, subpool)
else:

Else it's a file, so print its path here.
print full_path

Destroy the iteration subpool.
svn.core.svn_pool_destroy(subpool)

def crawl_youngest(pool, repos_path):
"""Open the repository at REPOS_PATH, and recursively crawl its
youngest revision."""

Open the repository at REPOS_PATH, and get a reference to its
versioning filesystem.

Developer Information

190

repos_obj = svn.repos.svn_repos_open(repos_path, pool)
fs_obj = svn.repos.svn_repos_fs(repos_obj)

Query the current youngest revision.
youngest_rev = svn.fs.svn_fs_youngest_rev(fs_obj, pool)

Open a root object representing the youngest (HEAD) revision.
root_obj = svn.fs.svn_fs_revision_root(fs_obj, youngest_rev, pool)

Do the recursive crawl.
crawl_filesystem_dir(root_obj, "", pool)

if __name__ == "__main__":
Check for sane usage.
if len(sys.argv) != 2:

sys.stderr.write("Usage: %s REPOS_PATH\n"
% (os.path.basename(sys.argv[0])))

sys.exit(1)

Canonicalize (enough for Subversion, at least) the repository path.
repos_path = os.path.normpath(sys.argv[1])
if repos_path == '.':

repos_path = ''

Call the app-wrapper, which takes care of APR initialization/shutdown
and the creation and cleanup of our top-level memory pool.
svn.core.run_app(crawl_youngest, repos_path)

This same program in C would need to deal with custom datatypes (such as those provided by
the APR library) for representing the hash of entries and the list of paths, but Python has
hashes (called “dictionaries”) and lists as built-in datatypes, and provides a rich collection of
functions for operating on those types. So SWIG (with the help of some customizations in Sub-
version's language bindings layer) takes care of mapping those custom datatypes into the nat-
ive datatypes of the target language. This provides a more intuitive interface for users of that
language.

The Subversion Python bindings can be used for working copy operations, too. In the previous
section of this chapter, we mentioned the libsvn_client interface, and how it exists for the
sole purpose of simplifying the process of writing a Subversion client. The following is a brief
example of how that library can be accessed via the SWIG bindings to recreate a scaled-down
version of the svn status command.

Example 8.3. A Python Status Crawler

#!/usr/bin/env python

"""Crawl a working copy directory, printing status information."""

import sys
import os.path
import getopt
import svn.core, svn.client, svn.wc

def generate_status_code(status):
"""Translate a status value into a single-character status code,
using the same logic as the Subversion command-line client."""

Developer Information

191

if status == svn.wc.svn_wc_status_none:
return ' '

if status == svn.wc.svn_wc_status_normal:
return ' '

if status == svn.wc.svn_wc_status_added:
return 'A'

if status == svn.wc.svn_wc_status_missing:
return '!'

if status == svn.wc.svn_wc_status_incomplete:
return '!'

if status == svn.wc.svn_wc_status_deleted:
return 'D'

if status == svn.wc.svn_wc_status_replaced:
return 'R'

if status == svn.wc.svn_wc_status_modified:
return 'M'

if status == svn.wc.svn_wc_status_merged:
return 'G'

if status == svn.wc.svn_wc_status_conflicted:
return 'C'

if status == svn.wc.svn_wc_status_obstructed:
return '~'

if status == svn.wc.svn_wc_status_ignored:
return 'I'

if status == svn.wc.svn_wc_status_external:
return 'X'

if status == svn.wc.svn_wc_status_unversioned:
return '?'

return '?'

def do_status(pool, wc_path, verbose):
Calculate the length of the input working copy path.
wc_path_len = len(wc_path)

Build a client context baton.
ctx = svn.client.svn_client_ctx_t()

def _status_callback(path, status, root_path_len=wc_path_len):
"""A callback function for svn_client_status."""

Print the path, minus the bit that overlaps with the root of
the status crawl
text_status = generate_status_code(status.text_status)
prop_status = generate_status_code(status.prop_status)
print '%s%s %s' % (text_status, prop_status, path[wc_path_len + 1:])

Do the status crawl, using _status_callback() as our callback function.
svn.client.svn_client_status(wc_path, None, _status_callback,

1, verbose, 0, 0, ctx, pool)

def usage_and_exit(errorcode):
"""Print usage message, and exit with ERRORCODE."""
stream = errorcode and sys.stderr or sys.stdout
stream.write("""Usage: %s OPTIONS WC-PATH

Options:
--help, -h : Show this usage message
--verbose, -v : Show all statuses, even uninteresting ones

""" % (os.path.basename(sys.argv[0])))
sys.exit(errorcode)

if __name__ == '__main__':
Parse command-line options.
try:

opts, args = getopt.getopt(sys.argv[1:], "hv", ["help", "verbose"])

Developer Information

192

except getopt.GetoptError:
usage_and_exit(1)

verbose = 0
for opt, arg in opts:

if opt in ("-h", "--help"):
usage_and_exit(0)

if opt in ("-v", "--verbose"):
verbose = 1

if len(args) != 1:
usage_and_exit(2)

Canonicalize (enough for Subversion, at least) the working copy path.
wc_path = os.path.normpath(args[0])
if wc_path == '.':

wc_path = ''

Call the app-wrapper, which takes care of APR initialization/shutdown
and the creation and cleanup of our top-level memory pool.
svn.core.run_app(do_status, wc_path, verbose)

Subversion's language bindings unfortunately tend to lack the level of attention given to the
core Subversion modules. However, there have been significant efforts towards creating func-
tional bindings for Python, Perl, and Ruby. To some extent, the work done preparing the SWIG
interface files for these languages is reusable in efforts to generate bindings for other lan-
guages supported by SWIG (which includes versions of C#, Guile, Java, MzScheme, OCaml,
PHP, Tcl, and others). However, some extra programming is required to compensate for com-
plex APIs that SWIG needs some help interfacing with. For more information on SWIG itself,
see the project's website at http://www.swig.org/.

Inside the Working Copy Administration Area
As we mentioned earlier, each directory of a Subversion working copy contains a special sub-
directory called .svn which houses administrative data about that working copy directory.
Subversion uses the information in .svn to keep track of things like:

• Which repository location(s) are represented by the files and subdirectories in the working
copy directory.

• What revision of each of those files and directories are currently present in the working copy.

• Any user-defined properties that might be attached to those files and directories.

• Pristine (un-edited) copies of the working copy files.

While there are several other bits of data stored in the .svn directory, we will examine only a
couple of the most important items.

The Entries File
Perhaps the single most important file in the .svn directory is the entries file. The entries
file is an XML document which contains the bulk of the administrative information about a ver-
sioned resource in a working copy directory. It is this one file which tracks the repository URLs,
pristine revision, file checksums, pristine text and property timestamps, scheduling and conflict
state information, last-known commit information (author, revision, timestamp), local copy his-

Developer Information

193

http://www.swig.org/

tory—practically everything that a Subversion client is interested in knowing about a versioned
(or to-be-versioned) resource!

Comparing the Administrative Areas of Subversion and CVS

A glance inside the typical .svn directory turns up a bit more than what CVS maintains in
its CVS administrative directories. The entries file contains XML which describes the
current state of the working copy directory, and basically serves the purposes of CVS's
Entries, Root, and Repository files combined.

The following is an example of an actual entries file:

Example 8.4. Contents of a Typical .svn/entries File

<?xml version="1.0" encoding="utf-8"?>
<wc-entries

xmlns="svn:">
<entry

committed-rev="1"
name=""
committed-date="2005-04-04T13:32:28.526873Z"
url="http://svn.red-bean.com/repos/greek-tree/A/D"
last-author="jrandom"
kind="dir"
uuid="4e820d15-a807-0410-81d5-aa59edf69161"
revision="1"/>

<entry
name="lambda"
copied="true"
kind="file"
copyfrom-rev="1"
schedule="add"
copyfrom-url="http://svn.red-bean.com/repos/greek-tree/A/B/lambda"/>

<entry
committed-rev="1"
name="gamma"
text-time="2005-12-11T16:32:46.000000Z"
committed-date="2005-04-04T13:32:28.526873Z"
checksum="ada10d942b1964d359e048dbacff3460"
last-author="jrandom"
kind="file"
prop-time="2005-12-11T16:32:45.000000Z"/>

<entry
name="zeta"
kind="file"
schedule="add"
revision="0"/>

<entry
name="G"
kind="dir"/>

<entry
name="H"
kind="dir"
schedule="delete"/>

</wc-entries>

Developer Information

194

4That is, the URL for the entry is the same as the concatenation of the parent directory's URL and the entry's name.

As you can see, the entries file is essentially a list of entries. Each entry tag represents one
of three things: the working copy directory itself (called the “this directory” entry, and noted as
having an empty value for its name attribute), a file in that working copy directory (noted by
having its kind attribute set to "file"), or a subdirectory in that working copy (kind here is
set to "dir"). The files and subdirectories whose entries are stored in this file are either
already under version control, or (as in the case of the file named zeta above) are scheduled
to be added to version control when the user next commits this working copy directory's
changes. Each entry has a unique name, and each entry has a node kind.

Developers should be aware of some special rules that Subversion uses when reading and
writing its entries files. While each entry has a revision and URL associated with it, note that
not every entry tag in the sample file has explicit revision or url attributes attached to it.
Subversion allows entries to not explicitly store those two attributes when their values are the
same as (in the revision case) or trivially calculable from 4 (in the url case) the data stored
in the “this directory” entry. Note also that for subdirectory entries, Subversion stores only the
crucial attributes—name, kind, url, revision, and schedule. In an effort to reduce duplicated in-
formation, Subversion dictates that the method for determining the full set of information about
a subdirectory is to traverse down into that subdirectory, and read the “this directory” entry
from its own .svn/entries file. However, a reference to the subdirectory is kept in its par-
ent's entries file, with enough information to permit basic versioning operations in the event
that the subdirectory itself is actually missing from disk.

Pristine Copies and Property Files
As mentioned before, the .svn directory also holds the pristine “text-base” versions of files.
Those can be found in .svn/text-base. The benefits of these pristine copies are mul-
tiple—network-free checks for local modifications and difference reporting, network-free rever-
sion of modified or missing files, smaller transmission of changes to the server—but comes at
the cost of having each versioned file stored at least twice on disk. These days, this seems to
be a negligible penalty for most files. However, the situation gets uglier as the size of your ver-
sioned files grows. Some attention is being given to making the presence of the “text-base” an
option. Ironically though, it is as your versioned files' sizes get larger that the existence of the
“text-base” becomes more crucial—who wants to transmit a huge file across a network just be-
cause they want to commit a tiny change to it?

Similar in purpose to the “text-base” files are the property files and their pristine “prop-base”
copies, located in .svn/props and .svn/prop-base respectively. Since directories can
have properties, too, there are also .svn/dir-props and .svn/dir-prop-base files.
Each of these property files (“working” and “base” versions) uses a simple “hash-on-disk” file
format for storing the property names and values.

WebDAV
WebDAV (shorthand for “Web-based Distributed Authoring and Versioning”) is an extension of
the standard HTTP protocol designed to make the web into a read/write medium, instead of
the basically read-only medium that exists today. The theory is that directories and files can be
shared—as both readable and writable objects—over the web. RFCs 2518 and 3253 describe
the WebDAV/DeltaV extensions to HTTP, and are available (along with a lot of other useful in-
formation) at http://www.webdav.org/.

A number of operating system file browsers are already able to mount networked directories
using WebDAV. On Win32, the Windows Explorer can browse what it calls Web Folders

Developer Information

195

http://www.webdav.org/

(which are just WebDAV-ready network locations) as if they were regular shared folders. Mac
OS X also has this capability, as do the Nautilus and Konqueror browsers (under GNOME and
KDE, respectively).

How does all of this apply to Subversion? The mod_dav_svn Apache module uses HTTP, ex-
tended by WebDAV and DeltaV, as one of its network protocols. Subversion uses
mod_dav_svn to map between Subversion's versioning concepts and those of RFCs 2518 and
3253.

For a more thorough discussion of WebDAV, how it works, and how Subversion uses it, see
Appendix C, WebDAV and Autoversioning. Among other things, that appendix discusses the
degree to which Subversion adheres to the generic WebDAV specification, and how that af-
fects interoperability with generic WebDAV clients.

Developer Information

196

1Yes, yes, you don't need a subcommand to use the --version switch, but we'll get to that in just a minute.

Chapter 9. Subversion Complete
Reference

This chapter is intended to be a complete reference to using Subversion. This includes the
command line client (svn) and all its subcommands, as well as the repository administration
programs (svnadmin and svnlook) and their respective subcommands.

The Subversion Command Line Client: svn
To use the command line client, you type svn, the subcommand you wish to use 1, and any
switches or targets that you wish to operate on—there is no specific order that the subcom-
mand and the switches must appear in. For example, all of the following are valid ways to use
svn status:

$ svn -v status
$ svn status -v
$ svn status -v myfile

You can find many more examples of how to use most client commands in Chapter 2, Basic
Usage and commands for managing properties in the section called “Properties”.

svn Switches
While Subversion has different switches for its subcommands, all switches are global—that is,
each switch is guaranteed to mean the same thing regardless of the subcommand you use it
with. For example, --verbose (-v) always means “verbose output”, regardless of the sub-
command you use it with.

--auto-props
Enables auto-props, overriding the enable-auto-props directive in the config file.

--config-dir DIR
Instructs Subversion to read configuration information from the specified directory instead
of the default location (.subversion in the user's home directory).

--diff-cmd CMD
Specifies an external program to use to show differences between files. When svn diff is
invoked, it uses Subversion's internal diff engine, which provides unified diffs by default. If
you want to use an external diff program, use --diff-cmd. You can pass switches to the
diff program with the --extensions switch (more on that later in this section).

--diff3-cmd CMD
Specifies an external program to use to merge files.

--dry-run
Goes through all the motions of running a command, but makes no actual changes—either
on disk or in the repository.

--editor-cmd CMD

197

Specifies an external program to use to edit a log message or a property value. See the
editor-cmd section in the section called “Config” for ways to specify a default editor.

--encoding ENC
Tells Subversion that your commit message is encoded in the charset provided. The de-
fault is your operating system's native locale, and you should specify the encoding if your
commit message is in any other encoding.

--extensions (-x) ARGS
Specifies an argument or arguments that Subversion should pass to an external diff com-
mand when providing differences between files. If you wish to pass multiple arguments,
you must enclose all of them in quotes (for example, svn diff --diff-cmd /usr/bin/diff -x "-
b -E"). This switch can only be used if you also pass the --diff-cmd switch.

--file (-F) FILENAME
Uses the contents of the file passed as an argument to this switch for the specified sub-
command.

--force
Forces a particular command or operation to run. There are some operations that Subver-
sion will prevent you from doing in normal usage, but you can pass the force switch to tell
Subversion “I know what I'm doing as well as the possible repercussions of doing it, so let
me at 'em”. This switch is the programmatic equivalent of doing your own electrical work
with the power on—if you don't know what you're doing, you're likely to get a nasty shock.

--force-log
Forces a suspicious parameter passed to the --message (-m) or --file (-F) options to
be accepted as valid. By default, Subversion will produce an error if parameters to these
options look like they might instead be targets of the subcommand. For example, if you
pass a versioned file's path to the --file (-F) option, Subversion will assume you've
made a mistake, that the path was instead intended as the target of the operation, and that
you simply failed to provide some other—unversioned—file as the source of your log mes-
sage. To assert your intent and override these types of errors, pass the --force-log op-
tion to subcommands that accept log messages.

--help (-h or -?)
If used with one or more subcommands, shows the built-in help text for each subcom-
mand. If used alone, it displays the general client help text.

--ignore-ancestry
Tells Subversion to ignore ancestry when calculating differences (rely on path contents
alone).

--ignore-externals
Tells Subversion to ignore external definitions and the external working copies managed
by them.

--incremental
Prints output in a format suitable for concatenation.

--limit NUM
Show only the first NUM log messages.

--message (-m) MESSAGE
Indicates that you will specify a commit message on the command line, following this
switch. For example:

Subversion Complete Reference

198

$ svn commit -m "They don't make Sunday."

--new ARG
Uses ARG as the newer target.

--no-auth-cache
Prevents caching of authentication information (e.g. username and password) in the Sub-
version administrative directories.

--no-auto-props
Disables auto-props, overriding the enable-auto-props directive in the config file.

--no-diff-added
Prevents Subversion from printing differences for added files. The default behavior when
you add a file is for svn diff to print the same differences that you would see if you had ad-
ded the entire contents of an existing (empty) file.

--no-diff-deleted
Prevents Subversion from printing differences for deleted files. The default behavior when
you remove a file is for svn diff to print the same differences that you would see if you had
left the file but removed all the content.

--no-ignore
Shows files in the status listing that would normally be omitted since they match a pattern
in the global-ignores configuration option or the svn:ignore property. See the sec-
tion called “Config” and the section called “Ignoring Unversioned Items” for more informa-
tion.

--no-unlock
Don't automatically unlock files (the default commit behavior is to unlock all files listed as
part of the commit). See the section called “Locking” for more information.

--non-interactive
In the case of an authentication failure, or insufficient credentials, prevents prompting for
credentials (e.g. username or password). This is useful if you're running Subversion inside
of an automated script and it's more appropriate to have Subversion fail than to prompt for
more information.

--non-recursive (-N)
Stops a subcommand from recursing into subdirectories. Most subcommands recurse by
default, but some subcommands—usually those that have the potential to remove or undo
your local modifications—do not.

--notice-ancestry
Pay attention to ancestry when calculating differences.

--old ARG
Uses ARG as the older target.

--password PASS
Indicates that you are providing your password for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

--quiet (-q)
Requests that the client print only essential information while performing an operation.

--recursive (-R)

Subversion Complete Reference

199

Makes a subcommand recurse into subdirectories. Most subcommands recurse by default.

--relocate FROM TO [PATH...]
Used with the svn switch subcommand, changes the location of the repository that your
working copy references. This is useful if the location of your repository changes and you
have an existing working copy that you'd like to continue to use. See svn switch for an ex-
ample.

--revision (-r) REV
Indicates that you're going to supply a revision (or range of revisions) for a particular oper-
ation. You can provide revision numbers, revision keywords or dates (in curly braces), as
arguments to the revision switch. If you wish to provide a range of revisions, you can
provide two revisions separated by a colon. For example:

$ svn log -r 1729
$ svn log -r 1729:HEAD
$ svn log -r 1729:1744
$ svn log -r {2001-12-04}:{2002-02-17}
$ svn log -r 1729:{2002-02-17}

See the section called “Revision Keywords” for more information.

--revprop
Operates on a revision property instead of a Subversion property specific to a file or direct-
ory. This switch requires that you also pass a revision with the --revision (-r) switch.
See the section called “Unversioned Properties” for more details on unversioned proper-
ties.

--show-updates (-u)
Causes the client to display information about which files in your working copy are out-
of-date. This doesn't actually update any of your files—it just shows you which files will be
updated if you run svn update.

--stop-on-copy
Causes a Subversion subcommand which is traversing the history of a versioned resource
to stop harvesting that historical information when a copy—that is, a location in history
where that resource was copied from another location in the repository—is encountered.

