Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

Toward distant interactive VR Visualization of Large Parallel Simulations

Arvaux Simon', Melin Emmanuel?, Robert Sophie®

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans
Orléans, France
! simon.arvaux @univ-orleans.fr
2emmanuel.melin @univ-orleans.fr
3 sophie.robert @univ-orleans.fr

Abstract—In this paper we present a computational steering
application framework, providing distant visualization of
multiple simulations. The FlowVR virtual reality
framework is used to handle both code coupling and
resulting synchronization = concerns. @ We discuss
synchronization problems caused by the integration of a
steerable heavy simulation, and present a possible solution
addressing both latency imperatives and necessity of
optimizing the simulation process. As we target high
performance visualization of large data, PC clusters are
used to allow in-core treatment of simulation results. This is
requiring parallelization of the LOD algorithm implied,
aiming at simplifying simulations output for transmission
over the network once data compression is accomplished. As
an implementation experimentation, we present integration
of a MPI parallelized dynamic flood simulation in a static
terrain data distant visualization application, both
simulations allowing asynchronous computational steering
across the network.

VR; Simulation;

Keywords-component; HPC; code

coupling; Flooding

1. INTRODUCTION

Since they involve large scale, 3D and multiple
screens, VR environments are very good candidates to
display high amount of dynamic data issued from heavy
simulations or even huge static one issued from laser
scanning like Light Detection and Ranging (LIDAR).
Moreover VR offers enriched interface to interact with
data and possibly to steer heavy simulations. Simulations
involving great amount of data and lots of parameters are
known to be very difficult to tune since their parameters
or input data may have to be slightly modified and linked
to intermediate simulation results. Thanks to their rich
interfaces, VR environments are perfect in order to
browse through static and dynamic data, understand

phenomena, modify input data to see logical relations,
and steer computation to make a good use of computing
power.

VR environment are very power consuming, therefore
they are now driven by parallel architecture but they
cannot compute heavy simulations since the computing
power needed by these simulations may be more than one
order of magnitude superior. Moreover, various data
necessary to such simulations may be located on different
places in the world and might have access restrictions
making impossible their transfer to other locations. For all
of these reasons, it is useful to launch large distant
simulations taking the most of non local power computing
and datasets of Grid architecture. In this case, VR
environment appears as a powerful local visualization and
interaction client. On top of that, users of the application
may be multiple and above all not on the same sites. For
such reasons, we can imagine several VR environments
sharing and steering altogether shared distant simulations.

Due to intrinsic hardware limitations on SMP
architectures, only distributed parallel architectures, like
clusters, have the power to run heavy parallel simulation
codes. In this case, the classic programming model is
SPMD with the MPI library as message passing interface.
This model is well suited to monolithic big simulations
but much less adapted to code coupling of several
different simulations. Code coupling frameworks exist but
are generally not conceived for interactive code. This is
the reason why we propose to adapt FlowVR, a code
coupling framework dedicated to high performance VR.

The FlowVR architecture is based upon the concepts
of modules (pieces of software performing a treatment
using I/O data) and the FlowVR network, which is
necessary to assemble the modules into a working
application. A FlowVR module may be a MPI parallel
code itself. The FlowVR network manages the semantic
of connections and synchronizations between modules via

mailto:sophie.robert@univ-orleans.fr
mailto:simon.arvaux@univ-orleans.fr
mailto:simon.arvaux@univ-orleans.fr

a library of network objects. Due to the fact that FlowVR
is made for real time interactive VR applications, the
semantic of network objects is oriented to asynchronism,
sometime at the price of a quite big overhead for the
hardware.

In this paper we propose a general framework to
conceive a FlowVR application dedicated to visualization
and navigation on multiple sources of huge dataset
coming from distant parallel simulations. We offer the
capability to steer the simulation in two different ways.
First we modify, via the VR environment, data inputs of
the simulation. Second, we propose a new FlowVR
network object, taking into account semantic of data
coming from FlowVR modules to over-synchronize
modules, saving computing power on local and distant
parallel resources.

