
Multiple Networks for
Heterogeneous Distributed Applications

PDPTA’07
Index Terms—multiple networks, distributed applications, performance prediction, FlowVR

Sylvain Jubertie, Emmanuel Melin
Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

Université d’Orléans
BP 6759

F-45067 ORLEANS CEDEX 2
Phone : (+33)2 38 49 48 57
Fax : (+33)2 38 41 71 37

Email: {sylvain.jubertie| emmanuel.melin}@univ-orleans.fr
http://www.univ-orleans.fr/lifo

Abstract—We have experienced in our distributed applications
that the network is the main limiting factor for performance s on
clusters. Indeed clusters are cheap and it is easier to add more
nodes to extend the computing capacity than to switch to costly
high performance networks. Consequently the developer should
especially take care of communications and synchronizations in
its application design. The FlowVR middleware offers a way
to build distributed applications independently of a particular
communication or synchronization scheme. This eases the design
of distributed applications independently of their coupling and
mapping on clusters. Moreover we propose a performance
prediction model for FlowVR applications which is adapted to
heterogeneous SMP clusters with multiple networks. In thispaper
we present an analysis of communication schemes based on our
performance prediction model. We give some advices to the
developer to optimize communications in its mappings. We also
show how to use multiple networks on heterogeneous clustersto
balance network load and decrease communication times. Since
the FlowVR model is very close to underlying models of lots of
distributed codes, our approach can be useful for all developers
of such applications.

I. I NTRODUCTION

Heterogeneous distributed applications are difficult to map
efficiently on clusters. Each module of the application could
have very different requirements in term of processor load,
memory, or storage. Some modules could be mapped on the
same nodes and the developer should consider the scheduler
policy to determine the impact of concurrency. The developer
should also introduce asynchronism between modules to ex-
ploit the intrinsic asynchronism of clusters and at the same
time ensure that the synchronization scheme is still coherent.
Some modules may be distributed on several nodes like for
example MPI-based applications. Consequently to take advan-
tage of the cluster performance the developer should design
an efficient mapping. When considering large applications this
task becomes more complex. It is even more difficult if we
consider clusters composed of heterogeneous nodes.

The FlowVR framework [1][2] allows to design such dis-
tributed applications. It was primarly design with distributed
Virtual Reality applications in mind but its model is general

enough to consider non-interactive distributed applications.
The developer could create each of its modules independently
and then define communications and synchronizations between
them. Each module could then be mapped on the cluster
nodes. To provide an efficient mapping we propose in [3] a
performance prediction method for FlowVR applications. With
this tool we could provide performance informations for each
module of a given mapping on a given cluster.

In [3] we apply this method on a distributed application to
determine an efficient mapping. We optimize computation per-
formance of each module to take advantage of the computation
capacity of SMP nodes of the clusters. Whereas we were able
to design efficient mappings for computation performances,
we were limited in several cases by network bottlenecks. But
we have performance margins for network communications.
It is possible to optimize communication schemes or to use
multiple networks to reach even more efficient mappings.

We propose in this paper a more precise analysis of the
impact of communication schemes on performances. We first
present a brief description of the FlowVR framework and
of our performance prediction method. Then we will study
influence of several communication schemes on a distributed
application. We also present how to use multiple networks
to increase communication performances and consider larger
problems.

II. T HE FLOWVR FRAMEWORK

A. FlowVR

FlowVR is an open source middleware dedicated to dis-
tributed interactive applications and currently ported onLinux
and Mac OS X for the IA32, IA64, Opteron, and Power-PC
platforms. The FlowVR library is written in C++ and provides
tools to build and deploy distributed applications over a cluster.
More details can be found in [1]. We turn now to present its
main features.

A FlowVR application is composed of two main parts, a set
of modules and a data-flow network ensuring data exchange



between modules. The user has to create modules, compose a
network and map modules on clusters hosts.