--strict
Causes Subversion to use strict semantics, a notion which is rather vague unless talking
about specific subcommands.

--targets FILENAME
Tells Subversion to get the list of files that you wish to operate on from the filename you
provide instead of listing all the files on the command line.

--username NAME
Indicates that you are providing your username for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

--verbose (-v)
Requests that the client print out as much information as it can while running any subcom-
mand. This may result in Subversion printing out additional fields, detailed information
about every file, or additional information regarding its actions.

--version
Prints the client version info. This information not only includes the version number of the

Subversion Complete Reference

200

client, but also a listing of all repository access modules that the client can use to access a
Subversion repository. With --quiet (-q) it prints only the version number in a compact
form.

--xml
Prints output in XML format.

svn Subcommands

Subversion Complete Reference

201

Name
svn add — Add files, directories, or symbolic links.

Synopsis

svn add PATH...

Description

Add files, directories, or symbolic links to your working copy and schedule them for addition to
the repository. They will be uploaded and added to the repository on your next commit. If you
add something and change your mind before committing, you can unschedule the addition us-
ing svn revert.

Alternate Names

None

Changes

Working Copy

Accesses Repository

No

Switches

--targets FILENAME
--non-recursive (-N)
--quiet (-q)
--config-dir DIR
--auto-props
--no-auto-props
--force

Examples

To add a file to your working copy:

$ svn add foo.c
A foo.c

When adding a directory, the default behavior of svn add is to recurse:

$ svn add testdir
A testdir
A testdir/a
A testdir/b
A testdir/c
A testdir/d

Subversion Complete Reference

202

You can add a directory without adding its contents:

$ svn add --non-recursive otherdir
A otherdir

Normally, the command svn add * will skip over any directories that are already under version
control. Sometimes, however, you may want to add every unversioned object in your working
copy, including those hiding deeper down. Passing the --force option makes svn add re-
curse into versioned directories:

$ svn add * --force
A foo.c
A somedir/bar.c
A otherdir/docs/baz.doc
…

Subversion Complete Reference

203

Name
svn blame — Show author and revision information in-line for the specified files or URLs.

Synopsis

svn blame TARGET[@REV]...

Description

Show author and revision information in-line for the specified files or URLs. Each line of text is
annotated at the beginning with the author (username) and the revision number for the last
change to that line.

Alternate Names

praise, annotate, ann

Changes

Nothing

Accesses Repository

Yes

Switches

--revision (-r) REV
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--verbose (-v)

Examples

If you want to see blame annotated source for readme.txt in your test repository:

$ svn blame http://svn.red-bean.com/repos/test/readme.txt
3 sally This is a README file.
5 harry You should read this.

Subversion Complete Reference

204

Name
svn cat — Output the contents of the specified files or URLs.

Synopsis

svn cat TARGET[@REV]...

Description

Output the contents of the specified files or URLs. For listing the contents of directories, see
svn list.

Alternate Names

None

Changes

Nothing

Accesses Repository

Yes

Switches

--revision (-r) REV
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

If you want to view readme.txt in your repository without checking it out:

$ svn cat http://svn.red-bean.com/repos/test/readme.txt
This is a README file.
You should read this.

Tip

If your working copy is out of date (or you have local modifications) and you want
to see the HEAD revision of a file in your working copy, svn cat will automatically
fetch the HEAD revision when you give it a path:

$ cat foo.c
This file is in my local working copy
and has changes that I've made.

Subversion Complete Reference

205

$ svn cat foo.c
Latest revision fresh from the repository!

Subversion Complete Reference

206

Name
svn checkout — Check out a working copy from a repository.

Synopsis

svn checkout URL[@REV]... [PATH]

Description

Check out a working copy from a repository. If PATH is omitted, the basename of the URL will
be used as the destination. If multiple URLs are given each will be checked out into a subdir-
ectory of PATH, with the name of the subdirectory being the basename of the URL.

Alternate Names

co

Changes

Creates a working copy.

Accesses Repository

Yes

Switches

--revision (-r) REV
--quiet (-q)
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--ignore-externals
--config-dir DIR

Examples

Check out a working copy into a directory called mine:

$ svn checkout file:///tmp/repos/test mine
A mine/a
A mine/b
Checked out revision 2.
$ ls
mine

Check out 2 different directories into two separate working copies:

$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz
A test/a

Subversion Complete Reference

207

A test/b
Checked out revision 2.
A quiz/l
A quiz/m
Checked out revision 2.
$ ls
quiz test

Check out 2 different directories into two separate working copies, but place both into a direct-
ory called working-copies:

$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz working-copies
A working-copies/test/a
A working-copies/test/b
Checked out revision 2.
A working-copies/quiz/l
A working-copies/quiz/m
Checked out revision 2.
$ ls
working-copies

If you interrupt a checkout (or something else interrupts your checkout like loss of connectivity,
etc.), you can restart it either by issuing the identical checkout command again, or by updating
the incomplete working copy:

$ svn checkout file:///tmp/repos/test test
A test/a
A test/b
^C
svn: The operation was interrupted
svn: caught SIGINT

$ svn checkout file:///tmp/repos/test test
A test/c
A test/d
^C
svn: The operation was interrupted
svn: caught SIGINT

$ cd test
$ svn update
A test/e
A test/f
Updated to revision 3.

Subversion Complete Reference

208

Name
svn cleanup — Recursively clean up the working copy.

Synopsis

svn cleanup [PATH...]

Description

Recursively clean up the working copy, removing working copy locks and resuming unfinished
operations. If you ever get a “working copy locked” error, run this command to remove stale
locks and get your working copy into a usable state again.

If, for some reason, an svn update fails due to a problem running an external diff program
(e.g. user input or network failure), pass the --diff3-cmd to allow cleanup to complete any
merging with your external diff program. You can also specify any configuration directory with
the --config-dir switch, but you should need these switches extremely infrequently.

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Switches

--diff3-cmd CMD
--config-dir DIR

Examples

Well, there's not much to the examples here as svn cleanup generates no output. If you pass
no PATH, “.” is used.

$ svn cleanup

$ svn cleanup /path/to/working-copy

Subversion Complete Reference

209

Name
svn commit — Send changes from your working copy to the repository.

Synopsis

svn commit [PATH...]

Description

Send changes from your working copy to the repository. If you do not supply a log message
with your commit by using either the --file or --message switch, svn will launch your editor
for you to compose a commit message. See the editor-cmd section in the section called
“Config”.

svn commit will send found lock tokens and release locks on all PATHS committed
(recursively) unless --no-unlock is passed.

Tip

If you begin a commit and Subversion launches your editor to compose the com-
mit message, you can still abort without committing your changes. If you want to
cancel your commit, just quit your editor without saving your commit message and
Subversion will prompt you to either abort the commit, continue with no message,
or edit the message again.

Alternate Names

ci (short for “check in”; not “co”, which is short for “checkout”)

Changes

Working copy, repository

Accesses Repository

Yes

Switches

--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--no-unlock
--non-recursive (-N)
--targets FILENAME
--force-log
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC
--config-dir DIR

Subversion Complete Reference

210

Examples

Commit a simple modification to a file with the commit message on the command line and an
implicit target of your current directory (“.”):

$ svn commit -m "added howto section."
Sending a
Transmitting file data .
Committed revision 3.

Commit a modification to the file foo.c (explicitly specified on the command line) with the
commit message in a file named msg:

$ svn commit -F msg foo.c
Sending foo.c
Transmitting file data .
Committed revision 5.

If you want to use a file that's under version control for your commit message with --file,
you need to pass the --force-log switch:

$ svn commit --file file_under_vc.txt foo.c
svn: The log message file is under version control
svn: Log message file is a versioned file; use '--force-log' to override

$ svn commit --force-log --file file_under_vc.txt foo.c
Sending foo.c
Transmitting file data .
Committed revision 6.

To commit a file scheduled for deletion:

$ svn commit -m "removed file 'c'."
Deleting c

Committed revision 7.

Subversion Complete Reference

211

Name
svn copy — Copy a file or directory in a working copy or in the repository.

Synopsis

svn copy SRC DST

Description

Copy a file in a working copy or in the repository. SRC and DST can each be either a working
copy (WC) path or URL:

WC -> WC
Copy and schedule an item for addition (with history).

WC -> URL
Immediately commit a copy of WC to URL.

URL -> WC
Check out URL into WC, and schedule it for addition.

URL -> URL
Complete server-side copy. This is usually used to branch and tag.

Note

You can only copy files within a single repository. Subversion does not support
cross-repository copying.

Alternate Names

cp

Changes

Repository if destination is a URL.

Working copy if destination is a WC path.

Accesses Repository

If source or destination is in the repository, or if needed to look up the source revision number.

Switches

--message (-m) TEXT
--file (-F) FILE
--revision (-r) REV
--quiet (-q)
--username USER
--password PASS

Subversion Complete Reference

212

--no-auth-cache
--non-interactive
--force-log
--editor-cmd EDITOR
--encoding ENC
--config-dir DIR

Examples

Copy an item within your working copy (just schedules the copy—nothing goes into the reposit-
ory until you commit):

$ svn copy foo.txt bar.txt
A bar.txt
$ svn status
A + bar.txt

Copy an item in your working copy to a URL in the repository (an immediate commit, so you
must supply a commit message):

$ svn copy near.txt file:///tmp/repos/test/far-away.txt -m "Remote copy."

Committed revision 8.

Copy an item from the repository to your working copy (just schedules the copy—nothing goes
into the repository until you commit):

Tip

This is the recommended way to resurrect a dead file in your repository!

$ svn copy file:///tmp/repos/test/far-away near-here
A near-here

And finally, copying between two URLs:

$ svn copy file:///tmp/repos/test/far-away file:///tmp/repos/test/over-there -m "remote copy."

Committed revision 9.

Tip

This is the easiest way to “tag” a revision in your repository—just svn copy that
revision (usually HEAD) into your tags directory.

$ svn copy file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "tag tree"

Committed revision 12.

Subversion Complete Reference

213

And don't worry if you forgot to tag—you can always specify an older revision and tag anytime:

$ svn copy -r 11 file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "Forgot to tag at rev 11"

Committed revision 13.

Subversion Complete Reference

214

Name
svn delete — Delete an item from a working copy or the repository.

Synopsis

svn delete PATH...

svn delete URL...

Description

Items specified by PATH are scheduled for deletion upon the next commit. Files (and director-
ies that have not been committed) are immediately removed from the working copy. The com-
mand will not remove any unversioned or modified items; use the --force switch to override
this behavior.

Items specified by URL are deleted from the repository via an immediate commit. Multiple
URLs are committed atomically.

Alternate Names

del, remove, rm

Changes

Working copy if operating on files, Repository if operating on URLs

Accesses Repository

Only if operating on URLs

Switches

--force
--force-log
--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--targets FILENAME
--username USER
--password PASS
--no-auth-cache
--non-interactive
--editor-cmd EDITOR
--encoding ENC
--config-dir DIR

Examples

Using svn to delete a file from your working copy merely schedules it to be deleted. When you
commit, the file is deleted in the repository.

Subversion Complete Reference

215

$ svn delete myfile
D myfile

$ svn commit -m "Deleted file 'myfile'."
Deleting myfile
Transmitting file data .
Committed revision 14.

Deleting a URL, however, is immediate, so you have to supply a log message:

$ svn delete -m "Deleting file 'yourfile'" file:///tmp/repos/test/yourfile

Committed revision 15.

Here's an example of how to force deletion of a file that has local mods:

$ svn delete over-there
svn: Attempting restricted operation for modified resource
svn: Use --force to override this restriction
svn: 'over-there' has local modifications

$ svn delete --force over-there
D over-there

Subversion Complete Reference

216

Name
svn diff — Display the differences between two paths.

Synopsis

diff [-r N[:M]] [TARGET[@REV]...]

diff [-r N[:M]] --old OLD-TGT[@OLDREV] [--new NEW-TGT[@NEWREV]] [PATH...]

diff OLD-URL[@OLDREV] NEW-URL[@NEWREV]

Description

Display the differences between two paths. The three different ways you can use svn diff are:

svn diff [-r N[:M]] [--old OLD-TGT] [--new NEW-TGT] [PATH...] displays the differences
between OLD-TGT and NEW-TGT. If PATHs are given, they are treated as relative to OLD-TGT
and NEW-TGT and the output is restricted to differences in only those paths. OLD-TGT and
NEW-TGT may be working copy paths or URL[@REV]. OLD-TGT defaults to the current working
directory and NEW-TGT defaults to OLD-TGT. N defaults to BASE or, if OLD-TGT is a URL, to
HEAD. M defaults to the current working version or, if NEW-TGT is a URL, to HEAD. svn diff -r N
sets the revision of OLD-TGT to N, svn diff -r N:M also sets the revision of NEW-TGT to M.

svn diff -r N:M URL is shorthand for svn diff -r N:M --old=URL --new=URL.

svn diff [-r N[:M]] URL1[@N] URL2[@M] is shorthand for svn diff [-r N[:M]] --old=URL1 -
-new=URL2.

If TARGET is a URL, then revs N and M can be given either via the --revision or by using
“@” notation as described earlier.

If TARGET is a working copy path, then the --revision switch means:

--revision N:M
The server compares TARGET@N and TARGET@M.

--revision N
The client compares TARGET@N against working copy.

(no --revision)
The client compares base and working copies of TARGET.

If the alternate syntax is used, the server compares URL1 and URL2 at revisions N and M re-
spectively. If either N or M are omitted, a value of HEAD is assumed.

By default, svn diff ignores the ancestry of files and merely compares the contents of the two
files being compared. If you use --notice-ancestry, the ancestry of the paths in question
will be taken into consideration when comparing revisions (that is, if you run svn diff on two
files with identical contents but different ancestry you will see the entire contents of the file as
having been removed and added again).

Alternate Names

Subversion Complete Reference

217

di

Changes

Nothing

Accesses Repository

For obtaining differences against anything but BASE revision in your working copy

Switches

--revision (-r) REV
--old OLD-TARGET
--new NEW-TARGET
--extensions (-x) "ARGS"
--non-recursive (-N)
--diff-cmd CMD
--notice-ancestry
--username USER
--password PASS
--no-auth-cache
--non-interactive
--no-diff-deleted
--config-dir DIR

Examples

Compare BASE and your working copy (one of the most popular uses of svn diff):

$ svn diff COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 4404)
+++ COMMITTERS (working copy)

See how your working copy's modifications compare against an older revision:

$ svn diff -r 3900 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3900)
+++ COMMITTERS (working copy)

Compare revision 3000 to revision 3500 using “@” syntax:

$ svn diff http://svn.collab.net/repos/svn/trunk/COMMITTERS@3000 http://svn.collab.net/repos/svn/trunk/COMMITTERS@3500
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)
…

Subversion Complete Reference

218

Compare revision 3000 to revision 3500 using range notation (you only pass the one URL in
this case):

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk/COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)

Compare revision 3000 to revision 3500 of all files in trunk using range notation:

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk

Compare revision 3000 to revision 3500 of only three files in trunk using range notation:

$ svn diff -r 3000:3500 --old http://svn.collab.net/repos/svn/trunk COMMITTERS README HACKING

If you have a working copy, you can obtain the differences without typing in the long URLs:

$ svn diff -r 3000:3500 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)

Use --diff-cmd CMD -x to pass arguments directly to the external diff program

$ svn diff --diff-cmd /usr/bin/diff -x "-i -b" COMMITTERS
Index: COMMITTERS
===
0a1,2
> This is a test
>

Subversion Complete Reference

219

Name
svn export — Export a clean directory tree.

Synopsis

svn export [-r REV] URL[@PEGREV] [PATH]

svn export [-r REV] PATH1[@PEGREV] [PATH2]

Description

The first form exports a clean directory tree from the repository specified by URL, at revision
REV if it is given, otherwise at HEAD, into PATH. If PATH is omitted, the last component of the
URL is used for the local directory name.

The second form exports a clean directory tree from the working copy specified by PATH1 into
PATH2. All local changes will be preserved, but files not under version control will not be
copied.

Alternate Names

None

Changes

Local disk

Accesses Repository

Only if exporting from a URL

Switches

--revision (-r) REV
--quiet (-q)
--force
--username USER
--password PASS
--no-auth-cache
--non-interactive
--non-recursive (-N)
--config-dir DIR
--native-eol EOL
--ignore-externals

Examples

Export from your working copy (doesn't print every file and directory):

$ svn export a-wc my-export
Export complete.

Subversion Complete Reference

220

Export directly from the repository (prints every file and directory):

$ svn export file:///tmp/repos my-export
A my-export/test
A my-export/quiz
…
Exported revision 15.

When rolling operating-system-specific release packages, it can be useful to export a tree
which uses a specific EOL character for line endings. The --native-eol option will do this,
but it only affects files that have svn:eol-style = native properties attached to them. For
example, to export a tree with all CRLF line endings (possibly for a Windows .zip file distribu-
tion):

$ svn export file://tmp/repos my-export --native-eol CRLF
A my-export/test
A my-export/quiz
…
Exported revision 15.

Subversion Complete Reference

221

Name
svn help — Help!

Synopsis

svn help [SUBCOMMAND...]

Description

This is your best friend when you're using Subversion and this book isn't within reach!

Alternate Names

?, h

The options -?, -h and --help have the same effect as using the help subcommand.

Changes

Nothing

Accesses Repository

No

Switches

--version
--quiet (-q)
--config-dir DIR

Subversion Complete Reference

222

Name
svn import — Commit an unversioned file or tree into the repository.

Synopsis

svn import [PATH] URL

Description

Recursively commit a copy of PATH to URL. If PATH is omitted “.” is assumed. Parent director-
ies are created in the repository as necessary.

Alternate Names

None

Changes

Repository

Accesses Repository

Yes

Switches

--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--force-log
--editor-cmd EDITOR
--encoding ENC
--config-dir DIR
--auto-props
--no-auto-props
--ignore-externals

Examples

This imports the local directory myproj into the root of your repository:

$ svn import -m "New import" myproj http://svn.red-bean.com/repos/test
Adding myproj/sample.txt
…
Transmitting file data
Committed revision 16.

This imports the local directory myproj into trunk/misc in your repository. The directory

Subversion Complete Reference

223

trunk/misc need not exist before you import into it—svn import will recursively create dir-
ectories for you:

$ svn import -m "New import" myproj \
http://svn.red-bean.com/repos/test/trunk/misc/myproj

Adding myproj/sample.txt
…
Transmitting file data
Committed revision 19.

After importing data, note that the original tree is not under version control. To start working,
you still need to svn checkout a fresh working copy of the tree.

Subversion Complete Reference

224

Name
svn info — Display information about a local or remote item.

Synopsis

svn info [TARGET...]