We first present our general framework, next we
describe our implementation. For this example, we have
chosen a flood simulation. Floods have caused important
damage in several countries across the world and their
prevention to limit human and material costs is a
requested search result. Simulating a flood prediction
using computers is an interesting way to make the best
prevention possible. An important computation power is
necessary to simulate quickly the consequences of a flood
predicted in a near future, targeting accuracy and realistic
behavior of the simulation on top of that. As a result we
provide a generic architecture to visualize a geographical
zone and coupling any simulation over this kind of
application. Our goal is to introduce computational
steering concerns inside an existing VR framework, and
develop new synchronization methods to address
performance issues. The described application has been
designed with scientific visualization of simulations
results in mind, thus we use a VR client to provide
visualization of heavily parallelized server side
simulations.

1I. (GENERAL FRAMEWORK

A. Key concepts

We're interested in several key concepts to provide an
application able to answer our requirements:

Distant visualization through VR environment;
Heavily parallel simulation codes based on MPI
and steered via VR environment;

Code coupling of these heterogeneous codes and
fine management of synchronization policies
inside a logic network.

B. Framework

We now describe our
computing aims at

general architecture. Grid
combining multiple computer

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

resources and apply them to a common scientific task.
When large amounts of data needs to be processed using a
great number of computer processing cycles, and the
results may be viewed on various distant sites, Grid
computing is the way to go. In this work we take
advantage of the Grid concept by exporting calculations
on distant sites for example from where input data are
stored. Large MPI simulations may be computed but
classically their outputs are large data sets impossible to
export via wide-area networks (wan). Therefore a key
concept of our logical architecture is the LOD modules
allowing to simplify data in such a way that it is now
possible to transfer them through the wan and rebuild it
without losing too much of relevant information. Our
framework is summed up in fig 1. We create a FlowVR
network embedding several simulations. Data issued from
them are treated by a FlowVR compressor module. This
module compresses data via a LOD algorithm. Then data
are transmitted over the network. Data are uncompressed
thanks to a LOD FlowVR module and then sent to the
visualization FlowVR module which merges all data
received from all simulations. Note that static data follows
a similar process.

The problem we want to solve is the following :
starting from an existing static data distant visualization
code, how to integrate one or more dynamic simulations
possibly relying on these static data ? Moreover, as the
simulation may be steered by the viewer, what
synchronization policy should we use ? In the case of
static data visualization, only the compressor needs to be
controlled and slowed down when the viewer isn't
moving, but concerning simulations, they may not only be
steered by the client, but also update their results to the
viewer periodically. The FlowVR model solves the code
coupling aspect and also partially takes care of the
synchronization required. The FlowVR model is very
versatile, so it is possible to enrich it by implementing
new network component so as to plainly fulfill
optimization concerns imposed by network latency.

|
StaticData |

|‘ Simulation H Simulation ‘
! v v

‘ Compressor ‘ |‘ Compressor ‘ ‘ Compressor ‘
|

¥ | Y)
‘Uncompressor‘ | ‘Uncompressor‘ ‘Uncompressor‘

Fig 1: General framework

C. Computational steering

Computational steering is a recent and important
concept in the scientific research domain. This discipline
aims at improving the computational process and
scientific analysis by introducing interaction within a
simulation. Using this approach, the user is no more
waiting passively for the results of the computation, on
the contrary he can visualize in real time calculus
evolution. Furthermore, the user is able to interact
anytime with the model and modify simulation parameters
on the fly in order to steer the course of the computation.
Using several previous works on computational steering,
A. Esnard underlines in his PhD [I] thesis key
characteristics : firstly, interaction is done in real time,
while the simulation is ran. Next, the interaction should
remain coherent regarding the simulation, it must be kept
connected to the underlying physic model. Finally, the
interaction should be effective in a sense that it should not
introduce perturbations by slowing down the simulation.

D. Parallelism

In our framework, we use a FlowVR based generic
architecture with modules involving MPI parallelized
simulation. MPI is a protocol to handle communications
between processes in parallel computers development.
Described as “a message-passing application programmer
interface, together with protocol and semantic
specifications for how its features must behave in any
implementation.” by Gropp [2], it remains a dominant
model concerning high performance computing
nowadays.