1) Modules: Modules encapsulate tasks and define a list
of input and output ports. A module is an endless iteration
reading input data from its input ports and writing new result
messages on its output ports. Messages are also associated
with lightweight data calledstampsthat identify the message
and allow routing operations. A module uses three main
methods:

• The wait function defines the beginning of a new itera-
tion. It is a blocking call ensuring that each connected
input port holds a new message.

• The get function obtains the message available on a
port. This is a non-blocking call since thewait function
guarantees that a new message is available on each
module ports.

• Theput function writes a message on an output port. Only
one new message can be written per port and iteration.
This is a non-blocking call, thus allowing to overlap
computations and communications.

Note that a module does not explicitly address any other
FlowVR component. The only way to gain an access to other
modules are ports. This feature enforces possibility to reuse
modules in other contexts since their execution does not induce
side-effect. An exception is made forparallel modules(like
MPI executables) which are deployed via duplicated modules.
They exchange data outside FlowVR ports, for example via
the MPI library but they can be apprehended as one single
logical module. Therefore parallel modules do not break the
FlowVR model.

2) The FlowVR Network:The FlowVR networkis a data
flow graph which specifies connections between modules
ports. A connection is a FIFO channel with one source and one
destination. This synchronous coupling scheme may introduce
latency due to message bufferization between modules which
could induce buffer overflows. To prevent this behavior, inter-
active applications classically use a”greedy” pattern where
the consumer uses the most recent data produced, all older
data being discarded. This is relevant for example when a
program just needs to know the most recent mouse position.
In this case older positions are usefullness and processingthem
just induces extra-latency. FlowVR enables to implement such
complex message handling tasks without having to recompile
modules. To perform these tasks FlowVR introduces a new
network component called afilter. Filters are placed between
modules onto connection and have an entire access to in-
coming messages. They have the freedom to select, combine,
create or discard messages.

A special class of filters, calledsynchronizers, implements
coupling policies. They only receive / handle / send stamps
from other filters or modules to take a decision that will be
executed by other filters. This detached components makes
possible a centralised decision to be broadcasted to several
filters with the aim to synchronize their policies. For example,
a greedy filter is connected to a synchronizer which selects
in its incoming buffer the newest stamp available and sends
it to the greedy filter. This filter then forwards the message
associated with this stamp to the downstream module.

The FlowVR network is implemented by a daemon running

on each host. A module sends a message on the FlowVR
network by allocating a buffer in a shared memory segment
managed by the local daemon. If the message has to be
forwarded to a module running on the same host, the daemon
only forwards a pointer on the message to the destination
module that can directly read the message. If the message has
to be forwarded to a module running on a distant host, the
daemon sends it to the daemon of the distant host. Using a
shared memory enables to reduce data copies for improved
performances. Moreover a filter does not run in its own
process. It is a plugin loaded by FlowVR daemons. The goal
is to favor the performance by limiting the required number of
context switches. As a concequence the CPU load gererated
by the FlowVR network management can be considered as
negligible compared to module load.

B. Performance prediction

Our complete performance prediction method for FlowVR
applications is described in [3]. For the sake of clarity we only
present in this paper the main principles of our method.

To determine performances we only require few informa-
tions. For each module we need to know :

• its computation time : the time needed to perform its
computation when there is no concurrent modules on the
processor.

• its processor load : the percentage of the computation
time used for computation and not I/O operations.

• the amount of data sent on each output port.

If the cluster is composed of heterogeneous processors then
we need the previous informations for each kind of processor.
Because FlowVR modules are independant it is possible to
test each one without having to run the whole application.

The global application performance depends on the syn-
chronization scheme and concurrency between modules. If a
module is synchronized with its predecessor then it should
wait until it receives a new message. We define the iteration
time Tit of a module as the time between two consecutive
calls to thewait function. If two modules are mapped on the
same node then the operating system scheduler may interleave
their executions and change their performances. We define
the concurrent computation timeTcc as the time needed by
a module to perform its computation when other modules are
mapped on the same processor. Our goal is to provide for
each FlowVR module its iteration timeTit and its concurrent
computation timeTcc. With these informations we will be
able to predict the amount of data sent and received on each
network interface and to determine if network contentions may
occur. We could also predict latency between FlowVR objects
which is a usefull information for interactive applications like
for example Virtual Reality ones.