Description

Print information about the working copy paths or URLs specified. The information shown for
both may include:

• Path

• Name

• URL

• Repository Root

• Repository UUID

• Revision

• Node Kind

• Last Changed Author

• Last Changed Revision

• Last Changed Date

• Lock Token

• Lock Owner

• Lock Created (date)

• Lock Expires (date)

Additional kinds of information available only for working copy paths are:

• Schedule

• Copied From URL

• Copied From Rev

• Text Last Updated

• Properties Last Updated

• Checksum

Subversion Complete Reference

225

• Conflict Previous Base File

• Conflict Previous Working File

• Conflict Current Base File

• Conflict Properties File

Alternate Names

None

Changes

Nothing

Accesses Repository

Only if operating on URLs

Switches

--revision (-r) REV
--recursive (-R)
--targets FILENAME
--incremental
--xml
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

svn info will show you all the useful information that it has for items in your working copy. It
will show information for files:

$ svn info foo.c
Path: foo.c
Name: foo.c
URL: http://svn.red-bean.com/repos/test/foo.c
Repository Root: http://svn.red-bean.com/repos/test
Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25
Revision: 4417
Node Kind: file
Schedule: normal
Last Changed Author: sally
Last Changed Rev: 20
Last Changed Date: 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003)
Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mon, 13 Jan 2003)
Checksum: d6aeb60b0662ccceb6bce4bac344cb66

It will also show information for directories:

Subversion Complete Reference

226

$ svn info vendors
Path: vendors
URL: http://svn.red-bean.com/repos/test/vendors
Repository Root: http://svn.red-bean.com/repos/test
Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25
Revision: 19
Node Kind: directory
Schedule: normal
Last Changed Author: harry
Last Changed Rev: 19
Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-16 23:39:02 -0600 (Thu, 16 Jan 2003)

svn info also acts on URLs (also note that the file readme.doc in this example is locked, so
lock information is also provided):

$ svn info http://svn.red-bean.com/repos/test/readme.doc
Path: readme.doc
Name: readme.doc
URL: http://svn.red-bean.com/repos/test/readme.doc
Repository Root: http://svn.red-bean.com/repos/test
Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25
Revision: 1
Node Kind: file
Schedule: normal
Last Changed Author: sally
Last Changed Rev: 42
Last Changed Date: 2003-01-14 23:21:19 -0600 (Tue, 14 Jan 2003)
Lock Token: opaquelocktoken:14011d4b-54fb-0310-8541-dbd16bd471b2
Lock Owner: harry
Lock Created: 2003-01-15 17:35:12 -0600 (Wed, 15 Jan 2003)
Lock Comment (1 line):
My test lock comment

Subversion Complete Reference

227

Name
svn list — List directory entries in the repository.

Synopsis

svn list [TARGET[@REV]...]

Description

List each TARGET file and the contents of each TARGET directory as they exist in the reposit-
ory. If TARGET is a working copy path, the corresponding repository URL will be used.

The default TARGET is “.”, meaning the repository URL of the current working copy directory.

With --verbose, the following fields show the status of the item:

• Revision number of the last commit

• Author of the last commit

• Size (in bytes)

• Date and time of the last commit

With --xml, output is in XML format (with a header and an enclosing document element un-
less --incremental is also specified). All of the information is present; the --verbose op-
tion is not accepted.

Alternate Names

ls

Changes

Nothing

Accesses Repository

Yes

Switches

--revision (-r) REV
--verbose (-v)
--recursive (-R)
--incremental
--xml
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Subversion Complete Reference

228

Examples

svn list is most useful if you want to see what files a repository has without downloading a
working copy:

$ svn list http://svn.red-bean.com/repos/test/support
README.txt
INSTALL
examples/
…

You can pass the --verbose switch for additional information, rather like the UNIX command
ls -l:

$ svn list --verbose file:///tmp/repos
16 sally 28361 Jan 16 23:18 README.txt
27 sally 0 Jan 18 15:27 INSTALL
24 harry Jan 18 11:27 examples/

For further details, see the section called “svn list”.

Subversion Complete Reference

229

Name
svn lock — Lock working copy paths or URLs in the repository, so that no other user can com-
mit changes to them.

Synopsis

svn lock TARGET...

Description

Lock each TARGET. If any TARGET is already locked by another user, print a warning and con-
tinue locking the rest of the TARGETs. Use --force to steal a lock from another user or work-
ing copy.

Alternate Names

None

Changes

Working Copy, Repository

Accesses Repository

Yes

Switches

--targets FILENAME
--message (-m) TEXT
--file (-F) FILE
--force-log
--encoding ENC
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--force

Examples

Lock two files in your working copy:

$ svn lock tree.jpg house.jpg
'tree.jpg' locked by user 'harry'.
'house.jpg' locked by user 'harry'.

Lock a file in your working copy that is currently locked by another user:

$ svn lock tree.jpg

Subversion Complete Reference

230

svn: warning: Path '/tree.jpg is already locked by user 'harry in \
filesystem '/svn/repos/db'

$ svn lock --force foo
'tree.jpg' locked by user 'sally'.

Lock a file without a working copy:

$ svn lock http://svn.red-bean.com/repos/test/tree.jpg
'tree.jpg' locked by user 'sally'.

For further details, see the section called “Locking”.

Subversion Complete Reference

231

Name
svn log — Display commit log messages.

Synopsis

svn log [PATH]

svn log URL [PATH...]

Description

The default target is the path of your current directory. If no arguments are supplied, svn log
shows the log messages for all files and directories inside of (and including) the current work-
ing directory of your working copy. You can refine the results by specifying a path, one or more
revisions, or any combination of the two. The default revision range for a local path is BASE:1.

If you specify a URL alone, then it prints log messages for everything that the URL contains. If
you add paths past the URL, only messages for those paths under that URL will be printed.
The default revision range for a URL is HEAD:1.

With --verbose, svn log will also print all affected paths with each log message. With -
-quiet, svn log will not print the log message body itself (this is compatible with
--verbose).

Each log message is printed just once, even if more than one of the affected paths for that re-
vision were explicitly requested. Logs follow copy history by default. Use --stop-on-copy to
disable this behavior, which can be useful for determining branch points.

Alternate Names

None

Changes

Nothing

Accesses Repository

Yes

Switches

--revision (-r) REV
--quiet (-q)
--verbose (-v)
--targets FILENAME
--stop-on-copy
--incremental
--limit NUM
--xml
--username USER
--password PASS
--no-auth-cache
--non-interactive

Subversion Complete Reference

232

--config-dir DIR

Examples

You can see the log messages for all the paths that changed in your working copy by running
svn log from the top:

$ svn log
--
r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Tweak.
--
r17 | sally | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 lines
…

Examine all log messages for a particular file in your working copy:

$ svn log foo.c
--
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
…

If you don't have a working copy handy, you can log a URL:

$ svn log http://svn.red-bean.com/repos/test/foo.c
--
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
…

If you want several distinct paths underneath the same URL, you can use the URL
[PATH...] syntax.

$ svn log http://svn.red-bean.com/repos/test/ foo.c bar.c
--
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line

Added new file bar.c
--
r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
…

Subversion Complete Reference

233

When you're concatenating the results of multiple calls to the log command, you may want to
use the --incremental switch. svn log normally prints out a dashed line at the beginning of
a log message, after each subsequent log message, and following the final log message. If
you ran svn log on a range of two revisions, you would get this:

$ svn log -r 14:15
--
r14 | …

--
r15 | …

--

However, if you wanted to gather 2 non-sequential log messages into a file, you might do
something like this:

$ svn log -r 14 > mylog
$ svn log -r 19 >> mylog
$ svn log -r 27 >> mylog
$ cat mylog
--
r14 | …

--
--
r19 | …

--
--
r27 | …

--

You can avoid the clutter of the double dashed lines in your output by using the incremental
switch:

$ svn log --incremental -r 14 > mylog
$ svn log --incremental -r 19 >> mylog
$ svn log --incremental -r 27 >> mylog
$ cat mylog
--
r14 | …

--
r19 | …

--
r27 | …

The --incremental switch provides similar output control when using the --xml switch.

Tip

If you run svn log on a specific path and provide a specific revision and get no
output at all

Subversion Complete Reference

234

$ svn log -r 20 http://svn.red-bean.com/untouched.txt
--

That just means that the path was not modified in that revision. If you log from the
top of the repository, or know the file that changed in that revision, you can specify
it explicitly:

$ svn log -r 20 touched.txt
--
r20 | sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Made a change.
--

Subversion Complete Reference

235

Name
svn merge — Apply the differences between two sources to a working copy path.

Synopsis

svn merge sourceURL1[@N] sourceURL2[@M] [WCPATH]

svn merge sourceWCPATH1@N sourceWCPATH2@M [WCPATH]

svn merge -r N:M SOURCE[@REV] [WCPATH]

Description

In the first and second forms, the source paths (URLs in the first form, working copy paths in
the second) are specified at revisions N and M. These are the two sources to be compared.
The revisions default to HEAD if omitted.

In the third form, SOURCE can be a URL or working copy item, in which case the corresponding
URL is used. This URL, at revisions N and M, defines the two sources to be compared.

WCPATH is the working copy path that will receive the changes. If WCPATH is omitted, a default
value of “.” is assumed, unless the sources have identical basenames that match a file within
“.”: in which case, the differences will be applied to that file.

Unlike svn diff, the merge command takes the ancestry of a file into consideration when per-
forming a merge operation. This is very important when you're merging changes from one
branch into another and you've renamed a file on one branch but not the other.

Alternate Names

None

Changes

Working copy

Accesses Repository

Only if working with URLs

Switches

--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--force
--dry-run
--diff3-cmd CMD
--ignore-ancestry
--username USER
--password PASS
--no-auth-cache
--non-interactive

Subversion Complete Reference

236

--config-dir DIR

Examples

Merge a branch back into the trunk (assuming that you have a working copy of the trunk, and
that the branch was created in revision 250):

$ svn merge -r 250:HEAD http://svn.red-bean.com/repos/branches/my-branch
U myproj/tiny.txt
U myproj/thhgttg.txt
U myproj/win.txt
U myproj/flo.txt

If you branched at revision 23, and you want to merge changes on trunk into your branch, you
could do this from inside the working copy of your branch:

$ svn merge -r 23:30 file:///tmp/repos/trunk/vendors
U myproj/thhgttg.txt
…

To merge changes to a single file:

$ cd myproj
$ svn merge -r 30:31 thhgttg.txt
U thhgttg.txt

Subversion Complete Reference

237

Name
svn mkdir — Create a new directory under version control.

Synopsis

svn mkdir PATH...

svn mkdir URL...

Description

Create a directory with a name given by the final component of the PATH or URL. A directory
specified by a working copy PATH is scheduled for addition in the working copy. A directory
specified by a URL is created in the repository via an immediate commit. Multiple directory
URLs are committed atomically. In both cases all the intermediate directories must already ex-
ist.

Alternate Names

None

Changes

Working copy, repository if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--editor-cmd EDITOR
--encoding ENC
--force-log
--config-dir DIR

Examples

Create a directory in your working copy:

$ svn mkdir newdir
A newdir

Create one in the repository (instant commit, so a log message is required):

Subversion Complete Reference

238

$ svn mkdir -m "Making a new dir." http://svn.red-bean.com/repos/newdir

Committed revision 26.

Subversion Complete Reference

239

Name
svn move — Move a file or directory.

Synopsis

svn move SRC DST

Description

This command moves a file or directory in your working copy or in the repository.

Tip

This command is equivalent to an svn copy followed by svn delete.

Note

Subversion does not support moving between working copies and URLs. In addi-
tion, you can only move files within a single repository—Subversion does not sup-
port cross-repository moving.

WC -> WC
Move and schedule a file or directory for addition (with history).

URL -> URL
Complete server-side rename.

Alternate Names

mv, rename, ren

Changes

Working copy, repository if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--message (-m) TEXT
--file (-F) FILE
--revision (-r) REV
--quiet (-q)
--force
--username USER
--password PASS
--no-auth-cache
--non-interactive

Subversion Complete Reference

240

--editor-cmd EDITOR
--encoding ENC
--force-log
--config-dir DIR

Examples

Move a file in your working copy:

$ svn move foo.c bar.c
A bar.c
D foo.c

Move a file in the repository (an immediate commit, so it requires a commit message):

$ svn move -m "Move a file" http://svn.red-bean.com/repos/foo.c \
http://svn.red-bean.com/repos/bar.c

Committed revision 27.

Subversion Complete Reference

241

Name
svn propdel — Remove a property from an item.

Synopsis

svn propdel PROPNAME [PATH...]

svn propdel PROPNAME --revprop -r REV [URL]

Description

This removes properties from files, directories, or revisions. The first form removes versioned
properties in your working copy, while the second removes unversioned remote properties on
a repository revision.

Alternate Names

pdel, pd

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--quiet (-q)
--recursive (-R)
--revision (-r) REV
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

Delete a property from a file in your working copy

$ svn propdel svn:mime-type some-script
property 'svn:mime-type' deleted from 'some-script'.

Delete a revision property:

$ svn propdel --revprop -r 26 release-date
property 'release-date' deleted from repository revision '26'

Subversion Complete Reference

242

Name
svn propedit — Edit the property of one or more items under version control.

Synopsis

svn propedit PROPNAME PATH...

svn propedit PROPNAME --revprop -r REV [URL]

Description

Edit one or more properties using your favorite editor. The first form edits versioned properties
in your working copy, while the second edits unversioned remote properties on a repository re-
vision.

Alternate Names

pedit, pe

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--revision (-r) REV
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC
--editor-cmd EDITOR
--config-dir DIR

Examples

svn propedit makes it easy to modify properties that have multiple values:

$ svn propedit svn:keywords foo.c
<svn will launch your favorite editor here, with a buffer open
containing the current contents of the svn:keywords property. You
can add multiple values to a property easily here by entering one
value per line.>

Set new value for property 'svn:keywords' on 'foo.c'

Subversion Complete Reference

243

Name
svn propget — Print the value of a property.

Synopsis

svn propget PROPNAME [TARGET[@REV]...]

svn propget PROPNAME --revprop -r REV [URL]

Description

Print the value of a property on files, directories, or revisions. The first form prints the ver-
sioned property of an item or items in your working copy, while the second prints unversioned
remote property on a repository revision. See the section called “Properties” for more informa-
tion on properties.

Alternate Names

pget, pg

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--recursive (-R)
--revision (-r) REV
--revprop
--strict
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

Examine a property of a file in your working copy:

$ svn propget svn:keywords foo.c
Author
Date
Rev

The same goes for a revision property:

Subversion Complete Reference

244

$ svn propget svn:log --revprop -r 20
Began journal.

Subversion Complete Reference

245

Name
svn proplist — List all properties.

Synopsis

svn proplist [TARGET[@REV]...]

svn proplist --revprop -r REV [URL]

Description

List all properties on files, directories, or revisions. The first form lists versioned properties in
your working copy, while the second lists unversioned remote properties on a repository revi-
sion.

Alternate Names

plist, pl

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--verbose (-v)
--recursive (-R)
--revision (-r) REV
--quiet (-q)
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

You can use proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':
svn:mime-type
svn:keywords
owner

But with the --verbose flag, svn proplist is extremely handy as it also shows you the values
for the properties:

Subversion Complete Reference

246

$ svn proplist --verbose foo.c
Properties on 'foo.c':
svn:mime-type : text/plain
svn:keywords : Author Date Rev
owner : sally

Subversion Complete Reference

247

Name
svn propset — Set PROPNAME to PROPVAL on files, directories, or revisions.

Synopsis

svn propset PROPNAME [PROPVAL | -F VALFILE] PATH...

svn propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [URL]

Description

Set PROPNAME to PROPVAL on files, directories, or revisions. The first example creates a ver-
sioned, local property change in the working copy, and the second creates an unversioned, re-
mote property change on a repository revision.

Tip

Subversion has a number of “special” properties that affect its behavior. See the
section called “Subversion properties” for more on these properties.

Alternate Names

pset, ps

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Switches

--file (-F) FILE
--quiet (-q)
--revision (-r) REV
--targets FILENAME
--recursive (-R)
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC
--force
--config-dir DIR

Examples

Set the mimetype on a file:

Subversion Complete Reference

248

$ svn propset svn:mime-type image/jpeg foo.jpg
property 'svn:mime-type' set on 'foo.jpg'

On a UNIX system, if you want a file to have the executable permission set:

$ svn propset svn:executable ON somescript
property 'svn:executable' set on 'somescript'

Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:

$ svn propset owner sally foo.c
property 'owner' set on 'foo.c'

If you made a mistake in a log message for a particular revision and want to change it, use -
-revprop and set svn:log to the new log message:

$ svn propset --revprop -r 25 svn:log "Journaled about trip to New York."
property 'svn:log' set on repository revision '25'

Or, if you don't have a working copy, you can provide a URL.

$ svn propset --revprop -r 26 svn:log "Document nap." http://svn.red-bean.com/repos
property 'svn:log' set on repository revision '25'

Lastly, you can tell propset to take its input from a file. You could even use this to set the con-
tents of a property to something binary:

$ svn propset owner-pic -F sally.jpg moo.c
property 'owner-pic' set on 'moo.c'

Note

By default, you cannot modify revision properties in a Subversion repository. Your
repository administrator must explicitly enable revision property modifications by
creating a hook named pre-revprop-change. See the section called “Hook
Scripts” for more information on hook scripts.

Subversion Complete Reference

249

Name
svn resolved — Remove “conflicted” state on working copy files or directories.

Synopsis

svn resolved PATH...

Description

Remove “conflicted” state on working copy files or directories. This routine does not semantic-
ally resolve conflict markers; it merely removes conflict-related artifact files and allows PATH to
be committed again; that is, it tells Subversion that the conflicts have been “resolved”. See the
section called “Resolve Conflicts (Merging Others' Changes)” for an in-depth look at resolving
conflicts.

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Switches

--targets FILENAME
--recursive (-R)
--quiet (-q)
--config-dir DIR

Examples

If you get a conflict on an update, your working copy will sprout three new files:

$ svn update
C foo.c
Updated to revision 31.
$ ls
foo.c
foo.c.mine
foo.c.r30
foo.c.r31

Once you've resolved the conflict and foo.c is ready to be committed, run svn resolved to let
your working copy know you've taken care of everything.

Subversion Complete Reference

250

Warning

You can just remove the conflict files and commit, but svn resolved fixes up some
bookkeeping data in the working copy administrative area in addition to removing
the conflict files, so we recommend that you use this command.

Subversion Complete Reference

251

Name
svn revert — Undo all local edits.

Synopsis

svn revert PATH...

Description

Reverts any local changes to a file or directory and resolves any conflicted states. svn revert
will not only revert the contents of an item in your working copy, but also any property
changes. Finally, you can use it to undo any scheduling operations that you may have done
(e.g. files scheduled for addition or deletion can be “unscheduled”).

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Switches

--targets FILENAME
--recursive (-R)
--quiet (-q)
--config-dir DIR

Examples

Discard changes to a file:

$ svn revert foo.c
Reverted foo.c

If you want to revert a whole directory of files, use the --recursive flag:

$ svn revert --recursive .
Reverted newdir/afile
Reverted foo.c
Reverted bar.txt

Lastly, you can undo any scheduling operations:

$ svn add mistake.txt whoops

Subversion Complete Reference

252

A mistake.txt
A whoops
A whoops/oopsie.c

$ svn revert mistake.txt whoops
Reverted mistake.txt
Reverted whoops

$ svn status
? mistake.txt
? whoops

Note

If you provide no targets to svn revert, it will do nothing—to protect you from acci-
dentally losing changes in your working copy, svn revert requires you to provide
at least one target.