FlowVR is a framework whose purpose is to design
easily applications combining both Virtual Reality and
parallelism [3]. The FlowVR architecture is based upon
the concepts of software components: modules following
a wait/get/put pattern meaning they wait until each of their
input port is fed with new data, then they retrieve this data
to compute their results finally sent on the output ports.
The FlowVR network is responsible for interconnecting
modules composing an application using connections
between their I/O ports.

Integration of an existing code inside a FlowVR
application doesn't require a complete rewrite as the
FlowVR framework implements the software components
concept, it is only necessary to interface input and output
handling with the FlowVR framework API, the
computational core needs no modifications. Software
components is ideal to allow code coupling integration, as
it is easy to inject existing codes inside a FlowVR
network, using the framework API to glue heterogeneous
codes together.

FlowVR also provides solutions to deal with the
synchronization of the different modules across the
network. FIFO is the default mode for FlowVR
connections if no synchronizer is controlling it. All

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

messages sent by the producer will be consumed in the
same order by the receiver. Respecting the FIFO model,
no messages will be lost or inverted between the
components. As a direct consequence, all the modules
connected in a FIFO cyclic connection will run at the
exact same speed of the slowest module, so it is used to
connect totally synchronized modules. On the contrary,
there is a completely asynchronous connection known as
the Greedy.

The greedy (or sampling) mode allows modules to
periodically read incoming messages whose data is
asynchronously updated. Designed specifically for low
latency and real time applications, each software
component can take advantage of this synchronization
method to run at optimal speed. At the beginning of each
new iteration, the consumer will use the latest data
available and ignore previous updates, discarded by the
connection.

The key objects to implement this type of connection
between two given modules are the GreedySynchronizor
synchronizer and the Filterlt filter, as shown on this
diagram :

Producer

stamp connection full message

Greedy

endit Synchronizor

sampled message

Consumer

Fig 2: Greedy connection

As shown in fig.2, the synchronizer has two input
ports : stamps, which should be connected to the source of
the data (producer module) and endlt, receiving the signal
that the consumer module has finished an iteration
through its own endlt activation output port. Using this
information, the synchronizer is aware of the precise

moment when the receiver has finished handling previous
data and is thus requesting new one. To do so, it has to
read the stamps (meta data associated with a message)
received on the corresponding port to determine the most
recent message. These chosen stamps are then forwarded
to the order output port, connected to the corresponding
order input port on the filter. The filter has another data
input port named in, which should be connected to the
same source of data (emitter) than the synchronizer is.
Finally, the filter will use information collected about
message ordering to decide in which order the messages
should be forwarded (or sampled) to the destination
module.

Unfortunately these standard synchronization policies
are insufficient considering our objectives: steering of
heavy simulations running server side and distant
visualization of the results using a non local client. To
optimize CPU power on the server we want to launch
simplification and compression of static data only when
necessary (for example when camera was moved by the
user). Note that this management of computations has
another important benefit: it optimizes network load since
simulation results are only sent when necessary. As a
consequence we investigate the need of a new type of
connection to answer these needs.

E. Steer Greedy connections

We introduce a new type of FlowVR network object :
the SteerGreedy connection. It is a slight variation over
the Greedy connection, named after the concept of
monitoring the connection and the modules connected.

The SteerGreedy connection should provide the exact
same semantic as a Greedy connection while the messages
produced by the emitter module are interesting for the
consumer module point of view (meaning these messages
are always different thus triggering new computations
server-side). However when the emitter decides his
messages are no longer interesting, he should give a hint
to the synchronizer in order to block the connection and
pause the receiver. The receiver module, not fed with an
incoming message, would then wait actively until the
connection is enabled again, such behavior being much
less CPU consuming than useless computations. The
consumer module is unblocked whenever the
synchronizer receives a new message not already sent
over the connection.

Furthermore, the SteerGreedy connection semantic
must allow a chain reaction to block and unblock modules
connected together with multiple SteerGreedy
connections. Inter blocking is avoided using a standard
Greedy (always non-blocking and asynchronous) in at
least one point in the connection loop. The SteerGreedy
synchronizer must be informed using meta-data on the
messages sent (stamps) about the pertinence of their
content. The degree of pertinence of a message,

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

conditioning its perception to be sent as a new message
over the connection, could be further parametrized but for
now on, we decide that a message is pertinent as long as it
is totally different from its direct ancestor in the message
queue. This is why the producer module must always
compute additional meta data along with its output
messages, as it will be used to account for their relevance
later in the SteerGreedy connection.