1) Synchronizations:Performances are predicted from the
application graphGappl : a set of FlowVR objects mapped on
cluster nodes and connected together with directed FlowVR
connections.Gappl contains synchronizations between mod-
ules and module locations on the cluster. This allow to deter-
mine if some modules are synchronized and wait for messages,
and if several modules are mapped on the same nodes. With
these constraints we are able to predict the behavior of each
module in the application.



Fig. 1. Example of an application graphGappl and its decomposition inGsync andGdep

We first determine ifGappl is correct. Indeed some graph
configurations are known to generate buffer overflows or
unexpected performances. We have shown in the previous
section that greedy filters are used to prevent buffer over-
flows. Moreover modules connected through greedy filters
are running asynchronously. This removes performance con-
straints between theses modules. Consequently we could re-
move greedy connections fromGappl in our study and only
keep FIFO connections. The resulting graphGsync may not
stay connected. In this case we have several components.
Figure 1 shows an example of an application graph and its
correspondingGsync which has two components. We turn
now to show that modules in a component could have only
one common predecessor module or predecessor modules
arranged in a cycle. In this last case we have a predecessor
cycle. If this condition is not satisfied then there is at least
a module in the component with more than one independent
predecessor. In this case these predecessors may have different
computation times and consequently send messages to the
module at different rates. Because thewait function imposes to
have one message on all input ports, the module waits for the
message of the slowest predecessor. Consequently the other
messages are accumulated into the buffer until it generates
a buffer overflow. Modules from the same component should
have the same iteration time because they are synchronized by
the component predecessor. If this constraint is not respected
then it means that for a modulem we haveTcc(m) > Tit(m)
i.e.m is slower than it predecessor and consequently messages
from it are accumulated in the buffer which leads to a buffer
overflow. This way we are able to warn the developer if
his mapping may generate errors and to point out incorrect
configurations.

2) Concurrency:To predict performances we also take into
account the concurrency between modules mapped on the
same cluster node because the scheduler may interleave their
executions and change the time they need for computation.
The way the processor load is distributed between modules
depends of the scheduler policy. In our study we choose to
model the Linux scheduler policy [4] which gives the priority
to modules which wait the most.

To represent concurrency relations between modules we add
edges intoGsync from concurrent modules to predecessor
modules mapped on the same processor. We distinguish these

edges related to concurrency from synchronization edges in
Gappl. The resulting graph is called the dependency graph
Gdep. Figure 1 shows an example of an application graph
and its corresponding dependency graphGdep. Then we
could consider independently each component inGdep. We
first check for cycles to determine interdependencies between
predecessors. In figure 1, ifmod2 and mod3 were mapped
on the same node then we would have a cycle. If several
predecessors are in the same cycle then performance of each
predecessor depends of the performance of the other ones and
we are not able to directly determineTcc of modules in the
cycle. In this case we propose to consider theTcomp of one
predecessor module as itsTcc and to propagate it to determine
the Tcc of the other modules following the cycle order. We
repeat this process along the cycle until we reach convergence
of the concurrent computation time for each module. But
in some cases concurrent computation times may oscillate
because this process changes the iteration time of each module
and could modify the priority between them. But we are able
to determine for each module its minimal and maximalTcc

which is obtained respectively when the scheduler gives the
highest and the lowest priority. However we should avoid this
behavior for interactive applications or if we want a moduleto
have the lowest possibleTcc. In this case the developer should
tune the scheduler to change the priority of modules or bind
modules on processors.

Once we have determinedTcc for each predecessor module,
we could then computeTcc for the other modules. We should
also verify that for all modules we haveTcc ≤ Tit. If this is
not the case then it means that a module receives messages at
a higher rate than it computes. Messages are then accumulated
in the buffer leading to a buffer overflow.