Subversion Complete Reference

253

Name
svn status — Print the status of working copy files and directories.

Synopsis

svn status [PATH...]

Description

Print the status of working copy files and directories. With no arguments, it prints only locally
modified items (no repository access). With --show-updates, add working revision and serv-
er out-of-date information. With --verbose, print full revision information on every item.

The first six columns in the output are each one character wide, and each column gives you in-
formation about different aspects of each working copy item.

The first column indicates that an item was added, deleted, or otherwise changed.

' '
No modifications.

'A'
Item is scheduled for Addition.

'D'
Item is scheduled for Deletion.

'M'
Item has been modified.

'R'
Item has been replaced in your working copy. This means the file was scheduled for dele-
tion, and then a new file with the same name was scheduled for addition in its place.

'C'
The contents (as opposed to the properties) of the item conflict with updates received from
the repository.

'X'
Item is related to an externals definition.

'I'
Item is being ignored (e.g. with the svn:ignore property).

'?'
Item is not under version control.

'!'
Item is missing (e.g. you moved or deleted it without using svn). This also indicates that a
directory is incomplete (a checkout or update was interrupted).

'~'
Item is versioned as one kind of object (file, directory, link), but has been replaced by dif-
ferent kind of object.

Subversion Complete Reference

254

The second column tells the status of a file's or directory's properties.

' '
No modifications.

'M'
Properties for this item have been modified.

'C'
Properties for this item are in conflict with property updates received from the repository.

The third column is populated only if the working copy directory is locked. (See the section
called “svn cleanup”.)

' '
Item is not locked.

'L'
Item is locked.

The fourth column is populated only if the item is scheduled for addition-with-history.

' '
No history scheduled with commit.

'+'
History scheduled with commit.

The fifth column is populated only if the item is switched relative to its parent (see the section
called “Switching a Working Copy”).

' '
Item is a child of its parent directory.

'S'
Item is switched.

The sixth column is populated with lock information.

' '
When --show-updates is used, the file is not locked. If --show-updates is not used,
this merely means that the file is not locked in this working copy.

K
File is locked in this working copy.

O
File is locked either by another user or in another working copy. This only appears when -
-show-updates is used.

Subversion Complete Reference

255

T
File was locked in this working copy, but the lock has been “stolen”and is invalid. The file is
currently locked in the repository. This only appears when --show-updates is used.

B
File was locked in this working copy, but the lock has been “broken”and is invalid. The file
is no longer locked This only appears when --show-updates is used.

The out-of-date information appears in the seventh column (only if you pass the -
-show-updates switch).

' '
The item in your working copy is up-to-date.

'*'
A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the
next field if the --show-updates or --verbose switches are passed.

If the --verbose switch is passed, the last committed revision and last committed author are
displayed next.

The working copy path is always the final field, so it can include spaces.

Alternate Names

stat, st

Changes

Nothing

Accesses Repository

Only if using --show-updates

Switches

--show-updates (-u)
--verbose (-v)
--non-recursive (-N)
--quiet (-q)
--no-ignore
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--ignore-externals

Examples

This is the easiest way to find out what changes you have made to your working copy:

Subversion Complete Reference

256

$ svn status wc
M wc/bar.c
A + wc/qax.c

If you want to find out what files in your working copy are out-of-date, pass the -
-show-updates switch (this will not make any changes to your working copy). Here you can
see that wc/foo.c has changed in the repository since we last updated our working copy:

$ svn status --show-updates wc
M 965 wc/bar.c

* 965 wc/foo.c
A + 965 wc/qax.c
Status against revision: 981

Note

--show-updates only places an asterisk next to items that are out of date (that
is, items that will be updated from the repository if you run svn update). -
-show-updates does not cause the status listing to reflect the repository's ver-
sion of the item.

And finally, the most information you can get out of the status subcommand:

$ svn status --show-updates --verbose wc
M 965 938 sally wc/bar.c

* 965 922 harry wc/foo.c
A + 965 687 harry wc/qax.c

965 687 harry wc/zig.c
Head revision: 981

For many more examples of svn status, see the section called “svn status”.

Subversion Complete Reference

257

Name
svn switch — Update working copy to a different URL.

Synopsis

svn switch URL [PATH]

switch --relocate FROM TO [PATH...]

Description

This subcommand updates your working copy to mirror a new URL—usually a URL which
shares a common ancestor with your working copy, although not necessarily. This is the Sub-
version way to move a working copy to a new branch. See the section called “Switching a
Working Copy” for an in-depth look at switching.

Alternate Names

sw

Changes

Working copy

Accesses Repository

Yes

Switches

--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--diff3-cmd CMD
--relocate FROM TO
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

If you're currently inside the directory vendors which was branched to vendors-with-fix
and you'd like to switch your working copy to that branch:

$ svn switch http://svn.red-bean.com/repos/branches/vendors-with-fix .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

Subversion Complete Reference

258

And to switch back, just provide the URL to the location in the repository from which you origin-
ally checked out your working copy:

$ svn switch http://svn.red-bean.com/repos/trunk/vendors .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

Tip

You can just switch part of your working copy to a branch if you don't want to
switch your entire working copy.

Sometimes an administrator might change the “base location” of your repository—in other
words, the contents of the repository doesn't change, but the main URL used to reach the root
of the repository does. For example, the hostname may change, the URL scheme, or any part
of the URL which leads to the repository itself. Rather than checkout a new working copy, you
can have the svn switch command “rewrite” the beginnings of all the URLs in your working
copy. Use the --relocate option to do the substitution. No file contents are changed, nor is
the repository contacted. It's similar to running a Perl script over your working copy .svn/ dir-
ectories which runs s/OldRoot/NewRoot/.

$ svn checkout file:///tmp/repos test
A test/a
A test/b
…

$ mv repos newlocation
$ cd test/

$ svn update
svn: Unable to open an ra_local session to URL
svn: Unable to open repository 'file:///tmp/repos'

$ svn switch --relocate file:///tmp/repos file:///tmp/newlocation .
$ svn update
At revision 3.

Warning

Be careful when using the --relocate option. If you mistype the argument, you
might end up creating nonsensical URLs within your working copy that render the
whole workspace unusable and tricky to fix. It's also important to understand ex-
actly when one should or shouldn't use --relocate. Here's the rule of thumb:

• If the working copy needs to reflect a new directory within the repository, then
use just svn switch.

• If the working copy still reflects the same repository directory, but the location of
the repository itself has changed, then use svn switch --relocate.

Subversion Complete Reference

259

Name
svn unlock — Unlock working copy paths or URLs.

Synopsis

svn unlock TARGET...

Description

Unlock each TARGET. If any TARGET is either locked by another user or no valid lock token ex-
ists in the working copy, print a warning and continue unlocking the rest of the TARGETs. Use -
-force to break a lock belonging to another user or working copy.

Alternate Names

None

Changes

Working Copy, Repository

Accesses Repository

Yes

Switches

--targets FILENAME
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--force

Examples

Unlock two files in your working copy:

$ svn unlock tree.jpg house.jpg
'tree.jpg' unlocked.
'house.jpg' unlocked.

Unlock a file in your working copy that is currently locked by another user:

$ svn unlock tree.jpg
svn: 'tree.jpg' is not locked in this working copy
$ svn unlock --force tree.jpg
'tree.jpg' unlocked.

Subversion Complete Reference

260

Unlock a file without a working copy:

$ svn unlock http://svn.red-bean.com/repos/test/tree.jpg
'tree.jpg unlocked.

For further details, see the section called “Locking”.

Subversion Complete Reference

261

Name
svn update — Update your working copy.

Synopsis

svn update [PATH...]

Description

svn update brings changes from the repository into your working copy. If no revision given, it
brings your working copy up-to-date with the HEAD revision. Otherwise, it synchronizes the
working copy to the revision given by the --revision switch. As part of the synchronization,
svn update also removes any stale locks (see the section called “svn cleanup”) found in the
working copy.

For each updated item a line will start with a character reporting the action taken. These char-
acters have the following meaning:

A
Added

D
Deleted

U
Updated

C
Conflict

G
Merged

A character in the first column signifies an update to the actual file, while updates to the file's
properties are shown in the second column.

Alternate Names

up

Changes

Working copy

Accesses Repository

Yes

Switches

--revision (-r) REV
--non-recursive (-N)

Subversion Complete Reference

262

--quiet (-q)
--diff3-cmd CMD
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--ignore-externals

Examples

Pick up repository changes that have happened since your last update:

$ svn update
A newdir/toggle.c
A newdir/disclose.c
A newdir/launch.c
D newdir/README
Updated to revision 32.

You can also update your working copy to an older revision (Subversion doesn't have the
concept of “sticky” files like CVS does; see Appendix B, Subversion for CVS Users):

$ svn update -r30
A newdir/README
D newdir/toggle.c
D newdir/disclose.c
D newdir/launch.c
U foo.c
Updated to revision 30.

Tip

If you want to examine an older revision of a single file, you may want to use svn
cat.

svnadmin
svnadmin is the administrative tool for monitoring and repairing your Subversion repository.
For detailed information, see the section called “svnadmin”.

Since svnadmin works via direct repository access (and thus can only be used on the ma-
chine that holds the repository), it refers to the repository with a path, not a URL.

svnadmin Switches

--bdb-log-keep
(Berkeley DB specific) Disable automatic log removal of database log files.

--bdb-txn-nosync
(Berkeley DB specific) Disables fsync when committing database transactions.

Subversion Complete Reference

263

--bypass-hooks
Bypass the repository hook system.

--clean-logs
Removes unused Berkeley DB logs.

--force-uuid
By default, when loading data into repository that already contains revisions, svnadmin
will ignore the UUID from the dump stream. This switch will cause the repository's UUID to
be set to the UUID from the stream.

--ignore-uuid
By default, when loading an empty repository, svnadmin will use the UUID from the dump
stream. This switch will cause that UUID to be ignored.

--incremental
Dump a revision only as a diff against the previous revision, instead of the usual fulltext.

--parent-dir DIR
When loading a dump file, root paths at DIR instead of /.

--revision (-r) ARG
Specify a particular revision to operate on.

--quiet
Do not show normal progress—show only errors.

--use-post-commit-hook
When loading a dump file, run the repository's post-commit hook after finalizing each
newly loaded revision.

--use-pre-commit-hook
When loading a dump file, run the repository's pre-commit hook before finalizing each
newly loaded revision. If the hook fails, abort the commit and terminate the load process.

svnadmin Subcommands

Subversion Complete Reference

264

1Remember, svnadmin works only with local paths, not URLs.

Name
svnadmin create — Create a new, empty repository.

Synopsis

svnadmin create REPOS_PATH

Description

Create a new, empty repository at the path provided. If the provided directory does not exist, it
will be created for you.1 As of Subversion 1.2, svnadmin creates new repositories with the
fsfs filesystem backend by default.

Switches

--bdb-txn-nosync
--bdb-log-keep
--config-dir DIR
--fs-type TYPE

Examples

Creating a new repository is just this easy:

$ svnadmin create /usr/local/svn/repos

In Subversion 1.0, a Berkeley DB repository is always created. In Subversion 1.1, a Berkeley
DB repository is the default repository type, but an FSFS repository can be created using the -
-fs-type option:

$ svnadmin create /usr/local/svn/repos --fs-type fsfs

Subversion Complete Reference

265

Name
svnadmin deltify — Deltify changed paths in a revision range.

Synopsis

svnadmin deltify [-r LOWER[:UPPER]] REPOS_PATH

Description

svnadmin deltify only exists in current versions of Subversion due to historical reasons. This
command is deprecated and no longer needed.

It dates from a time when Subversion offered administrators greater control over compression
strategies in the repository. This turned out to be a lot of complexity for very little gain, and this
“feature” was deprecated.

Switches

--revision (-r) REV
--quiet (-q)

Subversion Complete Reference

266

Name
svnadmin dump — Dump the contents of filesystem to stdout.

Synopsis

svnadmin dump REPOS_PATH [-r LOWER[:UPPER]] [--incremental]

Description

Dump the contents of filesystem to stdout in a “dumpfile” portable format, sending feedback to
stderr. Dump revisions LOWER rev through UPPER rev. If no revisions are given, dump all revi-
sion trees. If only LOWER is given, dump that one revision tree. See the section called
“Migrating a Repository” for a practical use.

By default, the Subversion dumpfile stream contains a single revision (the first revision in the
requested revision range) in which every file and directory in the repository in that revision is
presented as if that whole tree was added at once, followed by other revisions (the remainder
of the revisions in the requested range) which contain only the files and directories which were
modified in those revisions. For a modified file, the complete fulltext representation of its con-
tents, as well as all of its properties, are presented in the dumpfile; for a directory, all of its
properties are presented.

There are a pair of useful options which modify the dumpfile generator's behavior. The first is
the --incremental option, which simply causes that first revision in the dumpfile stream to
contain only the files and directories modified in that revision, instead of being presented as
the addition of a new tree, and in exactly the same way that every other revision in the dump-
file is presented. This is useful for generating a dumpfile that is to be loaded into another re-
pository which already has the files and directories that exist in the original repository.

The second useful option is --deltas. This switch causes svnadmin dump to, instead of
emitting fulltext representations of file contents and property lists, emit only deltas of those
items against their previous versions. This reduces (in some cases, drastically) the size of the
dumpfile that svnadmin dump creates. There are, however, disadvantages to using this op-
tion—deltified dumpfiles are more CPU intensive to create, cannot be operated on by svn-
dumpfilter, and tend not to compress as well as their non-deltified counterparts when using
third-party tools like gzip and bzip2.

Switches

--revision (-r) REV
--incremental
--quiet (-q)
--deltas

Examples

Dump your whole repository:

$ svnadmin dump /usr/local/svn/repos
SVN-fs-dump-format-version: 1
Revision-number: 0
* Dumped revision 0.
Prop-content-length: 56

Subversion Complete Reference

267

Content-length: 56
…

Incrementally dump a single transaction from your repository:

$ svnadmin dump /usr/local/svn/repos -r 21 --incremental
* Dumped revision 21.
SVN-fs-dump-format-version: 1
Revision-number: 21
Prop-content-length: 101
Content-length: 101
…

Subversion Complete Reference

268

Name
svnadmin help — Help!

Synopsis

svnadmin help [SUBCOMMAND...]

Description

This subcommand is useful when you're trapped on a desert island with neither a net connec-
tion nor a copy of this book.

Alternate Names

?, h

Subversion Complete Reference

269

Name
svnadmin hotcopy — Make a hot copy of a repository.

Synopsis

svnadmin hotcopy REPOS_PATH NEW_REPOS_PATH

Description

This subcommand makes a full “hot” backup of your repository, including all hooks, configura-
tion files, and, of course, database files. If you pass the --clean-logs switch, svnadmin will
perform a hotcopy of your repository, and then remove unused Berkeley DB logs from the ori-
ginal repository. You can run this command at any time and make a safe copy of the reposit-
ory, regardless of whether other processes are using the repository.

Switches

--clean-logs

Subversion Complete Reference

270

Name
svnadmin list-dblogs — Ask Berkeley DB which log files exist for a given Subversion repository
(applies only to repositories using the bdb backend).

Synopsis

svnadmin list-dblogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face
of catastrophe. Unless you enable DB_LOG_AUTOREMOVE, the log files accumulate, although
most are no longer used and can be deleted to reclaim disk space. See the section called
“Managing Disk Space” for more information.

Subversion Complete Reference

271

Name
svnadmin list-unused-dblogs — Ask Berkeley DB which log files can be safely deleted (applies
only to repositories using the bdb backend).

Synopsis

svnadmin list-unused-dblogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face
of catastrophe. Unless you enable DB_LOG_AUTOREMOVE, the log files accumulate, although
most are no longer used and can be deleted to reclaim disk space. See the section called
“Managing Disk Space” for more information.

Examples

Remove all unused log files from a repository:

$ svnadmin list-unused-dblogs /path/to/repos
/path/to/repos/log.0000000031
/path/to/repos/log.0000000032
/path/to/repos/log.0000000033

$ svnadmin list-unused-dblogs /path/to/repos | xargs rm
disk space reclaimed!

Subversion Complete Reference

272

Name
svnadmin load — Read a “dumpfile”-formatted stream from stdin.

Synopsis

svnadmin load REPOS_PATH

Description

Read a “dumpfile”-formatted stream from stdin, committing new revisions into the repository's
filesystem. Send progress feedback to stdout.

Switches

--quiet (-q)
--ignore-uuid
--force-uuid
--use-pre-commit-hook
--use-post-commit-hook
--parent-dir

Example

This shows the beginning of loading a repository from a backup file (made, of course, with
svnadmin dump):

$ svnadmin load /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1

* adding path : test ... done.
* adding path : test/a ... done.

…

Or if you want to load into a subdirectory:

$ svnadmin load --parent-dir new/subdir/for/project /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1

* adding path : test ... done.
* adding path : test/a ... done.

…

Subversion Complete Reference

273

Name
svnadmin lslocks — Print descriptions of all locks.

Synopsis

svnadmin lslocks REPOS_PATH

Description

Print descriptions of all locks in a repository.

Switches

None

Example

This lists the one locked file in the repository at /svn/repos

$ svnadmin lslocks /svn/repos
Path: /tree.jpg
UUID Token: opaquelocktoken:ab00ddf0-6afb-0310-9cd0-dda813329753
Owner: harry
Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)
Expires:
Comment (1 line):
Rework the uppermost branches on the bald cypress in the foreground.

Subversion Complete Reference

274

Name
svnadmin lstxns — Print the names of all uncommitted transactions.

Synopsis

svnadmin lstxns REPOS_PATH

Description

Print the names of all uncommitted transactions. See the section called “Repository Cleanup”
for information on how uncommitted transactions are created and what you should do with
them.

Examples

List all outstanding transactions in a repository.

$ svnadmin lstxns /usr/local/svn/repos/
1w
1x

Subversion Complete Reference

275

Name
svnadmin recover — Bring a repository database back into a consistent state (applies only to
repositories using the bdb backend). In addition, if repos/conf/passwd does not exist, it will
create a default password file .

Synopsis

svnadmin recover REPOS_PATH

Description

Run this command if you get an error indicating that your repository needs to be recovered.

Switches

--wait

Examples

Recover a hung repository:

$ svnadmin recover /usr/local/svn/repos/
Repository lock acquired.
Please wait; recovering the repository may take some time...

Recovery completed.
The latest repos revision is 34.

Recovering the database requires an exclusive lock on the repository. (This is a “database
lock”; see Three meanings of “lock”.) If another process is accessing the repository, then svn-
admin recover will error:

$ svnadmin recover /usr/local/svn/repos
svn: Failed to get exclusive repository access; perhaps another process
such as httpd, svnserve or svn has it open?