Let's explain more precisely the SteerGreedy
principle, by reviewing a use case where we establish a
connection between a producer and a consumer module.
The producer module computes iteratively output
messages, with associated codes corresponding to a
unique identifier of the message data. Then this code is
transmitted to the synchronizer as a stamp meta data
information, while the full message data is sent to a filter.
The filter role is simply to store the most recent copy of
the messages produced by the emitter, that is to say the
last sent message. At the same time, the synchronizer
compares the code of the last message produced with the
code of the last message emitted to the consumer, it is
able to do so because a copy of the code representing the
last emitted message by the filter is stored locally. If the
two codes match then the connection is blocked until
further notice (reception of a new message, coded
differently by definition), but if they are not the same,
then the synchronizer replaces the stored code by the new
one and informs the filter that it is time to emit a new
message. Of course this process takes place only if the
consumer module has requested fresh input to the
connection by emitting on the “endIt” port, connected to
the synchronizer.

111. FRAMEWORK INSTANTIATION

A. Application presentation

We start from an application allowing distant
visualization of large static data structures, using a LOD
algorithm [4]. The data on the server are not handled
using a classic out-of-core approach, in this case, height
fields are loaded in RAM using PC clusters in a parallel
environment. Using these techniques and characteristics,
this application can handle, not only static, but two,
dynamic simulations if we consider a computation and
resources overload. Our main goal is to enable steering of
heavily parallel simulation codes coupled each other, and
being able to perceive the results on a distant visualization
client using virtual reality. For that matter, we propose to
visualize the results of a flood simulation on large height
fields data. The results computed on the server are in both
case simplified using a LOD algorithm and compressed
for emission on the network, as further detailed. Notice
that the flood simulation happens on every needed cell,
not only the visible ones.

As the simulation code is coupled to the visualization
one, it is possible to change the behavior of the simulation
without changing its code, the modifications are
propagated thanks to the FlowVR network. To achieve
this we take advantage of the coupling model and
capabilities of FlowVR in order to develop
unsynchronized modules and minimize the code
modifications needed.

B. Distant visualization of large static data

The possibility to visualize and interact with data
locally unavailable is an interesting feature but it requires
an important prerequisite : minimizing the amount of data
transmitted through the distant modules to avoid network
saturation. Moreover these data are supposed to be quite
large so they must be compressed by two different
means :

- First we apply a LOD algorithm on the geometry
sent to the client to enable visualization of very large
scene.

- Then we apply a compression on the degraded scene
geometry structure to further minimize the data sent over
the network.

More precisely, we rely on the CLOD (Continuous
Level Of Detail) algorithm to compute an approximation
of the current scene geometry simplified according not
only to the camera point of view, but also terrain
roughness. The idea behind this process is that when it
comes to visualizing an height field, flat areas should be
oversimplified while mountainous zones must keep their
precision to look like refined data. This algorithm
decomposes the terrain into quadtrees (tree with four
children) : from the initial terrain cell, we divide it into 4
parts then start again until we reach the maximal
refinement level or the one needed (depending on the
distance from the camera and terrain roughness). Each
node in the data structure hierarchy corresponds to a level
of detail, quadtrees are then rendered using triangles. The
deeper the level of detail, the smaller the triangles hence
leading to more precision of the detailed zone. A
preprocessing phase must be performed in order to
compute D2 constants for each node until the maximum
level of detail is reached, these constants, representing the
terrain roughness degree, are then organized in a similar
quadtree structure for easier assimilation to their
respective node. The CLOD algorithm then consists of
traversing recursively the quadtree structure and make a
decision at each node whether it needs further refinement
or not.