At this step for each module we have itsTcc, its Tit and
we are able to point out a module which could generate
buffer overflows. With these informations we are able to
compare mappings and to choose the one which takes the
best advantage of the cluster processors. However we cannot
guarantee that the best mapping we obtain at this level is
the best application mapping. Indeed if we optimize modules
iteration times then we increase the amount of communications
between modules. This could lead to network contentions.
Consequently we should study the communication scheme of
the mapping to verify if it is compatible with the module



performances.
3) Communications: In this section we determine the

amount of data sent and received on each network interface
from Gappl.

We assume that communications between objects mapped
on the same node are free because messages are stored in a
shared memory and local objects only exchange pointers to
messages. In our study we consider networks with point-to-
point connections in full-duplex mode. Each networkNi has
a given bandwidthBWi and latencyLi.

We also assume that synchronizer communications are
negligible compared to other communications. Indeed even if
synchronizations occure at the frequency of the fastest module
involved in the synchronization, they require only few stamp
information compared to the size of the message sent by this
module.

Consequently we define a new graphGcomm which is
obtained fromGappl by removing synchronizers. We also add
additional edges inGcomm to represent communications out
of the FlowVR communication scheme, for example commu-
nications between several instances of a MPI module. For each
iteration we add output edges and input edges respectively to
and from other MPI instances. We define for each edgee :

• a source objectsrc(e) which is the FlowVR object
sending a message throughe.

• a destination objectdest(e) which is the FlowVR object
receiving message fromsrc(e).

• a volumeV (e) of data sent through it. It is equal to the
size of the message sent bysrc(e).

We provide a functionnode(o) which returns the node
hosting a given FlowVR objecto.

For the sake of clarity in the following sections we define
the frequency of a modulem as follow :

F (m) =
1

Tit(m)
(1)

Indeed the volume of data sent by a module depends only of
its frequency.

We begin our study by a traversal ofGcomm to determine
for each filter its frequency and the data volume it received
and sent. The frequency of a filter depends of its nature. For
a greedy filterfgreedy it is equal to the frequency of the
destination modulemdest : F (fgreedy) = F (mdest). For a
broadcast filter it is equal to the frequency of the source object
osrc : F (fbroadcast) = F (osrc). The data volume sent by
a filter depends also of its nature. For example a broadcast
filter sends the message it receives on its output ports without
modifying its size whereas a merge filter sends only one
message which contains messages it receives. For each edge in
Gcomm we are able to compute the data volume sent through
it in a second by multiplying the frequency of its source object
by the amount of data sent through it.

Then we could determine for each node the bandwidthBWs

required to send data on a given network. This is done by
adding data volumes of each edgee connected from this node
(src(e)) to another node (dest(e)) through this network :

BWs(n) =

node(src(e)) 6=node(dest(e))∑

node(src(e))=n

V (e) × F (src(e)) (2)

We could also determine the bandwidthBWr needed by a
cluster noden to receive its data :

BWr(n) =

node(src(e)) 6=node(dest(e))∑

node(dest(e))=n

V (e) × F (src(e)) (3)

If the required bandwidth is greater than the available
network bandwidth then messages are accumulated in the
sending buffer until it is full and we have a buffer overflow
error. This way we are able to point out network bottlenecks
in application mappings.

4) Latency between FlowVR objects:The latency repre-
sents the time needed by a message to be propagated from a
FlowVR object to another through the application graph. In
interactive applications, like Virtual Reality ones, the latency
is critical between interaction and visualization modules, the
user should see the result of its interaction within the shortest
possible delay to keep an interactive feeling.

We determine the latency between two objects from a path
the message should follow between them. A path contains a set
of FlowVR objects and edges between them. We assume that
filters like broadcastor mergeones do not introduce latency.
We compute the latency by adding iteration times of each
module in the path and the network latency for each edges.
This latency is reached in the best case when a module has
no concurrent and consequently its messages are not buffered.
If several modules are mapped on the same node then their
messages are buffered and sent one by one. This process
add extra latency and in the worst case messages from other
modules mapped on the same node and sent on the same
network are stored in the buffer. Consequently we could add
the time each other message needs to be sent through the
network to the best case latency. This way we obtain the
latency in the worst case situation.