$

The --wait option, however, will cause svnadmin recover to wait indefinitely for other pro-
cesses to disconnect:

$ svnadmin recover /usr/local/svn/repos --wait
Waiting on repository lock; perhaps another process has it open?

time goes by…

Repository lock acquired.
Please wait; recovering the repository may take some time...

Recovery completed.
The latest repos revision is 34.

Subversion Complete Reference

276

Subversion Complete Reference

277

Name
svnadmin rmlocks — Unconditionally remove one or more locks from a repository.

Synopsis

svnadmin rmlocks REPOS_PATH LOCKED_PATH...

Description

Remove lock from each LOCKED_PATH.

Switches

None

Example

This deletes the locks on tree.jpg and house.jpg in the repository at /svn/repos

$ svnadmin rmlocks /svn/repos tree.jpg house.jpg
Removed lock on '/tree.jpg.
Removed lock on '/house.jpg.

Subversion Complete Reference

278

Name
svnadmin rmtxns — Delete transactions from a repository.

Synopsis

svnadmin rmtxns REPOS_PATH TXN_NAME...

Description

Delete outstanding transactions from a repository. This is covered in detail in the section called
“Repository Cleanup”.

Switches

--quiet (-q)

Examples

Remove named transactions:

$ svnadmin rmtxns /usr/local/svn/repos/ 1w 1x

Fortunately, the output of lstxns works great as the input for rmtxns:

$ svnadmin rmtxns /usr/local/svn/repos/ `svnadmin lstxns /usr/local/svn/repos/`

Which will remove all uncommitted transactions from your repository.

Subversion Complete Reference

279

Name
svnadmin setlog — Set the log-message on a revision.

Synopsis

svnadmin setlog REPOS_PATH -r REVISION FILE

Description

Set the log-message on revision REVISION to the contents of FILE.

This is similar to using svn propset --revprop to set the svn:log property on a revision, ex-
cept that you can also use the option --bypass-hooks to avoid running any pre- or post-
commit hooks, which is useful if the modification of revision properties has not been enabled in
the pre-revprop-change hook.

Warning

Revision properties are not under version control, so this command will perman-
ently overwrite the previous log message.

Switches

--revision (-r) REV
--bypass-hooks

Examples

Set the log message for revision 19 to the contents of the file msg:

$ svnadmin setlog /usr/local/svn/repos/ -r 19 msg

Subversion Complete Reference

280

Name
svnadmin verify — Verify the data stored in the repository.

Synopsis

svnadmin verify REPOS_PATH

Description

Run this command if you wish to verify the integrity of your repository. This basically iterates
through all revisions in the repository by internally dumping all revisions and discarding the out-
put.

Examples

Verify a hung repository:

$ svnadmin verify /usr/local/svn/repos/
* Verified revision 1729.

svnlook
svnlook is a command-line utility for examining different aspects of a Subversion repository. It
does not make any changes to the repository—it's just used for “peeking”. svnlook is typically
used by the repository hooks, but a repository administrator might find it useful for diagnostic
purposes.

Since svnlook works via direct repository access (and thus can only be used on the machine
that holds the repository), it refers to the repository with a path, not a URL.

If no revision or transaction is specified, svnlook defaults to the youngest (most recent) revi-
sion of the repository.

svnlook Switches
Switches in svnlook are global, just like in svn and svnadmin; however, most switches only
apply to one subcommand since the functionality of svnlook is (intentionally) limited in scope.

--no-diff-deleted
Prevents svnlook from printing differences for deleted files. The default behavior when a
file is deleted in a transaction/revision is to print the same differences that you would see if
you had left the file but removed all the content.

--revision (-r)
Specify a particular revision number that you wish to examine.

--revprop
Operates on a revision property instead of a Subversion property specific to a file or direct-
ory. This switch requires that you also pass a revision with the --revision (-r) switch.
See the section called “Unversioned Properties” for more details on unversioned proper-
ties.

Subversion Complete Reference

281

--transaction (-t)
Specify a particular transaction ID that you wish to examine.

--show-ids
Show the filesystem node revision IDs for each path in the filesystem tree.

svnlook

Subversion Complete Reference

282

Name
svnlook author — Print the author.

Synopsis

svnlook author REPOS_PATH

Description

Print the author of a revision or transaction in the repository.

Switches

--revision (-r) REV
--transaction (-t)

Examples

svnlook author is handy, but not very exciting:

$ svnlook author -r 40 /usr/local/svn/repos
sally

Subversion Complete Reference

283

Name
svnlook cat — Print the contents of a file.

Synopsis

svnlook cat REPOS_PATH PATH_IN_REPOS

Description

Print the contents of a file.

Switches

--revision (-r) REV
--transaction (-t)

Examples

This shows the contents of a file in transaction ax8, located at /trunk/README:

$ svnlook cat -t ax8 /usr/local/svn/repos /trunk/README

Subversion, a version control system.
=====================================

$LastChangedDate: 2003-07-17 10:45:25 -0500 (Thu, 17 Jul 2003) $

Contents:

I. A FEW POINTERS
II. DOCUMENTATION
III. PARTICIPATING IN THE SUBVERSION COMMUNITY

…

Subversion Complete Reference

284

Name
svnlook changed — Print the paths that were changed.

Synopsis

svnlook changed REPOS_PATH

Description

Print the paths that were changed in a particular revision or transaction, as well as “svn up-
date-style” status letters in the first two columns:

'A '
Item added to repository.

'D '
Item deleted from repository.

'U '
File contents changed.

'_U'
Properties of item changed.

'UU'
File contents and properties changed.

Files and directories can be distinguished, as directory paths are displayed with a trailing '/'
character.

Switches

--revision (-r) REV
--transaction (-t)

Examples

This shows a list of all the changed files in revision 39 of a test repository:

$ svnlook changed -r 39 /usr/local/svn/repos
A trunk/vendors/deli/
A trunk/vendors/deli/chips.txt
A trunk/vendors/deli/sandwich.txt
A trunk/vendors/deli/pickle.txt
U trunk/vendors/baker/bagel.txt
_U trunk/vendors/baker/croissant.txt
UU trunk/vendors/baker/pretzel.txt
D trunk/vendors/baker/baguette.txt

Subversion Complete Reference

285

Name
svnlook date — Print the datestamp.

Synopsis

svnlook date REPOS_PATH

Description

Print the datestamp of a revision or transaction in a repository.

Switches

--revision (-r) REV
--transaction (-t)

Examples

This shows the date of revision 40 of a test repository:

$ svnlook date -r 40 /tmp/repos/
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)

Subversion Complete Reference

286

Name
svnlook diff — Print differences of changed files and properties.

Synopsis

svnlook diff REPOS_PATH

Description

Print GNU-style differences of changed files and properties in a repository.

Switches

--revision (-r) REV
--transaction (-t)
--no-diff-added
--no-diff-deleted

Examples

This shows a newly added (empty) file, a deleted file, and a copied file:

$ svnlook diff -r 40 /usr/local/svn/repos/
Copied: egg.txt (from rev 39, trunk/vendors/deli/pickle.txt)

Added: trunk/vendors/deli/soda.txt
==

Modified: trunk/vendors/deli/sandwich.txt
==
--- trunk/vendors/deli/sandwich.txt (original)
+++ trunk/vendors/deli/sandwich.txt 2003-02-22 17:45:04.000000000 -0600
@@ -0,0 +1 @@
+Don't forget the mayo!

Modified: trunk/vendors/deli/logo.jpg
==
(Binary files differ)

Deleted: trunk/vendors/deli/chips.txt
==

Deleted: trunk/vendors/deli/pickle.txt
==

If a file has a non-textual svn:mime-type property, then the differences are not explicitly
shown.

Subversion Complete Reference

287

Name
svnlook dirs-changed — Print the directories that were themselves changed.

Synopsis

svnlook dirs-changed REPOS_PATH

Description

Print the directories that were themselves changed (property edits) or whose file children were
changed.

Switches

--revision (-r) REV
--transaction (-t)

Examples

This shows the directories that changed in revision 40 in our sample repository:

$ svnlook dirs-changed -r 40 /usr/local/svn/repos
trunk/vendors/deli/

Subversion Complete Reference

288

Name
svnlook help — Help!

Synopsis

Also svnlook -h and svnlook -?.

Description

Displays the help message for svnlook. This command, like its brother svn help, is also your
friend, even though you never call it anymore and forgot to invite it to your last party.

Alternate Names

?, h

Subversion Complete Reference

289

Name
svnlook history — Print information about the history of a path in the repository (or the root dir-
ectory if no path is supplied).

Synopsis

svnlook history REPOS_PATH [PATH_IN_REPOS]

Description

Print information about the history of a path in the repository (or the root directory if no path is
supplied).

Switches

--revision (-r) REV
--show-ids

Examples

This shows the history output for the path /tags/1.0 as of revision 20 in our sample reposit-
ory.

$ svnlook history -r 20 /usr/local/svn/repos /tags/1.0 --show-ids
REVISION PATH <ID>
-------- ---------

19 /tags/1.0 <1.2.12>
17 /branches/1.0-rc2 <1.1.10>
16 /branches/1.0-rc2 <1.1.x>
14 /trunk <1.0.q>
13 /trunk <1.0.o>
11 /trunk <1.0.k>
9 /trunk <1.0.g>
8 /trunk <1.0.e>
7 /trunk <1.0.b>
6 /trunk <1.0.9>
5 /trunk <1.0.7>
4 /trunk <1.0.6>
2 /trunk <1.0.3>
1 /trunk <1.0.2>

Subversion Complete Reference

290

Name
svnlook info — Print the author, datestamp, log message size, and log message.

Synopsis

svnlook info REPOS_PATH

Description

Print the author, datestamp, log message size, and log message.

Switches

--revision (-r) REV
--transaction (-t)

Examples

This shows the info output for revision 40 in our sample repository.

$ svnlook info -r 40 /usr/local/svn/repos
sally
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)
15
Rearrange lunch.

Subversion Complete Reference

291

Name
svnlook lock — If a lock exists on a path in the repository, describe it.

Synopsis

svnlook lock REPOS_PATH PATH_IN_REPOS

Description

Print all information available for the lock at PATH_IN_REPOS. If PATH_IN_REPOS is not
locked, print nothing.

Switches

None

Examples

This describes the lock on the file tree.jpg.

$ svnlook lock /svn/repos tree.jpg
UUID Token: opaquelocktoken:ab00ddf0-6afb-0310-9cd0-dda813329753
Owner: harry
Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)
Expires:
Comment (1 line):
Rework the uppermost branches on the bald cypress in the foreground.

Subversion Complete Reference

292

Name
svnlook log — Print the log message.

Synopsis

svnlook log REPOS_PATH

Description

Print the log message.

Switches

--revision (-r) REV
--transaction (-t)

Examples

This shows the log output for revision 40 in our sample repository:

$ svnlook log /tmp/repos/
Rearrange lunch.

Subversion Complete Reference

293

Name
svnlook propget — Print the raw value of a property on a path in the repository.

Synopsis

svnlook propget REPOS_PATH PROPNAME [PATH_IN_REPOS]

Description

List the value of a property on a path in the repository.

Alternate Names

pg, pget

Switches

--revision (-r) REV
--transaction (-t)
--revprop

Examples

This shows the value of the “seasonings” property on the file /trunk/sandwich in the HEAD
revision:

$ svnlook pg /usr/local/svn/repos seasonings /trunk/sandwich
mustard

Subversion Complete Reference

294

Name
svnlook proplist — Print the names and values of versioned file and directory properties.

Synopsis

svnlook proplist REPOS_PATH [PATH_IN_REPOS]

Description

List the properties of a path in the repository. With --verbose, show the property values too.

Alternate Names

pl, plist

Switches

--revision (-r) REV
--transaction (-t)
--verbose (-v)
--revprop

Examples

This shows the names of properties set on the file /trunk/README in the HEAD revision:

$ svnlook proplist /usr/local/svn/repos /trunk/README
original-author
svn:mime-type

This is the same command as in the previous example, but this time showing the property val-
ues as well:

$ svnlook --verbose proplist /usr/local/svn/repos /trunk/README
original-author : fitz
svn:mime-type : text/plain

Subversion Complete Reference

295

Name
svnlook tree — Print the tree.

Synopsis

svnlook tree REPOS_PATH [PATH_IN_REPOS]

Description

Print the tree, starting at PATH_IN_REPOS (if supplied, at the root of the tree otherwise), op-
tionally showing node revision IDs.

Switches

--revision (-r) REV
--transaction (-t)
--show-ids

Examples

This shows the tree output (with node-IDs) for revision 40 in our sample repository:

$ svnlook tree -r 40 /usr/local/svn/repos --show-ids
/ <0.0.2j>
trunk/ <p.0.2j>
vendors/ <q.0.2j>
deli/ <1g.0.2j>
egg.txt <1i.e.2j>
soda.txt <1k.0.2j>
sandwich.txt <1j.0.2j>

Subversion Complete Reference

296

Name
svnlook uuid — Print the repository's UUID.

Synopsis

svnlook uuid REPOS_PATH

Description

Print the UUID for the repository. the UUID is the repository's universal unique identifier. The
Subversion client uses this identifier to differentiate between one repository and another.

Examples

$ svnlook uuid /usr/local/svn/repos
e7fe1b91-8cd5-0310-98dd-2f12e793c5e8

Subversion Complete Reference

297

Name
svnlook youngest — Print the youngest revision number.

Synopsis

svnlook youngest REPOS_PATH

Description

Print the youngest revision number of a repository.

Examples

This shows the youngest revision of our sample repository:

$ svnlook youngest /tmp/repos/
42

svnserve
svnserve allows access to Subversion repositories using the svn network protocol. You can
run svnserve either as a standalone server process, or you can have another process, such as
inetd, xinetd or sshd, launch it for you.

Once the client has selected a repository by transmitting its URL, svnserve reads a file named
conf/svnserve.conf in the repository directory to determine repository-specific settings
such as what authentication database to use and what authorization policies to apply. See the
section called “svnserve, a custom server” for details of the svnserve.conf file.

svnserve Switches
Unlike the previous commands we've described. svnserve has no subcommands—svnserve
is controlled exclusively by switches.

--daemon (-d)
Causes svnserve to run in daemon mode. svnserve backgrounds itself and accepts and
serves TCP/IP connections on the svn port (3690, by default).

--listen-port=PORT
Causes svnserve to listen on PORT when run in daemon mode.

--listen-host=HOST
Causes svnserve to listen on the interface specified by HOST, which may be either a host-
name or an IP address.

--foreground
When used together with -d, this switch causes svnserve to stay in the foreground. This
switch is mainly useful for debugging.

--inetd (-i)
Causes svnserve to use the stdin/stdout file descriptors, as is appropriate for a daemon

Subversion Complete Reference

298

running out of inetd.

--help (-h)
Displays a usage summary and exits.

--version
Displays version information, a list of repository back-end modules available, and exits.

--root=ROOT (-r=ROOT)
Sets the virtual root for repositories served by svnserve. The pathname in URLs provided
by the client will be interpreted relative to this root, and will not be allowed to escape this
root.

--tunnel (-t)
Causes svnserve to run in tunnel mode, which is just like the inetd mode of operation
(serve one connection over stdin/stdout) except that the connection is considered to be
pre-authenticated with the username of the current uid. This flag is selected by the client
when running over a tunnel agent such as ssh.

--tunnel-user NAME
Used in conjunction with --tunnel switch; tells svnserve to assume that NAME is the au-
thenticated user, rather than the UID of the svnserve process. Useful for users wishing to
share a single system account over SSH, but maintaining separate commit identities.

--threads (-T)
When running in daemon mode, causes svnserve to spawn a thread instead of a process
for each connection. The svnserve process still backgrounds itself at startup time.

--listen-once (-X)
Causes svnserve to accept one connection on the svn port, serve it, and exit. This option
is mainly useful for debugging.

svnversion

Subversion Complete Reference

299

Name
svnversion — Summarize the local revision(s) of a working copy.

Synopsis

svnversion [OPTIONS] [WC_PATH [TRAIL_URL]]

Description

svnversion is a program for summarizing the revision mixture of a working copy. The resultant
revision number, or revision range, is written to standard output.

TRAIL_URL, if present, is the trailing portion of the URL used to determine if WC_PATH itself is
switched (detection of switches within WC_PATH does not rely on TRAIL_URL).

When WC_PATH is not defined the current directory will be used as the working copy path.
TRAIL_URL cannot be defined if WC_PATH is not explicitly given.

Switches

Like svnserve, svnversion has no subcommands, it only has switches.

--no-newline (-n)
Omit the usual trailing newline from the output.

--committed (-c)
Use the last-changed revisions rather than the current (i.e., highest locally available) revi-
sions.

--help (-h)
Print a help summary.

--version
Print the version of svnversion and exit with no error.

Examples

If the working copy is all at the same revision (for example, immediately after an update), then
that revision is printed out:

$ svnversion
4168

You can add TRAIL_URL to show that the working copy is not switched from what you expect.
Note that the WC_PATH was required in this command:

$ svnversion . /repos/svn/trunk
4168

For a mixed-revision working copy, the range of revisions present is printed:

Subversion Complete Reference

300

$ svnversion
4123:4168

If the working copy contains modifications, a trailing "M" is added:

$ svnversion
4168M

If the working copy is switched, a trailing "S" is added:

$ svnversion
4168S

Thus, here is a mixed-revision, switched working copy containing some local modifications:

$ svnversion
4212:4168MS

If invoked on a directory that is not a working copy, svnversion assumes it is an exported
working copy and prints "exported":

$ svnversion
exported

mod_dav_svn

Subversion Complete Reference

301

Name
mod_dav_svn Configuration Directives — Apache configuration directives for serving Subver-
sion repositories through Apache HTTP Server.

Description

This section briefly describes each of the Subversion Apache configuration directives. For an
in-depth description of configuring Apache with Subversion, see the section called “httpd, the
Apache HTTP server”.)

Directives

DAV svn
This directive must be included in any Directory or Location block for a Subversion
repository. It tells httpd to use the Subversion backend for mod_dav to handle all requests.

SVNAutoversioning On
This directive allows write requests from WebDAV clients to result in automatic commits. A
generic log message is auto-generated and attached to each revision. If you enable
Autoversioning, you'll likely want to set ModMimeUsePathInfo On so that mod_mime can
set svn:mime-type to the correct mime-type automatically (as best as mod_mime is able
to, of course). For more information, see Appendix C, WebDAV and Autoversioning

SVNPath
This directive specifies the location in the filesystem for a Subversion repository's files. In a
configuration block for a Subversion repository, either this directive or SVNParentPath
must be present, but not both.

SVNSpecialURI
Specifies the URI component (namespace) for special Subversion resources. The default
is “!svn”, and most administrators will never use this directive. Only set this if there is a
pressing need to have a file named !svn in your repository. If you change this on a server
already in use, it will break all of the outstanding working copies and your users will hunt
you down with pitchforks and flaming torches.

SVNReposName
Specifies the name of a Subversion repository for use in HTTP GET requests. This value
will be prepended to the title of all directory listings (which are served when you navigate to
a Subversion repository with a web browser). This directive is optional.