The resulting quadtree structure is then compressed using
the SSQ (Simplified Sequential Quadtree) principle. The
hierarchy and structure of a quadtree can be encoded in
one single byte : the first 4 bits indicating if it has a child
at a given position, and the following 4 bits standing for

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

the presence of an edge on each 4 sides. The quadtree
must have an edge if it has a neighbor having the same
level of detail as itself. As a result, a quadtree structure
can be compressed as only an array of bytes and the
corresponding array of node values. S. Madougou
provided these results in [4] and we use them to
implement a parallel version of the CLOD and quadtree
compression algorithm. During a pretreatment phase, we
divided the data set in cells of equal size usable by the
CLOD algorithm (2"+1, this is inherent to the quadtree
decomposition process). Then these cells are distributed
among parallel modules on the server, calculations are
realized in parallel and results gathered and synchronized
for visualization on the distant client.

C. Integration of a heavy simulation distantly steered

1) Flood simulation choice

As far as flood simulations are concerned, existing
literature provides many clues and directions in order to
help deciding how to chose a correct implementation. In
1999, Stam described the "stable fluids" method [5] to
implement fluid simulations using a computational fluid
dynamics based approach. This article tackled many
aspects of computational fluid dynamics (a branch of fluid
mechanics using numerical methods and algorithms to
solve and analyze problems involving fluid flows).
Further articles [6] helped vulgarization of the method and
optimization of implementation. In computational fluid
dynamics, HPC are used to perform the millions of
computations required to simulate the interaction of
liquids and gases with surfaces defined by boundary
conditions. Even with such CPU high speed power, in
many cases only approximate solutions can be achieved.

The fundamental basis of almost all CFD problems are
the Navier-Stokes equations, which define any single-
phase fluid flow. These complex equations can be
linearized and simplified by removing terms
corresponding to parameters we're not interested in
concerning water flow simulations. Continuous fluids
must be discretized before being representable in
computer memory, that's why we chose to discretize the
spatial domain into small cells to form a volume grid
(finite volume discretization method), and then apply a
suitable algorithm to solve the Navier-Stokes equations.

2) Actual implementation

However for ease of implementation purpose, we
chose a rather naive algorithm to control the flood
simulation. Nonetheless, the simulation module I/O is
clearly formalized and generic so replacing the module by
a more realistic simulation is straightforward. The
simulation is parallelized thanks to MPI communications :
modules need to exchange their borders values before
performing each iteration step. Details on general
parallelization of flood simulations for clusters using MPI
can be found in [7].

The characteristics of the simulation are as follow :

e It runs asynchronously alongside the geometry
simplification process which is coupled with.

e It supports alteration of the topography and
modification of its parameters (water sources
intensities...) via client user input.

* Key steps of the simulation can be saved and the
simulation can be re-ran from these states later.

The topography alteration feature is achieved by
controlling an avatar client-side, the user can move its
position across the world and increase or decrease the
height at a precise point. These topography alteration
messages are sent to a topography server whose role is to
store the entire list of modifications done to a cell (in
order to re-apply them in case the cell is unloaded and
reloaded from disk). Once the alteration is performed on a
given cell, the data is re-emitted to account for the update.
Implementation of save states for the simulation is done
simply by saving at an instant the current list of
topography alterations and the entire water quantities
scalar fields for each cell impacted by the simulation. We
also save the current camera configuration. Restoring a
state is then accomplished by first setting the saved point
of view, then the visualized cells are naturally loaded
according to the camera position. Next we also load every
cell for which we saved a water quantity array and finally
reinitialize these scalar fields with data saved on disk
instead of zero. Note that thanks to the restoration of the
alteration message list, height fields are loaded and
correctly modified on the fly.

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

D. Application architecture

Static Dynamic

VisualizedCells
Manager

SimulatedCells
Manager

.

SimulatedTopography

Y
VisualizedTopography

Server Server
\
\
| Simulation
\
Y |
TopographyCompressor‘ | ‘SimulationCompressor‘
-
Network \ /
\
) 4 | 4
TopographyUncompressor‘ | ‘SimulationU ncompressor‘
\

Viewer

Fig 3: Application architecture

Here is the global architecture of our application. Notice
the generic nature of the dynamic simulation integration
into an existing large static data visualization framework.
One may couple any simulation code with the server side
modules and visualize on a distant client the results, as
long as the corresponding modules to manage resources
and compress/uncompress output data are provided. The
simulation core itself doesn't need a major rewrite to be
integrated in the model, however thanks to the FlowVR
network and software components paradigm, integration
is done by developing specific modules to handle data
transmission over the network and designing a
meaningful and correct synchronization. The LOD
algorithm and compression process taking matrices of
values as input, it is possible to distantly visualize any
information representable as a raster data type. We have
done it using height fields, textures and water quantities
and it can be extended for example to population density,
pollutant concentration, etc...