If the latency is too high then the developer should min-
imize it by increasing frequencies of modules in the path
or by mapping several modules on the same node to reduce
communication latencies.

III. C ASE STUDY

We illustrate our approach with our fluid-particles applica-
tion. In [3] we have shown that we were able to optimize
frequencies of the different modules. We now study optimiza-
tions of the communication schemes.

A. The cluster

Our cluster consists of two different sets of nodes. The first
set (nodes 1 to 8 in figure 2 ) is built with dual Xeon processors
interconnected with a gigabit Ethernet and a Myrinet network.
The second one (nodes 11 to 18) with 8 dual-core dual Opteron
processors networked with two gigabit Ethernet interfaces.
This cluster is giving a total of 48 processors.

To visualize our applications we use a display wall of 4
projectors (2x2), each one connected to a different node.

B. The application

The fluid-particles application is composed of the following
modules :



Fig. 2. The cluster and its networks

• the flow simulationmodule based on an MPI version of
the Stam’s simulation [5] computes fluid forces. The fluid
is discretized on a 500x500 grid.

• the particle systemmodule adds forces from the simula-
tion to a set of particles. We consider a set of 400x400
particles.

• the viewer module transforms particles into graphical
primitives.

• the renderer module displays the scene on the screen.
They must be mapped on nodes with projectors connected
to it.

• the joypad module which we could enabled if the sim-
ulation runs at an interactive frequency to interact with
the fluid.

The data flow of the application is described in figure 3.
The flow simulation may be distributed over several nodes

to increase its frequency. In this case each node only consider
a local subdomain of the simulation. After each iteration of
the simulation module subdomains are sent to merge filters
in order to create the global domain. Then we use a binary
broadcast scheme to send the global domain to each instance of
the particle system module. Particles are then transformedby
the viewer module and broadcasted to each renderer module.

An example of an automatically generated graph with only
two instances of each module is shown in figure 4. Even in
this simple case the graph contains a total of 40 FlowVR
objects. It illustrates the complexity for the developer tomap
efficiently each object of the application without a performance
model. For the sake of clarity we only consider a simplified
representation of the graph in the following sections.

C. Performance predictions and results

We study three different cluster configurations to show how
to apply our approach in each case. First the application is
mapped on an homogeneous cluster with only one network.
Then we add a second network and we modify the com-
munication scheme to show how to take advantage of the
two networks. Finally we consider an heterogeneous cluster
with three different networks. In each case we study several
mappings to show how to optimize both module frequencies
and communication schemes.

1) Homogeneous cluster connected with one network:We
first consider a cluster with eight dual processor nodes (nodes
1 to 8 in our cluster on figure 2) connected with a gigabit
Ethernet network.

Fig. 3. The fluid-particle application simplified dataflow graph

Modules are mapped as described in table I. The simulation
is mapped on four nodes with two instances by node to take
advantage of the dual processors.

Module Nodes Prediction(ms) Results(ms)
Tit Tcc Tit Tcc

Simulation {5, 6, 7, 8} 80 80 81 81
Particles {1, 2, 3, 4} 80 20 81 20
Viewer {1, 2, 3, 4} 80 15 81 15
Renderer {1, 2, 3, 4} 40 40 30-40 30-40

TABLE I

The particles, viewer and renderer modules are mapped on
the same nodes and we should take care of the concurrency
between them to determine their concurrent computation time.
The particles and the viewer modules have a highest priority
over the renderer module because they are waiting more. Thus
the scheduler should map the particles and the viewer modules
on different nodes and the renderer module do not run at
full speed. We note thatTcc(particles) + Tcc(viewer) <
Tcc(simulation). This means that the particles and the viewer
modules are not executed at the same time because when
a message is sent by the simulation it is processed by the
particles module then by the viewer module and the simulation
has not yet sent a new message. The consequence of this
remark is that we could tell the scheduler to bind the particles
and the viewer modules to the same processor. In this last
case the renderer module is bind to the other processor to
take the best advantage of it. This is what we have done for
this mapping.