SVNIndexXSLT
Specifies the URI of an XSL transformation for directory indexes. This directive is optional.

SVNParentPath
Specifies the location in the filesystem of a parent directory whose child directories are
Subversion repositories. In a configuration block for a Subversion repository, either this dir-
ective or SVNPath must be present, but not both.

SVNPathAuthz
Control path-based authorization by enabling or disabling subrequests. See the section
called “Disabling Path-based Checks” for details.

Subversion Complete Reference

302

Subversion properties

Subversion Complete Reference

303

Name
Subversion-defined properties — properties defined by Subversion to control behavior.

Description

Subversion allows users to invent arbitrarily-named versioned properties on files and director-
ies, as well as unversioned properties on revisions. The only restriction is on properties pre-
fixed with “svn:”. Properties in that namespace are reserved for Subversion's own use. While
these properties may be set by users to control Subversion's behavior, users may not invent
new “svn:” properties.

Versioned Properties

svn:executable
If present on a file, the client will make the file executable in Unix-hosted working copies.
See the section called “File Executability”.

svn:mime-type
If present on a file, the value indicates the file's mime-type. This allows the client to decide
whether line-based contextual merging is safe to perform during updates, and can also af-
fect how the file behaves when fetched via web browser. See the section called “File Con-
tent Type”.

svn:ignore
If present on a directory, the value is a list of unversioned file patterns to be ignored by svn
status and other subcommands. See the section called “Ignoring Unversioned Items”

svn:keywords
If present on a file, the value tells the client how to expand particular keywords within the
file. See the section called “Keyword Substitution”.

svn:eol-style
If present on a file, the value tells the client how to manipulate the file's line-endings in the
working copy. See the section called “End-of-Line Character Sequences”.

svn:externals
If present on a directory, the value is a multi-line list of other paths and URLs the client
should check out. See the section called “Externals Definitions”.

svn:special
If present on a file, indicates that the file is not an ordinary file, but a symbolic link or other
special object.

svn:needs-lock
If present on a file, tells the client to make the file read-only in the working copy, as a re-
minder that the file should be locked before editing begins. See the section called “Lock
Communication”.

Unversioned Properties

svn:author
If present, contains the authenticated username of the person who created the revision. (If

Subversion Complete Reference

304

not present, then the revision was committed anonymously.)

svn:date
Contains the UTC time the revision was created, in ISO format. The value comes from the
server machine's clock.

svn:log
Contains the log message describing the revision.

svn:autoversioned
If present, the revision was created via the autoversioning feature. See the section called
“Autoversioning”.

Subversion Complete Reference

305

1Note that the URL checked out in the example above ends not with svn, but with a subdirectory thereof called
trunk. See our discussion of Subversion's branching and tagging model for the reasoning behind this.

Appendix A. Subversion Quick-Start
Guide

Some people have trouble absorbing a new technology by reading the sort of “top down” ap-
proach provided by this book. This appendix contains a very short introduction to Subversion,
and is designed to give “bottom up” learners a fighting chance. If you prefer to learn by experi-
mentation, the following demonstration will get you up and running. Along the way, we give
links to the relevant chapters of this book.

If you're new to the entire concept of version control or to the “copy-modify-merge” model used
by both CVS and Subversion, then you should read Chapter 1, Fundamental Concepts before
going any further.

Installing Subversion
Subversion is built on a portability layer called APR—the Apache Portable Runtime library. The
APR library provides all the interfaces that Subversion needs to function on different operating
systems: disk access, network access, memory management, and so on. While Subversion is
able to use Apache as one of its network server programs, its dependence on APR does not
mean that Apache is a required component. APR is a standalone library useable by any applic-
ation. It does mean, however, that like Apache, Subversion clients and servers run on any op-
erating system that the Apache httpd server runs on: Windows, Linux, all flavors of BSD, Mac
OS X, Netware, and others.

The easiest way to get Subversion is to download a binary package built for your operating
system. Subversion's website (http://subversion.tigris.org) often has these packages available
for download, posted by volunteers. The site usually contains graphical installer packages for
users of Microsoft operating systems. If you run a Unix-like operating system, you can use
your system's native package distribution system (RPMs, DEBs, the ports tree, etc.) to get
Subversion.

Alternately, you can build Subversion directly from source code. From the Subversion website,
download the latest source-code release. After unpacking it, follow the instructions in the IN-
STALL file to build it. Note that a released source package contains everything you need to
build a command-line client capable of talking to a remote repository (in particular, the apr, apr-
util, and neon libraries). But optional portions of Subversion have many other dependencies,
such as Berkeley DB and possibly Apache httpd. If you want to do a complete build, make sure
you have all of the packages documented in the INSTALL file.

If you're one of those folks that likes to use bleeding-edge software, you can also get the Sub-
version source code from the Subversion repository in which it lives. Obviously, you'll need to
already have a Subversion client on hand to do this. But once you do, you can checkout a
working copy of the Subversion source repository from http://svn.collab.net/repos/svn/trunk/: 1

$ svn checkout http://svn.collab.net/repos/svn/trunk subversion
A subversion/HACKING
A subversion/INSTALL
A subversion/README
A subversion/autogen.sh
A subversion/build.conf

306

http://subversion.tigris.org
http://svn.collab.net/repos/svn/trunk/

…

The above command will checkout the bleeding-edge, latest version of the Subversion source
code into a subdirectory named subversion in your current working directory. Obviously, you
can adjust that last argument as you see fit. Regardless of what you call the new working copy
directory, though, after this operation completes, you will now have the Subversion source
code. Of course, you will still need to fetch a few helper libraries (apr, apr-util, etc.)—see the
INSTALL file in the top level of the working copy for details.

High-speed Tutorial
“Please make sure your seat backs are in their full, upgright position, and that
your tray tables are stored. Flight attendants, prepare for take-off….”

The following is a very high-level tutorial which will walk you through some basic Subversion
configuration and operation. By the time you complete the tutorial, you should have a basic un-
derstanding of Subversion's typical usage.

Note

The examples used in this appendix assume that you have svn, the Subversion
command-line client, and svnadmin, the administrative tool, ready to go. It also
assumes you are using Subversion 1.2 or later (run svn --version to check.)

Subversion stores all versioned data in a central repository. To begin, create a new repository:

$ svnadmin create /path/to/repos
$ ls /path/to/repos
conf/ dav/ db/ format hooks/ locks/ README.txt

This command creates a new directory /path/to/repos which contains a Subversion repos-
itory. This new directory contains (among other things) a collection of database files. You won't
see your versioned files if you peek inside. For more information about repository creation and
maintenance, see Chapter 5, Repository Administration.

Subversion has no concept of a “project”. The repository is just a virtual versioned filesystem, a
large tree that can hold anything you wish. Some administrators prefer to store only one
project in a repository, and others prefer to store multiple projects in a repository by placing
them into separate directories. The merits of each approach are discussed in the section called
“Choosing a Repository Layout”. Either way, the repository only manages files and directories,
so it's up to humans to interpret particular directories as “projects”. So while you might see ref-
erences to projects throughout this book, keep in mind that we're only ever talking about some
directory (or collection of directories) in the repository.

In this example, we assume that you already have some sort of project (a collection of files and
directories) that you wish to import into your newly created Subversion repository. Begin by or-
ganizing them into a single directory called myproject (or whatever you wish). For reasons
that will be clear later (see Chapter 4, Branching and Merging), your project's tree structure
should contain three top-level directories named branches, tags, and trunk. The trunk
directory should contain all of your data, while branches and tags directories are empty:

Subversion Quick-Start Guide

307

/tmp/myproject/branches/
/tmp/myproject/tags/
/tmp/myproject/trunk/

foo.c
bar.c
Makefile
…

The branches, tags, and trunk subdirectories aren't actually required by Subversion.
They're merely a popular convention that you'll most likely want to use later on.

Once you have your tree of data ready to go, import it into the repository with the svn import
command (see the section called “svn import”):

$ svn import /tmp/myproject file:///path/to/repos/myproject -m "initial import"
Adding /tmp/myproject/branches
Adding /tmp/myproject/tags
Adding /tmp/myproject/trunk
Adding /tmp/myproject/trunk/foo.c
Adding /tmp/myproject/trunk/bar.c
Adding /tmp/myproject/trunk/Makefile
…
Committed revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by
directly peeking into the repository; they're all stored within a database. But the repository's
imaginary filesystem now contains a top-level directory named myproject, which in turn con-
tains your data.

Note that the original /tmp/myproject directory is unchanged; Subversion is unaware of it.
(In fact, you can even delete that directory if you wish.) In order to start manipulating repository
data, you need to create a new “working copy” of the data, a sort of private workspace. Ask
Subversion to “check out” a working copy of the myproject/trunk directory in the reposit-
ory:

$ svn checkout file:///path/to/repos/myproject/trunk myproject
A myproject/foo.c
A myproject/bar.c
A myproject/Makefile
…
Checked out revision 1.

Now you have a personal copy of part of the repository in a new directory named myproject.
You can edit the files in your working copy and then commit those changes back into the re-
pository.

• Enter your working copy and edit a file's contents.

• Run svn diff to see unified diff output of your changes.

• Run svn commit to commit the new version of your file to the repository.

• Run svn update to bring your working copy “up-to-date” with the repository.

Subversion Quick-Start Guide

308

For a full tour of all the things you can do with your working copy, read Chapter 2, Basic
Usage.

At this point, you have the option of making your repository available to others over a network.
See Chapter 6, Server Configuration to learn about the different sorts of server processes
available and how to configure them.

TODO: Let's make this into a full tutorial, rather than simply referring off to other sections.
###

Subversion Quick-Start Guide

309

Appendix B. Subversion for CVS Users
This appendix is a guide for CVS users new to Subversion. It's essentially a list of differences
between the two systems as “viewed from 10,000 feet”. For each section, we provide back-
references to relevant chapters when possible.

Although the goal of Subversion is to take over the current and future CVS user base, some
new features and design changes were required to fix certain “broken” behaviors that CVS
had. This means that, as a CVS user, you may need to break habits—ones that you forgot
were odd to begin with.

Revision Numbers Are Different Now
In CVS, revision numbers are per-file. This is because CVS stores its data in RCS files; each
file has a corresponding RCS file in the repository, and the repository is roughly laid out ac-
cording to the structure of your project tree.

In Subversion, the repository looks like a single filesystem. Each commit results in an entirely
new filesystem tree; in essence, the repository is an array of trees. Each of these trees is
labeled with a single revision number. When someone talks about “revision 54”, they're talking
about a particular tree (and indirectly, the way the filesystem looked after the 54th commit).

Technically, it's not valid to talk about “revision 5 of foo.c”. Instead, one would say “foo.c as
it appears in revision 5”. Also, be careful when making assumptions about the evolution of a
file. In CVS, revisions 5 and 6 of foo.c are always different. In Subversion, it's most likely that
foo.c did not change between revisions 5 and 6.

For more details on this topic, see the section called “Revisions”.

Directory Versions
Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subver-
sion was written to replace CVS.

Here's what this means to you, as a former CVS user:

• The svn add and svn delete commands work on directories now, just as they work on files.
So do svn copy and svn move. However, these commands do not cause any kind of imme-
diate change in the repository. Instead, the working items are simply “scheduled” for addition
or deletion. No repository changes happen until you run svn commit.

• Directories aren't dumb containers anymore; they have revision numbers like files. (Or more
properly, it's correct to talk about “directory foo/ in revision 5”.)

Let's talk more about that last point. Directory versioning is a hard problem; because we want
to allow mixed-revision working copies, there are some limitations on how far we can abuse
this model.

From a theoretical point of view, we define “revision 5 of directory foo” to mean a specific col-
lection of directory-entries and properties. Now suppose we start adding and removing files
from foo, and then commit. It would be a lie to say that we still have revision 5 of foo.
However, if we bumped foo's revision number after the commit, that would be a lie too; there

310

may be other changes to foo we haven't yet received, because we haven't updated yet.

Subversion deals with this problem by quietly tracking committed adds and deletes in the .svn
area. When you eventually run svn update, all accounts are settled with the repository, and
the directory's new revision number is set correctly. Therefore, only after an update is it truly
safe to say that you have a “perfect” revision of a directory. Most of the time, your working
copy will contain “imperfect” directory revisions.

Similarly, a problem arises if you attempt to commit property changes on a directory. Normally,
the commit would bump the working directory's local revision number. But again, that would be
a lie, because there may be adds or deletes that the directory doesn't yet have, because no
update has happened. Therefore, you are not allowed to commit property-changes on a direct-
ory unless the directory is up-to-date.

For more discussion about the limitations of directory versioning, see the section called “Mixed
Revision Working Copies”.

More Disconnected Operations
In recent years, disk space has become outrageously cheap and abundant, but network band-
width has not. Therefore, the Subversion working copy has been optimized around the scarcer
resource.

The .svn administrative directory serves the same purpose as the CVS directory, except that it
also stores read-only, “pristine” copies of your files. This allows you to do many things off-line:

svn status
Shows you any local changes you've made (see the section called “svn status”)

svn diff
Shows you the details of your changes (see the section called “svn diff”)

svn revert
Removes your local changes (see the section called “svn revert”)

Also, the cached pristine files allow the Subversion client to send differences when committing,
which CVS cannot do.

The last subcommand in the list is new; it will not only remove local changes, but it will un-
schedule operations such as adds and deletes. It's the preferred way to revert a file; running
rm file; svn update will still work, but it blurs the purpose of updating. And, while we're on this
subject…

Distinction Between Status and Update
In Subversion, we've tried to erase a lot of the confusion between the cvs status and cvs up-
date commands.

The cvs status command has two purposes: first, to show the user any local modifications in
the working copy, and second, to show the user which files are out-of-date. Unfortunately, be-
cause of CVS's hard-to-read status output, many CVS users don't take advantage of this com-
mand at all. Instead, they've developed a habit of running cvs update or cvs -n update to
quickly see their changes. If users forget to use the -n option, this has the side effect of mer-
ging repository changes they may not be ready to deal with.

Subversion for CVS Users

311

With Subversion, we've tried to remove this muddle by making the output of svn status easy
to read for both humans and parsers. Also, svn update only prints information about files that
are updated, not local modifications.

Status
svn status prints all files that have local modifications. By default, the repository is not contac-
ted. While this subcommand accepts a fair number of options, the following are the most com-
monly used ones:

-u
Contact the repository to determine, and then display, out-of-dateness information.

-v
Show all entries under version control.

-N
Run non-recursively (do not descend into subdirectories).

The status command has two output formats. In the default “short” format, local modifications
look like this:

$ svn status
M foo.c
M bar/baz.c

If you specify the --show-updates (-u) switch, a longer output format is used:

$ svn status -u
M 1047 foo.c

* 1045 faces.html
* bloo.png

M 1050 bar/baz.c
Status against revision: 1066

In this case, two new columns appear. The second column contains an asterisk if the file or dir-
ectory is out-of-date. The third column shows the working-copy's revision number of the item.
In the example above, the asterisk indicates that faces.html would be patched if we up-
dated, and that bloo.png is a newly added file in the repository. (The absence of any revision
number next to bloo.png means that it doesn't yet exist in the working copy.)

Lastly, here's a quick summary of the most common status codes that you may see:

A Resource is scheduled for Addition
D Resource is scheduled for Deletion
M Resource has local Modifications
C Resource has Conflicts (changes have not been completely merged

between the repository and working copy version)
X Resource is eXternal to this working copy (may come from another

repository). See the section called “Externals Definitions”
? Resource is not under version control
! Resource is missing or incomplete (removed by another tool than

Subversion)

Subversion for CVS Users

312

1That is, providing you don't run out of disk space before your checkout finishes.

For a more detailed discussion of svn status, see the section called “svn status”.

Update
svn update updates your working copy, and only prints information about files that it updates.

Subversion has combined the CVS P and U codes into just U. When a merge or conflict occurs,
Subversion simply prints G or C, rather than a whole sentence about it.

For a more detailed discussion of svn update, see the section called “Update Your Working
Copy”.

Branches and Tags
Subversion doesn't distinguish between filesystem space and “branch” space; branches and
tags are ordinary directories within the filesystem. This is probably the single biggest mental
hurdle a CVS user will need to climb. Read all about it in Chapter 4, Branching and Merging.

Warning

Since Subversion treats branches and tags as ordinary directories, always remem-
ber to check out the trunk (ht-
tp://svn.example.com/repos/calc/trunk/) of your project, and not the
project itself (http://svn.example.com/repos/calc/). If you make the mis-
take of checking out the project itself, you'll wind up with a working copy that con-
tains a copy of your project for every branch and tag you have.1

Metadata Properties
A new feature of Subversion is that you can attach arbitrary metadata (or “properties”) to files
and directories. Properties are arbitrary name/value pairs associated with files and directories
in your working copy.

To set or get a property name, use the svn propset and svn propget subcommands. To list
all properties on an object, use svn proplist.

For more information, see the section called “Properties”.

Conflict Resolution
CVS marks conflicts with in-line “conflict markers”, and prints a C during an update. Historic-
ally, this has caused problems, because CVS isn't doing enough. Many users forget about (or
don't see) the C after it whizzes by on their terminal. They often forget that the conflict-markers
are even present, and then accidentally commit files containing conflict-markers.

Subversion solves this problem by making conflicts more tangible. It remembers that a file is in
a state of conflict, and won't allow you to commit your changes until you run svn resolved.
See the section called “Resolve Conflicts (Merging Others' Changes)” for more details.

Subversion for CVS Users

313

Binary Files and Translation
In the most general sense, Subversion handles binary files more gracefully than CVS does.
Because CVS uses RCS, it can only store successive full copies of a changing binary file. Sub-
version, however, expresses differences between files using a binary-differencing algorithm,
regardless of whether they contain textual or binary data. That means that all files are stored
differentially (compressed) in the repository.

CVS users have to mark binary files with -kb flags, to prevent data from being garbled (due to
keyword expansion and line-ending translations). They sometimes forget to do this.

Subversion takes the more paranoid route—first, it never performs any kind of keyword or line-
ending translation unless you explicitly ask it do so (see the section called “Keyword Substitu-
tion” and the section called “End-of-Line Character Sequences” for more details). By default,
Subversion treats all file data as literal byte strings, and files are always stored in the reposit-
ory in an untranslated state.

Second, Subversion maintains an internal notion of whether a file is “text” or “binary” data, but
this notion is only extant in the working copy. During an svn update, Subversion will perform
contextual merges on locally modified text files, but will not attempt to do so for binary files.

To determine whether a contextual merge is possible, Subversion examines the
svn:mime-type property. If the file has no svn:mime-type property, or has a mime-type
that is textual (e.g. text/*), Subversion assumes it is text. Otherwise, Subversion assumes
the file is binary. Subversion also helps users by running a binary-detection algorithm in the
svn import and svn add commands. These commands will make a good guess and then
(possibly) set a binary svn:mime-type property on the file being added. (If Subversion
guesses wrong, the user can always remove or hand-edit the property.)