We now describe the architecture in order to point out
the main modules and explain their role. Firstly, the

Viewer is sending the camera position and orientation
(known as the frustum describing the 3D region which is
visible) to the server so as to receive updated scene
geometry afterward. On the server, the
VisualizedCellsManager is responsible for computing the
list of cell data visible given the current point of view,
thus needing actual loading in the cluster memory. Then
the VisualizedTopographyServer reads needed cell data
from disk and sends them to the TopographyCompressor.
As far as the Simulation module is concerned, it receives
the list of cells impacted by flood simulation and performs
calculations on this data. Then it reports newly impacted
cells to the corresponding manager module, and produces
output data as a water height values matrix. The CLOD
and compression mechanism takes place in the different
Compressors modules, right before emission of the scene
geometry compressed format on the network. Then
specialized Uncompressors modules accomplish data
uncompression on the client side part of the application
and send it to the Viewer in an almost directly OpenGL
displayable format. The Viewer displays the received
scene and handles user interaction. Note that each module
in relationship with cell data (DataServer, Compressor,
Uncompressor...) comes in as many flavors as there is cell
data type involved (height fields, textures, etc...), thus
allowing further enrichment of the model : one may only
develop new modules to compress/uncompress the results
of a newly integrated simulation.

E. Synchronization :

At first glance, we chose a combination of classic
FlowVR connections to synchronize our application. That
is to say FIFO and Greedy connections. FIFO is a good
choice when connecting two modules perfectly
synchronous, performing different phase of a procedural
task when a module needs the output from another before
starting its own computation process. For example, we use
a FIFO connection between the TopographyServer and
corresponding TopographyCompressor module. However,
being a real time application, most of the modules must
run asynchronously from each other. This is why we use a
Greedy connection between the Uncompressors modules
and the Viewer, as this module is an interactive one, it
should run at maximum frame rate and not suffer from
server side latency. SteerGreedy is used wherever needed
as previously demonstrated. Particularly, we use this type
of connection to control emission of new frustum data to
the server, launching heavy computation on the cluster
only when the user moves the camera. It is also used later
on the connection cycle to allow cascade blocking of
server side modules.

In order to minimize network latency, a SteerGreedy
connection is also used between the -client/server
architecture (Compressor/Uncompressor modules). The
network objects (synchronizer + filter) are instantiated on

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

the server and when the connection is blocked, no more
message will be transferred via the link to the client.
Another important aspect is the necessity of the final
Greedy connection attached to the Viewer : if we used a
SteerGreedy connection at this point, this could result in
infinite modules inter-blocking. As soon as the Viewer
decides that the content of its output is no more interesting
regarding server processing, it would block every single
connections thus blocking itself.

F. Cell loading and unloading mechanism

1) Within the simulation

Considering large data visualization using an in-core
context, it is acceptable to load the entire data set on PC
clusters huge memory. Nonetheless, as far as testing and
scalability is concerned, it would be interesting to be able
to target lower performances platforms, such as laptops,
thus meaning less RAM and incapacity to load all of the
data at the same time. Moreover, although we could load
everything on the supposedly very powerful server, what
is the point if only a small part of the data is needed at
some time ? As a result, it is mandatory to adopt a
reasonable policy concerning cells loading, and as a
matter of fact, unloading them accordingly.