We first verify for each module that the concurrent com-
putation time is not greater than the iteration time. Then we
compute the amount of data sent and received by each node.
The simulation grid of500×500 is distributed on four nodes,
each node with a250×250 (62500 cells) local grid. Each cell
in the grid contains a vector of two floats (8 bytes) representing



a force. On node 51.5MB are gathered per iteration from
the other simulation nodes to build the full grid of2MB
which is then broadcasted to nodes 1 and 3. The iteration
time of the simulation is equal to80ms, consequently we have
BWr(node5) = 18.75MB/s. andBWs(node5) = 50MB/s.
We apply the same reasoning to node 1 which receives
simulation data from node 5 and viewer data from nodes 2,
3 and 4. It also sends viewer data to renderer modules on
nodes 2, 3 and 4. We obtainBWr(node1) = 37MB/s and
BWs(node1) = 12MB/s. The required bandwidth doesn’t
exceed the physical bandwidth of the gigabit Ethernet network.
Consequently we could predict that this mapping will work.

Results of the mapping are shown in table I. The application
runs as expected. We note that the concurrent computation
time of the renderer varies from 25ms to 35ms because it
depends on the scene view point and the number of visible
particles.

We now try the same mapping on the eight other nodes with
the same network (table II). For each simulation node we have
four instances of the simulation to take advantage of the four
processors.

We expect the simulation to be twice as fast as in the
previous mapping.

Module Nodes Prediction(ms) Results(ms)
Tit Tcc Tit Tcc

Simulation {15, 16, 17, 18} 40 40 42 42
Particles {11, 12, 13, 14} 40 20 42 18
Viewer {11, 12, 13, 14} 40 15 42 14
Renderer {11, 12, 13, 14} 10 10 7-12 7-12

TABLE II

We could predict a buffer overflow because the broadcast
filter on node 15 will send messages of 2MB per iteration
to node 11 and 13. Consequently we haveBWs(node15) =
100MB/s which is greater than the available bandwidth of
the gigabit Ethernet network.

Indeed the application failed few iterations after we
launched it. Results of theses iterations are shown in tableII.
We note that the renderer module is four times faster on theses
nodes. This is due to the different graphic cards and especially
to the larger bus between the memory and the graphic card.

We now propose to add a second network to solve this
problem.

2) Homogeneous cluster connected with two networks:
With a second network we could decrease the communication
latency by splitting each message over the two networks. This
requires some work but it is very facilitated by the FlowVR
library. We need to add scatter filters after each output port
and merge filters before each input port. Another solution is
to bind communications between modules to a given network.

To remove the bottleneck of the previous mapping we
choose this last solution. We use the two available networks
to perform the broadcast from node 15 to node 11 and 13.
Each message is sent through a different network. With this
configuration only 50MB/s are emitted on each network.

Node 11 receives 50MB/s from the simulation and also
24MB/s from the viewer modules on nodes 12, 13 and 14.
Consequently we do not exceed the network bandwidth.

Results are the same as the previous mapping (table II) with
a single network but this time the application runs without
buffer overflows.

3) Heterogeneous cluster and networks:We now consider
our application on the full cluster with 16 nodes (figure 2).
Our goal is to reduce the computation time of the simulation
to have the best performances, to maximize the number of
particles to catch fine details like vortices in the flow, and to
have an interactive visualization with at least 20 frames per
second.

Consequently we could consider using the eight nodes with
four processors for a total of 32 processors for the simulation.
If we use all these processors we could predict that the
simulation computation time will decrease to 20ms because
the simulation complexity is linear. However this means that
the simulation will produce 200MB/s and our networks are not
able to transmit this amount of data. Moreover in the previous
mapping we have a concurrent computation time equal to 40ms
which corresponds to a frequency of 25Hz. This frequency
is sufficient if we consider that the visualization should run
at least at 20Hz to be interactive. Thus we only need 16
processors for the simulation i.e. four dual-core dual processor
nodes or eight dual processor nodes.