Versioned Modules
Unlike CVS, a Subversion working copy is aware that it has checked out a module. That
means that if somebody changes the definition of a module (e.g. adds or removes compon-
ents), then a call to svn update will update the working copy appropriately, adding and remov-
ing components.

Subversion defines modules as a list of directories within a directory property: see the section
called “Externals Definitions”.

Authentication
With CVS's pserver, you are required to “login” to the server before any read or write opera-
tion—you even have to login for anonymous operations. With a Subversion repository using
Apache httpd or svnserve as the server, you don't provide any authentication credentials at
the outset—if an operation that you perform requires authentication, the server will challenge
you for your credentials (whether those credentials are username and password, a client certi-
ficate, or even both). So if your repository is world-readable, you will not be required to authen-
ticate at all for read operations.

As with CVS, Subversion still caches your credentials on disk (in your
~/.subversion/auth/ directory) unless you tell it not to by using the --no-auth-cache
switch.

The exception to this behavior, however, is in the case of accessing an svnserve server over
an SSH tunnel, using the svn+ssh:// URL schema. In that case, the ssh program uncondi-

Subversion for CVS Users

314

tionally demands authentication just to start the tunnel.

Converting a Repository from CVS to Subver-
sion

Perhaps the most important way to familiarize CVS users with Subversion is to let them contin-
ue to work on their projects using the new system. And while that can be somewhat accom-
plished using a flat import into a Subversion repository of an exported CVS repository, the
more thorough solution involves transferring not just the latest snapshot of their data, but all
the history behind it as well, from one system to another. This is an extremely difficult problem
to solve that involves deducing changesets in the absence of atomicity, and translating
between the systems' completely orthogonal branching policies, among other complications.
Still, there are a handful of tools claiming to at least partially support the ability to convert exist-
ing CVS repositories into Subversion ones.

One such tool is cvs2svn (http://cvs2svn.tigris.org/), a Python script originally created by mem-
bers of Subversion's own development community. Others include Lev Serebryakov's Re-
fineCVS (http://lev.serebryakov.spb.ru/refinecvs/). These tools have various levels of com-
pleteness, and may make entirely different decisions about how to handle your CVS repository
history. Whichever tool you decide to use, be sure to perform as much verification as you can
stand on the conversion results—after all, you've worked hard to build that history!

For an updated collection of links to known converter tools, visit the Links page of the Subver-
sion website (http://subversion.tigris.org/project_links.html).

Subversion for CVS Users

315

http://cvs2svn.tigris.org/
http://lev.serebryakov.spb.ru/refinecvs/
http://subversion.tigris.org/project_links.html

Appendix C. WebDAV and
Autoversioning

WebDAV is an extension to HTTP, and is growing more and more popular as a standard for
file-sharing. Today's operating systems are becoming extremely Web-aware, and many now
have built-in support for mounting “shares” exported by WebDAV servers.

If you use Apache/mod_dav_svn as your Subversion network server, then to some extent, you
are also running a WebDAV server. This appendix gives some background on the nature of
this protocol, how Subversion uses it, and how well Subversion interoperates with other soft-
ware that is WebDAV-aware.

Basic WebDAV Concepts
This section provides a very brief, very general overview to the ideas behind WebDAV. It
should lay the foundation for understanding WebDAV compatibility issues between clients and
servers.

Original WebDAV
RFC 2518 defines a set of concepts and accompanying extension methods to HTTP 1.1 that
make the web into a more universal read/write medium. The basic idea is that a WebDAV-
compliant web server can act like a generic file server; clients can mount shared folders that
behave much like NFS or SMB filesystems.

The tragedy, though, is that the RFC 2518 WebDAV specification does not provide any sort of
model for version control, despite the “V” in DAV. Basic WebDAV clients and servers assume
only one version of each file or directory exists, and can be repeatedly overwritten.

Here are the concepts and terms introduced in basic WebDAV:

Resources
WebDAV lingo refers to any server-side object (that can be described with a URI) as a re-
source.

New write methods
Beyond the standard HTTP PUT method (which creates or overwrites a web resource),
WebDAV defines new COPY and MOVE methods for duplicating or rearranging resources.

Collections
A collection is the WebDAV term for a grouping of resources. In most cases, it is analog-
ous to a directory. Whereas file resources can be written or created with a PUT method,
collection resources are created with the new MKCOL method.

Properties
This is the same idea present in Subversion—metadata attached to files and collections. A
client can list or retrieve properties attached to a resource with the new PROPFIND meth-
od, and can change them with the PROPPATCH method. Some properties are wholly cre-
ated and controlled by users (e.g. a property called “color”), and others are wholly created
and controlled by the WebDAV server (e.g. a property that contains the last modification
time of a file). The former kind are called dead properties, and the latter kind are called live
properties.

316

Locking
A WebDAV server may decide to offer a locking feature to clients—this part of the specific-
ation is optional, although most WebDAV servers do offer the feature. If present, then cli-
ents can use the new LOCK and UNLOCK methods to mediate access to a resource. In
most cases these methods are used to create exclusive write locks (as discussed in the
section called “The Lock-Modify-Unlock Solution”), although shared write locks are also
possible in some server implementations.

Access control
A more recent specification (RFC 3744) defines a system for defining access control lists
(ACLs) on WebDAV resources. Some clients and servers have begun to implement this
feature.

DeltaV Extensions
Because RFC 2518 left out versioning concepts, another committee was left with the respons-
ibility of writing RFC 3253, which adds versioning to WebDAV, a.k.a. “DeltaV”. WebDAV/
DeltaV clients and servers are often called just “DeltaV” programs, since DeltaV implies the ex-
istence of basic WebDAV.

DeltaV introduces a whole slew of new acronyms, but don't be intimidated. The ideas are fairly
straightforward:

Per-resource versioning
Like CVS and other version-control systems, DeltaV assumes that each resource has a
potentially infinite number of states. A client begins by placing a resource under version
control using the new VERSION-CONTROL method.

Server-side working-copy model
Some DeltaV servers support the ability to create a virtual workspace on the server, where
all of your work is performed. Clients use the MKWORKSPACE method to create a private
area, then indicate they want to change specific resources by “checking them out” into the
workspace, editing them, and “checking them in” again. In HTTP terms, the sequence of
methods would be CHECKOUT, PUT, CHECKIN.

Client-side working-copy model
Some DeltaV servers also support the idea that the client may have a private working copy
on local disk. When the client wants to commit changes to the server, it begins by creating
a temporary server transaction (called an activity) with the MKACTIVITY method. The cli-
ent then performs a CHECKOUT on each resource it wishes to change and sends PUT re-
quests. Finally, the client performs a CHECKIN resource, or sends a MERGE request to
check in all resources at once.

Configurations
DeltaV allows you define flexible collections of resources called “configurations”, which
don't necessarily correspond to particular directories. A configuration can be made to point
to specific versions of files, and then a “baseline” snapshot can be made, much like a tag.

Extensibility
DeltaV defines a new method, REPORT, which allows the client and server to perform cus-
tomized data exchanges. While DeltaV defines a number of standardized history reports
that a client can request, the server is also free to define custom reports. The client sends
a REPORT request with a properly-labeled XML body full of custom data; assuming the
server understands the specific report-type, it responds with an equally custom XML body.
This technique is very similar to XML-RPC.

WebDAV and Autoversioning

317

Subversion and DeltaV
The original WebDAV standard has been widely successful. Every modern computer operating
system has a general WebDAV client built-in (details to follow), and a number of popular stan-
dalone applications are also able to speak WebDAV — Microsoft Office, Dreamweaver, and
Photoshop to name a few. On the server end, the Apache webserver has been able to provide
WebDAV services since 1998 and is considered the de-facto open-source standard. There are
several other commercial WebDAV servers available, including Microsoft's own IIS.

DeltaV, unfortunately, has not been so successful. It's very difficult to find any DeltaV clients or
servers. The few that do exist are relatively unknown commercial products, and thus it's very
difficult to test interoperability. It's not entirely clear as to why DeltaV has remained stagnant.
Some argue that the specification is just too complex, others argue that while WebDAV's fea-
tures have mass appeal (even the least technical users appreciate network file-sharing), ver-
sion control features aren't interesting or necessary for most users. Finally, some have argued
that DeltaV remains unpopular because there's still no open-source server product which im-
plements it.

When Subversion was still in its design phase, it seemed like a great idea to use Apache httpd
as the main network server. It already had a module to provide WebDAV services. DeltaV was
a relatively new specification. The hope was that the Subversion server module
(mod_dav_svn) would eventually evolve into an open-source DeltaV reference implementation.
Unfortunately, DeltaV has a very specific versioning model that doesn't quite line up with Sub-
version's model. Some concepts were mappable, others were not.

The upshot is that

1. The Subversion client is not a fully-implemented DeltaV client.

The client needs certain things from the server that DeltaV cannot provide, and thus is
largely dependent on a number of Subversion-specific REPORT requests that only
mod_dav_svn understands.

2. mod_dav_svn is not a fully-implemented DeltaV server.

Many portions of the DeltaV specification were irrelevant to Subversion, and thus left unim-
plemented.

There is still some debate in the developer community as to whether or not it's worthwhile to
remedy either of these situations. It's fairly unrealistic to change Subversion's design to match
DeltaV, so there's probably no way the client can ever learn to get everything it needs from a
general DeltaV server. On the other hand, mod_dav_svn could be further developed to imple-
ment all of DeltaV, but it's hard to find motivation to do so—there are almost no DeltaV clients
to interoperate with.

Autoversioning
While the Subversion client is not a full DeltaV client, nor the Subversion server a full DeltaV
server, there's still a glimmer of WebDAV interoperability to be happy about: it's called autover-
sioning.

Autoversioning is an optional feature defined in the DeltaV standard. A typical DeltaV server
will reject an ignorant WebDAV client attempting to do a PUT to a file that's under version con-
trol. To change a version-controlled file, the server expects a series proper versioning re-

WebDAV and Autoversioning

318

quests: something like MKACTIVITY, CHECKOUT, PUT, CHECKIN. But if the DeltaV server sup-
ports autoversioning, then write-requests from basic WebDAV clients are accepted. The server
behaves as if the client had issued the proper series of versioning requests, performing a com-
mit under the hood. In other words, it allows a DeltaV server to interoperate with ordinary Web-
DAV clients that don't understand versioning.

Because so many operating systems already have integrated WebDAV clients, the use case
for this feature borders on fantastical: imagine an office of ordinary users running Microsoft
Windows or Mac OS. Each user “mounts” the Subversion repository, which appears to be an
ordinary network folder. They use the shared folder as they always do: open files, edit them,
save them. Meanwhile, the server is automatically versioning everything. Any administrator (or
knowledgeable user) can still use a Subversion client to search history and retrieve older ver-
sions of data.

This scenario isn't fiction: it's real and it works, as of Subversion 1.2 and later. To activate
autoversioning in mod_dav_svn, use the SVNAutoversioning directive within the ht-
tpd.conf Location block, like so:

<Location /repos>
DAV svn
SVNPath /path/to/repository
SVNAutoversioning on

</Location>

When SVNAutoversioning is active, write requests from WebDAV clients result in automatic
commits. A generic log message is auto-generated and attached to each revision.

Before activating this feature, however, understand what you're getting into. WebDAV clients
tend to do many write requests, resulting in a huge number of automatically committed revi-
sions. For example, when saving data, many clients will do a PUT of a 0-byte file (as a way of
reserving a name) followed by another PUT with the real filedata. The single file-write results in
two separate commits. Also consider that many applications auto-save every few minutes, res-
ulting in even more commits.

If you have a post-commit hook program that sends email, you may want to disable email gen-
eration either altogether, or on certain sections of the repository; it depends on whether you
think the influx of emails will still prove to be valuable notifications or not. Also, a smart post-
commit hook program can distinguish between a transaction created via autoversioning and
one created through a normal svn commit. The trick is to look for a revision property named
svn:autoversioned. If present, the commit was made by a generic WebDAV client.

Another feature that may be a useful complement for SVNAutoversioning comes from
Apache's mod_mime module. If a generic WebDAV client adds a new file to the repository,
there's no opportunity for the user to set the the svn:mime-type property. This might cause
the file to appear as “generic” icon when viewed within a WebDAV shared folder, not having an
association with any application. One remedy is to have a sysadmin (or other Subversion-
knowledgable person) check out a working copy and manually set the svn:mime-type prop-
erty on necessary files. But there's potentially no end to such cleanup tasks. Instead, you can
use the ModMimeUsePathInfo directive in your Subversion <Location> block:

<Location /repos>
DAV svn
SVNPath /path/to/repository
SVNAutoversioning on

ModMimeUsePathInfo on

WebDAV and Autoversioning

319

</Location>

This directive allows mod_mime to attempt automatic deduction of the mime-type on new files
that enter the repository via autoversioning. The module looks at the file's named extension
and possibly the contents as well; if the file matches some common patterns, then the the file's
svn:mime-type property will be set automatically.

Client Interoperability
All WebDAV clients fall into one of three categories—standalone applications, file-explorer ex-
tensions, or filesystem implementations. These categories broadly define the types of Web-
DAV functionality available to users. Table C.1, “Common WebDAV Clients” gives our categor-
ization and a quick description of some common pieces of WebDAV-enabled software. More
details about these software offerings, as well as their general category, can be found in the
sections that follow.

Table C.1. Common WebDAV Clients

Software Category Description

Adobe Photoshop Standalone WebDAV applica-
tions

Image editing software, allow-
ing direct opening from, and
writing to, WebDAV URLs

Cadaver Standalone WebDAV applica-
tions

Command-line WebDAV client
supporting file transfer, tree,
and locking operations

DAV Explorer Standalone WebDAV applica-
tions

GUI tool for exploring Web-
DAV shares

davfs2 WebDAV filesystem imple-
mentation

Linux file system driver that al-
lows you to mount a WebDAV
share

GNOME Nautilus File-explorer WebDAV exten-
sions

GUI file explorer able to per-
form tree operations on a
WebDAV share

KDE Konqueror File-explorer WebDAV exten-
sions

GUI file explorer able to per-
form tree operations on a
WebDAV share

Mac OS X WebDAV filesystem imple-
mentation

Operating system with built-in
support for mounting WebDAV
shares locally

Macromedia Dreamweaver Standalone WebDAV applica-
tions

Web production software able
to directly read from and write
to WebDAV URLs

Microsoft Office Standalone WebDAV applica-
tions

Office productivity suite with
several components able to
directly read from and write to
WebDAV URLs

Microsoft Web Folders File-explorer WebDAV exten-
sions

GUI file explorer program able
to perform tree operations on
a WebDAV share

Novell NetDrive WebDAV filesystem imple- Drive-mapping program for

WebDAV and Autoversioning

320

1WebDAV support was removed from Microsoft Access for some reason, but exists in the rest of the Office suite.

Software Category Description

mentation assigning Windows drive let-
ters to a mounted remote
WebDAV share

SRT WebDrive WebDAV filesystem imple-
mentation

File transfer software which,
among other things, allows the
assignment of Windows drive
letters to a mounted remote
WebDAV share

Standalone WebDAV applications
A WebDAV application is a program which contains built-in functionality for speaking WebDAV
protocols with a WebDAV server. We'll cover some of the most popular programs with this kind
of WebDAV support.

Microsoft Office, Dreamweaver, Photoshop

On Windows, there are several well-known applications that contain integrated WebDAV client
functionality, such as Microsoft's Office, 1 Adobe's Photoshop, and Macromedia's Dream-
weaver programs. They're able to directly open and save to URLs, and tend to make heavy
use of WebDAV locks when editing a file.

Note that while many of these programs also exist for the Mac OS X, they do not appear to
support WebDAV directly on that platform. In fact, on Mac OS X, the File->Open dialog box
doesn't allow one to type a path or URL at all. It's likely that the WebDAV features were delib-
erately left out of Macintosh versions of these programs, since OS X already provides such ex-
cellent low-level filesystem support for WebDAV.

Cadaver, DAV Explorer

Cadaver is a bare-bones Unix commandline program for browsing and changing WebDAV
shares. Like the Subversion client, it uses the neon HTTP library—not surprisingly, both neon
and cadaver are written by the same author. Cadaver is free software (GPL license) and is
available at http://www.webdav.org/cadaver/.

Using cadaver is similar to using a commandline FTP program, and thus it's extremely useful
for basic WebDAV debugging. It can be used to upload or download files in a pinch, and also
to examine properties, copy, move, lock or unlock files:

$ cadaver http://host/repos
dav:/repos/> ls
Listing collection `/repos/': succeeded.
Coll: > foobar 0 May 10 16:19

> playwright.el 2864 May 4 16:18
> proofbypoem.txt 1461 May 5 15:09
> westcoast.jpg 66737 May 5 15:09

dav:/repos/> put README
Uploading README to `/repos/README':
Progress: [=============================>] 100.0% of 357 bytes succeeded.

dav:/repos/> get proofbypoem.txt

WebDAV and Autoversioning

321

http://www.webdav.org/cadaver/

Downloading `/repos/proofbypoem.txt' to proofbypoem.txt:
Progress: [=============================>] 100.0% of 1461 bytes succeeded.

DAV Explorer is another standalone WebDAV client, written in Java. It's under a free Apache-
like license and is available at http://www.ics.uci.edu/~webdav/. DAV Explorer does everything
cadaver does, but has the advantages of being portable and being a more user-friendly GUI
application. It's also one of the first clients to support the new WebDAV Access Control Pro-
tocol (RFC 3744).

Of course, DAV Explorer's ACL support is useless in this case, since mod_dav_svn doesn't
support it. The fact that both Cadaver and DAV Explorer support some limited DeltaV com-
mands isn't particularly useful either, since they don't allow MKACTIVITY requests. But it's not
relevant anyway; we're assuming all of these clients are operating against an autoversioning
repository.

File-explorer WebDAV extensions
Some popular file explorer GUI programs support WebDAV extensions which allow a user to
browse a DAV share as if it was just another directory on the local computer, and allowing ba-
sic tree editing operations on the items in that share. For example, Windows Explorer is able to
browse a WebDAV server as a “network place”. Users can drag files to and from the desktop,
or can rename, copy, or delete files in the usual way. But because it's only a feature of the file-
explorer, the DAV share isn't visible to ordinary applications. All DAV interaction must happen
through the explorer interface.

Microsoft Web Folders

Microsoft was one of the original backers of the WebDAV specification, and first started ship-
ping a client in Windows 98, known as “Web Folders”. This client was also shipped in Windows
NT4 and 2000.

The original Web Folders client was an extension to Explorer, the main GUI program used to
browse filesystems. It works well enough. In Windows 98, the feature might need to be expli-
citly installed if Web Folders aren't already visible inside “My Computer”. In Windows 2000,
simply add a new “network place”, enter the URL, and the WebDAV share will pop up for
browsing.

With the release of Windows XP, Microsoft started shipping a new implementation of Web
Folders, known as the “WebDAV mini-redirector”. The new implementation is a filesystem-level
client, allowing WebDAV shares to be mounted as drive letters. Unfortunately, this implement-
ation is incredibly buggy. The client usually tries to convert http URLs (http://host/repos)
into UNC share notation (\\host\repos); it also often tries to use Windows Domain authen-
tication to respond to basic-auth HTTP challenges, sending usernames as HOST\username.
These interoperability problems are severe and documented in numerous places around the
web, to the frustration of many users. Even Greg Stein, the original author of Apache's Web-
DAV module, recommends against trying to use XP Web Folders against an Apache server.