Our approach is based on a simple assertion : at any given
time, it is only necessary to load the cells visible from the
current frustum. We can enlarge this statement by also
loading these visible cells neighborhood, in order to
improve latency because neighbors cells might be loaded
a few iterations ahead from disk, which is an expensive
operation we should anticipate. We receive the viewpoint
from the Viewer insofar as we want to simplify cell data
using a LOD algorithm, another use of this viewing
information is to compute the identifier of the cells that
need to be loaded. This is the role endorsed by the
VisualizedCellsManager module, taking the point of view
as input, it computes the position of the visible cells (those
within a given radius around the intersection of the view
with the z plane representing the floor). Actual
loading/unloading process is done by the different
CellDataServers (height fields and textures), at each new
iteration, these modules receive the list of cells that should
be loaded. By keeping track of the list of cells currently
loaded, the module is able to compare these two different
lists and deduce the cells that are no longer needed and
can be safely unloaded. The module then proceeds by
loading the cells it is instructed to provide, via the
manager that are not already present in the loaded set.

2) Within the flood simulation

We have decided to store in memory only the cells
currently impacted by the course of the simulation, which
is a rather obvious behavior. As the flood propagates
among the terrain within the simulation process, the

Simulation module provides feedback to the
SimulatedCellsManager module, indicating which cells
are gradually impacted by the flood. The manager
accumulates progressively these cells where the
simulation goes on and forwards them to the
SimulatedTopographyServer, the module actually loading
the terrain data upon which flood is taking place.

1V. CONCLUSION AND PERSPECTIVES

When we introduced our generic framework at the
beginning of this paper, we stressed that as a general
template architecture, it could be used to integrate any
heavy simulation in a VR environment to perform distant
visualization of computationally steered codes. As a
result, this work could be used in other domains than what
we focused on in the description of our implementation of
the model, that is to say flood simulation and visualization
of geo-referenced data. To do so, it is necessary to
develop LOD algorithms specific to the data type treated,
in order to allow compression and distant visualization. A
close study about synchronization policies using work on
the SteerGreedy is imperative to avoid useless resource
consumption and define the most clever application
architecture thanks to FlowVR. Currently, we only
consider data compression for visualization purpose, but
why not trying to extend this concept and using degraded
data as input to another distant simulation ? Such
simulation would try to make the most of currently
available data and provide the best results considering the
quality of what we fed it with.

There is a lot of interesting perspectives thanks to the
SteerGreedy synchronization policy. For example, we
might consider a population density simulation across

Proceedings of Virtual Reality International Conference (VRIC 2010), 7-9 April 2010, Laval, France.
RICHIR Simon, SHIRAI Akihiko Editors. International conference organized by Laval Virtual.

major axes of movement, inside a richer application. The
user could steer the results of this simulation to control
whether he wants to visualize this data or not, as these
information may not be always useful. Moreover, if a
particular semantic is applied to the resulting data of such
simulation, the synchronization policy should allow
punctual steering by deciding precisely when the results
computed on the server have changed enough to require
an update on the client.

The application we presented is part of the DALIA
project, supported by the ANR, the French national
research agency [8].

V. BIBLIOGRAPHY

[1] A. Esnard, “Analyse, conception et réalisation d’un
environnement pour le pilotage et la visualisation en ligne de
simulations numériques paralleles”, 2005

[2] Gropp, “A high-performance, portable implementation of
the MPI Message Passing Interface standard”,1996, p.3

[3] J. Allard and V. Gouranton and L. Lecointre and S. Limet
and E. Melin and B. Raffin and S. Robert, “FlowVR: a
middleware for large scale virtual reality applications”,
2004

[4] S. Madougou, “Intégration des modélisations 3D des
sciences de la terre au sein d'environnements de réalité
virtuelle a base de grappe de PC”, 2005

[51 Jos Stam, "Stable fluids.", 1999
[6] Mark J. Harris, "Fast fluid dynamics simulation on the GPU"

[7]1 Viet D. Tran, Ladislav Hluchy, Dave Froehlich, and William
Castaings, "Parallelizing flood model for linux clusters with
MPI"

[8] http://dalia.gforge.inria.fr/index.php

	I. Introduction
	II. General framework
	A. Key concepts
	B. Framework
	C. Computational steering
	D. Parallelism
	E. Steer Greedy connections

	III. Framework instantiation
	A. Application presentation
	B. Distant visualization of large static data
	C. Integration of a heavy simulation distantly steered
	1) Flood simulation choice
	2) Actual implementation

	D. Application architecture
	E. Synchronization :
	F. Cell loading and unloading mechanism

	IV. Conclusion and perspectives
	V. Bibliography