The next step is to increase the number of particles. We
are limited in this case by the network bandwidth but also by
the graphic card capacities. We have also a constraint on the
number of processor but it is not the most restrictive one. Inthe
first mapping (table II) the renderer modules on nodes 1 to 4
run at 25Hz (Tcc(renderer) = 40ms). If we increase the par-
ticle system then we decrease the renderer module frequency
which will not be interactive anymore. Consequently we could
not take advantage of the Myrinet network to consider more
particles. We could use more powerfull graphic cards on nodes
11 to 14 to remove this bottleneck. If we map particles and
viewer modules on nodes 11 to 14 we are in the same case
described in the previous section : an homogeneous cluster
with two networks. Thus we are limited by node 11 which
receives a total of 74MB/s and we are too close to the network
bandwidth to consider more particles.

The last possibility is to map particles and viewer modules
on nodes 1 to 8. We run two instances of each one on each
node to take advantage of the two processors and to reduce
the latency of the application. In this case node 1 receives the
global grid from the simulation and then broadcast it through
the Myrinet network. Then each viewer module send its data to
each renderer module through the gigabit network which could
send and receive data at around 80MB/s. If the simulation
runs at 25Hz we could transmit a maximum of 3.2MB of data
per iteration which corresponds to a set of around 600x600
particles.

Regarding all these parameters we propose the mapping
described in table III. Results are really close to our prediction.
We also could show that only four nodes are sufficient to
perform the computation on particles. Indeed with four nodes
and two instance of the particles and viewer modules on
each one we could predict thatTcc(particles) = 10ms and
Tcc(viewer) = 9ms and we still haveTcc(particles) +
Tcc(viewer) < Tcc(simulation). This information could
be useful on large clusters running several applications to



optimize the number of nodes for each one.

Module Nodes Prediction(ms) Results(ms)
Tit Tcc Tit Tcc

Simulation {15, 16, 17, 18}, 40 40 44 44
Particles {1, 2, 3,..., 8} 40 5 44 5
Viewer {1, 2, 3,..., 8} 40 4 44 4
Renderer {11, 12, 13, 14} 20 20 25-35 25-35

TABLE III

IV. CONCLUSION

The FlowVR library highly facilitates the coupling of
distributed applications. The developer could map each part
of the application and synchronize them without adding
modifications to the code. Facilities provided by FlowVR
are necessary to abstract a distributed application from the
underlying cluster. But this is not sufficient to provide good
performance to a distributed application because FlowVR does
not provide its own performance model. Consequently without
performance model we are not able to choose a mapping with
expected performances.

Our performance prediction model gives to the developer
a mean to determine its mapping performances. This way it
is possible to compare several mappings and to find the most
efficient of them. Once again it is a useful tool but it doesn’t
give informations on how to obtain the best mapping for a
distributed application on a given cluster.

In this paper we have shown that it is possible to use
our performance prediction model to optimize communication
schemes in our applications. Indeed it is often the main
performance limitation for applications distributed on clusters
and adding more nodes in a cluster does not solve this
problem. However this constraint limits the number of map-
pings to study and gives to the developer a mean to obtain
good mappings without having to consider all the possible
parameters. For example it could limit the number of instances
per module or the choice of the network to use. Consequently
we are able to determine if only a subdomain of the cluster is
sufficient. Then the remaining available nodes could be used
for other applications. Our approach could also determine if
an application could run on a given cluster with the expected
performances. If this is not the case we are able to point out the
limiting factor and to determine the least cluster configuration
able to run the application. Thus we avoid expensive and non
efficient investments.

The next step in our approach is to provide automated
tools which integrates our model to assist the developer in his
mapping creation and optimization. We also plan to provide a
solver for automatic optimization of mappings based on cluster
constraints, like network bandwidth, and constraints defined
by the developer, for example a minimum framerate for a
visualization module.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin, B. Raffin,
and S. Robert, “Flowvr: a middleware for large scale virtualreality
applications,” inProceedings of Euro-par 2004, Pisa, Italia, August 2004.