It turns out that the original “Explorer-only” Web Folders implementation isn't dead in XP, it's
just buried. It's still possible to find it by using this technique:

1. Go to 'Network Places'.

2. Add a new network place.

3. When prompted, enter the URL of the repository, but include a port number in the URL. For

WebDAV and Autoversioning

322

http://www.ics.uci.edu/~webdav/

example, http://host/repos would be entered as http://host:80/repos instead.

4. Respond to any authentication prompts.

There are a number of other rumored workarounds to the problems, but none of them seem to
work on all versions and patchlevels of Windows XP. In our tests, only the previous algorithm
seems to work consistently on every system. The general consensus of the WebDAV com-
munity is that you should avoid the new Web Folders implementation and use the old one in-
stead, and that if you need a real filesystem-level client for Windows XP, then use a third-party
program like WebDrive or NetDrive.

A final tip: if you're attempting to use XP Web Folders, make sure you have the absolute latest
version from Microsoft. For example, Microsoft released a bug-fixed version in January 2005,
available at http://support.microsoft.com/?kbid=892211. In particular, this release is known to
fix a bug whereby browsing a DAV share shows an unexpected infinite recursion.

Nautilus, Konqueror

Nautilus is the official file manager/browser for the GNOME desktop (http://www.gnome.org),
and Konqueror is the manager/browser for the KDE desktop (http://www.kde.org). Both of
these applications have an explorer-level WebDAV client built-in, and operate just fine against
an autoversioning repository.

In GNOME's Nautilus, from the File menu, select Open location and enter the URL. The repos-
itory should then be displayed like any other filesystem.

In KDE's Konqueror, you need to use the webdav:// scheme when entering the URL in the
location bar. If you enter an http:// URL, Konqueror will behave like an ordinary web
browser. You'll likely see the generic HTML directory listing produced by mod_dav_svn. By en-
tering webdav://host/repos instead of http://host/repos, Konqueror becomes a
WebDAV client and displays the repository as a filesystem.

WebDAV filesystem implementation
The WebDAV filesystem implementation is arguably the best sort of WebDAV client. It's imple-
mented as a low-level filesystem module, typically within the operating system's kernel. This
means that the DAV share is mounted like any other network filesystem, similar to mounting an
NFS share on Unix, or attaching an SMB share as drive-letter in Windows. As a result, this sort
of client provides completely transparent read/write WebDAV access to all programs. Applica-
tions aren't even aware that WebDAV requests are happening.

WebDrive, NetDrive

Both WebDrive and NetDrive are excellent commercial products which allow a WebDAV share
to be attached as drive letters in Windows. We've had nothing but success with these
products. At the time of writing, WebDrive can be purchased from South River Technologies
(http://www.southrivertech.com). NetDrive ships with Netware, is free of charge, and can be
found by searching the web for “netdrive.exe”. Though it is freely available online, users are re-
quired to have a Netware license. (If any of that sounds odd to you, you're not alone. See this
page on Novell's website: http://www.novell.com/coolsolutions/qna/999.html)

Mac OS X

Apple's OS X operating system has an integrated filesystem-level WebDAV client. From the
Finder, select the Connect to Server item from the Go menu. Enter a WebDAV URL, and it ap-

WebDAV and Autoversioning

323

http://support.microsoft.com/?kbid=892211
http://www.gnome.org
http://www.kde.org
http://www.southrivertech.com
http://www.novell.com/coolsolutions/qna/999.html

pears as a disk on the desktop, just like any other mounted volume. You can also mount a
WebDAV share from the Darwin terminal by using the webdav filesystem type with the mount
command:

$ mount -t webdav http://svn.example.com/repos/project /some/mountpoint
$

Note that if your mod_dav_svn is older than version 1.2, OS X will refuse to mount the share
as read-write; it will appear as read-only. This is because OS X insists on locking support for
read-write shares, and the ability to lock files first appeared in Subversion 1.2.

One more word of warning: OS X's WebDAV client can sometimes be overly sensitive to HTTP
redirects. If OS X is unable to mount the repository at all, you may need to enable the Browser-
Match directive in the Apache server's httpd.conf:

BrowserMatch "^WebDAVFS/1.[012]" redirect-carefully

Linux davfs2

Linux davfs2 is a filesystem module for the Linux kernel, whose development is located at ht-
tp://dav.sourceforge.net/. Once installed, a WebDAV network share can be mounted with the
usual Linux mount command:

$ mount.davfs http://host/repos /mnt/dav

WebDAV and Autoversioning

324

http://dav.sourceforge.net/
http://dav.sourceforge.net/

Appendix D. Third Party Tools
Subversion's modular design (covered in the section called “Layered Library Design”) and the
availability of language bindings (as described in the section called “Using Languages Other
than C and C++”) make it a likely candidate for use as an extension or backend to other pieces
of software. For a listing of many third-party tools that are using Subversion functionality under-
the-hood, check out the Links page on the Subversion website (ht-
tp://subversion.tigris.org/project_links.html).

325

http://subversion.tigris.org/project_links.html
http://subversion.tigris.org/project_links.html

Appendix E. Copyright

Copyright (c) 2002-2006
Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato.

This work is licensed under the Creative Commons Attribution License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by/2.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA.

A summary of the license is given below, followed by the full legal
text.

--

You are free:

* to copy, distribute, display, and perform the work
* to make derivative works
* to make commercial use of the work

Under the following conditions:

Attribution. You must give the original author credit.

* For any reuse or distribution, you must make clear to others the
license terms of this work.

* Any of these conditions can be waived if you get permission from
the author.

Your fair use and other rights are in no way affected by the above.

The above is a summary of the full license below.

==

Creative Commons Legal Code
Attribution 2.0

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

326

1. Definitions

a. "Collective Work" means a work, such as a periodical issue,
anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions,
constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the
Work and other pre-existing works, such as a translation,
musical arrangement, dramatization, fictionalization, motion
picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast,
transformed, or adapted, except that a work that constitutes a
Collective Work will not be considered a Derivative Work for the
purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the
synchronization of the Work in timed-relation with a moving
image ("synching") will be considered a Derivative Work for the
purpose of this License.

c. "Licensor" means the individual or entity that offers the Work
under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under
the terms of this License.

f. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this
License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce,
limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner
under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated
below:

a. to reproduce the Work, to incorporate the Work into one or more
Collective Works, and to reproduce the Work as incorporated in
the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly,
perform publicly, and perform publicly by means of a digital
audio transmission the Work including as incorporated in
Collective Works;

d. to distribute copies or phonorecords of, display publicly,
perform publicly, and perform publicly by means of a digital
audio transmission Derivative Works.

Copyright

327

e.

For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor
waives the exclusive right to collect, whether
individually or via a performance rights society
(e.g. ASCAP, BMI, SESAC), royalties for the public
performance or public digital performance (e.g. webcast)
of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives
the exclusive right to collect, whether individually or
via a music rights agency or designated agent (e.g. Harry
Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the
compulsory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of
doubt, where the Work is a sound recording, Licensor waives the
exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for
the public digital performance (e.g. webcast) of the Work,
subject to the compulsory license created by 17 USC Section 114
of the US Copyright Act (or the equivalent in other
jurisdictions).

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights
in other media and formats. All rights not expressly granted by
Licensor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or
publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or
publicly digitally perform. You may not offer or impose any
terms on the Work that alter or restrict the terms of this
License or the recipients' exercise of the rights granted
hereunder. You may not sublicense the Work. You must keep intact
all notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly
perform, or publicly digitally perform the Work with any
technological measures that control access or use of the Work in
a manner inconsistent with the terms of this License
Agreement. The above applies to the Work as incorporated in a
Collective Work, but this does not require the Collective Work
apart from the Work itself to be made subject to the terms of
this License. If You create a Collective Work, upon notice from
any Licensor You must, to the extent practicable, remove from
the Collective Work any reference to such Licensor or the
Original Author, as requested. If You create a Derivative Work,
upon notice from any Licensor You must, to the extent
practicable, remove from the Derivative Work any reference to
such Licensor or the Original Author, as requested.

b. If you distribute, publicly display, publicly perform, or
publicly digitally perform the Work or any Derivative Works or

Copyright

328

Collective Works, You must keep intact all copyright notices for
the Work and give the Original Author credit reasonable to the
medium or means You are utilizing by conveying the name (or
pseudonym if applicable) of the Original Author if supplied; the
title of the Work if supplied; to the extent reasonably
practicable, the Uniform Resource Identifier, if any, that
Licensor specifies to be associated with the Work, unless such
URI does not refer to the copyright notice or licensing
information for the Work; and in the case of a Derivative Work,
a credit identifying the use of the Work in the Derivative Work
(e.g., "French translation of the Work by Original Author," or
"Screenplay based on original Work by Original Author"). Such
credit may be implemented in any reasonable manner; provided,
however, that in the case of a Derivative Work or Collective
Work, at a minimum such credit will appear where any other
comparable authorship credit appears and in a manner at least as
prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Derivative
Works or Collective Works from You under this License, however,
will not have their licenses terminated provided such
individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright
in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted
under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work
or a Collective Work, the Licensor offers to the recipient a
license to the Work on the same terms and conditions as the
license granted to You under this License.

Copyright

329

b. Each time You distribute or publicly digitally perform a
Derivative Work, Licensor offers to the recipient a license to
the original Work on the same terms and conditions as the
license granted to You under this License.

c. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement,
such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and
no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the
parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written
agreement of the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, neither party will use the trademark
"Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons'
then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

==

Copyright

330

Index
Symbols
###

TODO: More indexterms!, xiii

C
Concurrent Versions System (CVS), xiii

S
Subversion

history of, xviii
svn

subcommands
add, 202
blame, 204
cat, 205
checkout, 207
cleanup, 209
commit, 210
copy, 212
delete, 215
diff, 217
export, 220
help, 222
import, 223
info, 225
list, 228
lock, 230
log, 232
merge, 236
mkdir, 238
move, 240
propdel, 242
propedit, 243
propget, 244
proplist, 246
propset, 248
resolved, 250
revert, 252
status, 254
switch, 258
unlock, 260
update, 262

svnadmin
subcommands

create, 265
deltify, 266
dump, 267
help, 269
hotcopy, 270
list-dblogs, 271
list-unused-dblogs, 272
load, 273

lslocks, 274
lstxns, 275
recover, 276
rmlocks, 278
rmtxns, 279
setlog, 280
verify, 281

svnlook
subcommands

author, 283
cat, 284
changed, 285
date, 286
diff, 287
dirs-changed, 288
help, 289
history, 290
info, 291
lock, 292
log, 293
propget, 294
proplist, 295
tree, 296
uuid, 297
youngest, 298

svnversion, 300

331

	Version Control with Subversion
	Table of Contents
	Foreword
	Preface
	Audience
	How to Read this Book
	Conventions Used in This Book
	Typographic Conventions
	Icons

	Organization of This Book
	This Book is Free
	Acknowledgments
	From Ben Collins-Sussman
	From Brian W. Fitzpatrick
	From C. Michael Pilato

	What is Subversion?
	Subversion's History
	Subversion's Features
	Subversion's Architecture
	Subversion's Components

	Chapter 1. Fundamental Concepts
	The Repository
	Versioning Models
	The Problem of File-Sharing
	The Lock-Modify-Unlock Solution
	The Copy-Modify-Merge Solution

	Subversion in Action
	Subversion Repository URLs
	Working Copies
	Revisions
	How Working Copies Track the Repository
	Mixed Revision Working Copies
	Updates and Commits are Separate
	Mixed revisions are normal
	Mixed revisions are useful
	Mixed revisions have limitations

	Summary

	Chapter 2. Basic Usage
	Help!
	Import
	Time Travel with Subversion
	Initial Checkout
	Basic Work Cycle
	Update Your Working Copy
	Make Changes to Your Working Copy
	Examine Your Changes
	svn status
	svn diff
	svn revert

	Resolve Conflicts (Merging Others' Changes)
	Merging Conflicts by Hand
	Copying a File Onto Your Working File
	Punting: Using svn revert

	Commit Your Changes

	Examining History
	svn log
	svn diff
	Examining Local Changes
	Comparing Working Copy to Repository
	Comparing Repository to Repository

	svn cat
	svn list
	A Final Word on History

	Other Useful Commands
	svn cleanup
	svn import

	Summary

	Chapter 3. Advanced Topics
	Revision Specifiers
	Revision Keywords
	Revision Dates

	Properties
	Why Properties?
	Manipulating Properties
	Properties and the Subversion Workflow
	Automatic Property Setting

	File Portability
	File Content Type
	File Executability
	End-of-Line Character Sequences

	Ignoring Unversioned Items
	Keyword Substitution
	Locking
	Creating locks
	Discovering locks
	Breaking and stealing locks
	Lock Communication

	Externals Definitions
	Peg and Operative Revisions

	Chapter 4. Branching and Merging
	What's a Branch?
	Using Branches
	Creating a Branch
	Working with Your Branch
	The Key Concepts Behind Branches

	Copying Changes Between Branches
	Copying Specific Changes
	The Key Concept Behind Merging
	Best Practices for Merging
	Tracking Merges Manually
	Previewing Merges
	Merge Conflicts
	Noticing or Ignoring Ancestry

	Common Use-Cases
	Merging a Whole Branch to Another
	Undoing Changes
	Resurrecting Deleted Items
	Common Branching Patterns
	Release Branches
	Feature Branches

	Switching a Working Copy
	Tags
	Creating a Simple Tag
	Creating a Complex Tag

	Branch Maintenance
	Repository Layout
	Data Lifetimes

	Vendor branches
	General Vendor Branch Management Procedure
	svn_load_dirs.pl

	Summary

	Chapter 5. Repository Administration
	Repository Basics
	Understanding Transactions and Revisions
	Unversioned Properties
	Repository Data Stores
	Berkeley DB
	FSFS

	Repository Creation and Configuration
	Hook Scripts
	Berkeley DB Configuration

	Repository Maintenance
	An Administrator's Toolkit
	svnlook
	svnadmin
	svndumpfilter
	Berkeley DB Utilities

	Repository Cleanup
	Managing Disk Space
	Repository Recovery
	Migrating a Repository
	Repository Backup

	Adding Projects
	Choosing a Repository Layout
	Creating the Layout, and Importing Initial Data

	Summary

	Chapter 6. Server Configuration
	Overview
	The Apache HTTP Server
	The svnserve Server
	svnserve over SSH
	Choosing the Best Server Configuration

	Network Model
	Requests and Responses
	Client Credentials Caching

	svnserve, a custom server
	Invoking the Server
	svnserve as Daemon
	svnserve via inetd
	svnserve over a Tunnel
	svnserve as Windows Service

	Built-in authentication and authorization
	Create a 'users' file and realm
	Set access controls

	SSH authentication and authorization
	SSH configuration tricks
	Initial setup
	Controlling the invoked command

	httpd, the Apache HTTP server
	Prerequisites
	Basic Apache Configuration
	Authentication Options
	Basic HTTP Authentication
	SSL Certificate Management

	Authorization Options
	Blanket Access Control
	Per-Directory Access Control
	Disabling Path-based Checks

	Extra Goodies
	Repository Browsing
	Proper MIME Type
	Customizing the Look
	Listing Repositories

	Apache Logging
	Other Features

	Path-Based Authorization
	Supporting Multiple Repository Access Methods

	Chapter 7. Customizing Your Subversion Experience
	Runtime Configuration Area
	Configuration Area Layout
	Configuration and the Windows Registry
	Configuration Options
	Servers
	Config

	Localization
	Understanding locales
	Subversion's use of locales

	Using External Differencing Tools
	External diff
	External diff3

	Chapter 8. Developer Information
	Layered Library Design
	Repository Layer
	Repository Access Layer
	RA-DAV (Repository Access Using HTTP/DAV)
	RA-SVN (Custom Protocol Repository Access)
	RA-Local (Direct Repository Access)
	Your RA Library Here

	Client Layer

	Using the APIs
	The Apache Portable Runtime Library
	URL and Path Requirements
	Using Languages Other than C and C++

	Inside the Working Copy Administration Area
	The Entries File
	Pristine Copies and Property Files

	WebDAV

	Chapter 9. Subversion Complete Reference
	The Subversion Command Line Client: svn
	svn Switches
	svn Subcommands
	svn add
	svn blame
	svn cat
	svn checkout
	svn cleanup
	svn commit
	svn copy
	svn delete
	svn diff
	svn export
	svn help
	svn import
	svn info
	svn list
	svn lock
	svn log
	svn merge
	svn mkdir
	svn move
	svn propdel
	svn propedit
	svn propget
	svn proplist
	svn propset
	svn resolved
	svn revert
	svn status
	svn switch
	svn unlock
	svn update

	svnadmin
	svnadmin Switches
	svnadmin Subcommands
	svnadmin create
	svnadmin deltify
	svnadmin dump
	svnadmin help
	svnadmin hotcopy
	svnadmin list-dblogs
	svnadmin list-unused-dblogs
	svnadmin load
	svnadmin lslocks
	svnadmin lstxns
	svnadmin recover
	svnadmin rmlocks
	svnadmin rmtxns
	svnadmin setlog
	svnadmin verify

	svnlook
	svnlook Switches
	svnlook
	svnlook author
	svnlook cat
	svnlook changed
	svnlook date
	svnlook diff
	svnlook dirs-changed
	svnlook help
	svnlook history
	svnlook info
	svnlook lock
	svnlook log
	svnlook propget
	svnlook proplist
	svnlook tree
	svnlook uuid
	svnlook youngest

	svnserve
	svnserve Switches

	svnversion
	svnversion

	mod_dav_svn
	mod_dav_svn Configuration Directives

	Subversion properties
	Subversion-defined properties

	Appendix A. Subversion Quick-Start Guide
	Installing Subversion
	High-speed Tutorial

	Appendix B. Subversion for CVS Users
	Revision Numbers Are Different Now
	Directory Versions
	More Disconnected Operations
	Distinction Between Status and Update
	Status
	Update

	Branches and Tags
	Metadata Properties
	Conflict Resolution
	Binary Files and Translation
	Versioned Modules
	Authentication
	Converting a Repository from CVS to Subversion

	Appendix C. WebDAV and Autoversioning
	Basic WebDAV Concepts
	Original WebDAV
	DeltaV Extensions

	Subversion and DeltaV
	Autoversioning
	Client Interoperability
	Standalone WebDAV applications
	Microsoft Office, Dreamweaver, Photoshop
	Cadaver, DAV Explorer

	File-explorer WebDAV extensions
	Microsoft Web Folders
	Nautilus, Konqueror

	WebDAV filesystem implementation
	WebDrive, NetDrive
	Mac OS X
	Linux davfs2

	Appendix D. Third Party Tools
	Appendix E. Copyright
	Index