[2] J. Allard, C. Ménier, E. Boyer, and B. Raffin, “Running large vr
applications on a pc cluster: the flowvr experience,” inProceedings of
EGVE/IPT 05, Denmark, October 2005.

[3] S. Jubertie and E. Melin, “Mapping and performance prediction for
distributed applications on heterogeneous clusters,” LIFO, Tech. Rep.,
2007.

[4] J. Aas, “Understanding the linux 2.6.8.1 cpu scheduler,” 2005.
[5] J. Stam, “Real-time fluid dynamics for games,” inProceedings of

the Game Developer Conference, March 2003. [Online]. Available:
citeseer.comp.nus.edu.sg/stam03realtime.html



scene dt keysmouse beginIt

Visu/render/0
(node1)

outdt outkeysmouse outkeys endIt

_c38_c40

scene dt keysmouse beginIt

Visu/render/1
(node1)

outdt outkeysmouse outkeys endIt

_c39 _c41

Greedy/Render/Viewer/0/sync/0
(node1)

_c58

Greedy/Render/Viewer/1/sync/0
(node1)

_c73

Greedy/Render/Viewer/0/sync/1
(node1)

_c59

Greedy/Render/Viewer/1/sync/1
(node1)

_c74

positionx positiony beginIt

Simulation/0
(node1)

velocity pointer endIt

Greedy1/in/0
(node1)

_c18

f0/1
(node1)

_c30

GreedyX/sync/0
(node1)

_c4

GreedyY/sync/0
(node1)

_c13

positionx positiony beginIt

Simulation/1
(node1)

velocity pointer endIt

Greedy1/in/1
(node2)

_c19_c31

GreedyX/sync/1
(node1)

_c5

GreedyY/sync/1
(node1)

_c14

velocity beginIt

Particles/0
(node1)

positions endIt

positions pointer beginIt

Viewer/0
(node1)

scene endIt

_c36

velocity beginIt

Particles/1
(node1)

positions endIt

positions pointer beginIt

Viewer/1
(node1)

scene endIt

_c37

Greedy1/sync/0
(node1)

_c24

MaxFrequencySynchronizor/Viewer/0
(node1)

_c79

node1

_c51

Greedy1/sync/1
(node1)

_c25

MaxFrequencySynchronizor/Viewer/1
(node1)

_c81

node1

_c66

beginIt

Joypad
(node1)

axe0 axe1 endIt

GreedyX/in/0
(node1)

_c0

GreedyY/in/0
(node1)

_c9

GreedyX/filter/0
(node1)

_c2

_c3

_c1

_c6

_c7

GreedyY/filter/0
(node1)

_c11

_c12

_c10

_c15

_c16

Greedy1/filter/0
(node1)

_c22

Greedy1/filter/1
(node1)

_c23

_c20

_c26

_c21

_c27

node1

_c32

FMerge/0
(node1)

_c47

FMerge/1
(node1)

_c48

Greedy/Render/Viewer/0/filter/0
(node1)

_c56

Greedy/Render/Viewer/0/filter/1
(node1)

_c57

Greedy/Render/Viewer/0/in/0
(node1)

_c54

_c60
Greedy/Render/Viewer/0/in/1

(node1)

_c55

_c61
Greedy/Render/Viewer/1/filter/0

(node1)

_c71

Greedy/Render/Viewer/1/filter/1
(node1)

_c72

Greedy/Render/Viewer/1/in/0
(node1)

_c69

_c75

Greedy/Render/Viewer/1/in/1
(node1)

_c70

_c76

_c8 _c17

_c28 _c29

_c62

_c63

_c77

_c78

_c80

_c82

node1

_c35

_c33 _c34

node1

_c52
node1

_c53

_c49_c50

node1

_c67

node1

_c68

_c64 _c65

Fig. 4. An automatically generated application graph


