Multiple Networks for
Heterogeneous Distributed Applications
PDPTAOQ7

Index Terms—multiple networks, distributed applications, performance prediction, FlowVR

Sylvain Jubertie, Emmanuel Melin
Laboratoire d’Informatique Fondamentale d’Orléans @Q)F
Université d’'Orléans
BP 6759
F-45067 ORLEANS CEDEX 2
Phone : (+33)2 38 49 48 57
Fax : (+33)2 38 41 71 37
Email: {sylvain.jubertie] emmanuel.melih@univ-orleans.fr

http://ww. univ-orleans.fr/lifo

Abstract—We have experienced in our distributed applications enough to consider non-interactive distributed appliceti
that the network is the main limiting factor for performance s on The developer could create each of its modules indeperydentl
clusters. Indeed clusters are cheap and it is easier to add M 5,4 then define communications and synchronizations batwee

nodes to extend the computing capacity than to switch to colst
high performance networks. Consequently the developer shid them. Each module could then be mapped on the cluster

especially take care of communications and synchronizatis in Nodes. To provide an efficient mapping we propose in [3] a
its application design. The FlowVR middleware offers a way performance prediction method for FlowVR applicationstiwi
to build distributed applications independently of a particular this tool we could provide performance informations forteac
communication or synchronization scheme. This eases the sign module of a given mapping on a given cluster.

o diued ppicatens naependnty o vow couping 10 on 2 dsiaged appicaton
prediction model for FlowVR applications which is adapted b determine an efficient mapping. We optimize computation per
heterogeneous SMP clusters with multiple networks. In thigpaper formance of each module to take advantage of the computation
we present an analysis of communication schemes based on ourcapacity of SMP nodes of the clusters. Whereas we were able
performance prediction model. We give some advices to the 1, yegign efficient mappings for computation performances,
developer to optimize communications in its mappings. We ab N
show how to use multiple networks on heterogeneous clustets W€ Were limited in several cases by network bottlenecks. But
balance network load and decrease communication times. Sie We have performance margins for network communications.
the FlowVR model is very close to underlying models of lots of It is possible to optimize communication schemes or to use
distributed codes, our approach can be useful for all develers my|tiple networks to reach even more efficient mappings.
of such applications. We propose in this paper a more precise analysis of the
impact of communication schemes on performances. We first
present a brief description of the FlowVR framework and
Heterogeneous distributed applications are difficult tpmaf our performance prediction method. Then we will study
efficiently on clusters. Each module of the application douinfluence of several communication schemes on a distributed
have very different requirements in term of processor loagpplication. We also present how to use multiple networks

memory, or storage. Some modules could be mapped on tbencrease communication performances and considerrlarge
same nodes and the developer should consider the schedgieblems.

policy to determine the impact of concurrency. The develope

should also introduce asynchronism between modules to ex- Il. THE FLOWVR FRAMEWORK

ploit the intrinsic asynchronism of clusters and at the same

time ensure that the synchronization scheme is still ccmerrer'&' FlowVR

Some modules may be distributed on several nodes like forfFlowVR is an open source middleware dedicated to dis-

example MPI-based applications. Consequently to takeradvé#ributed interactive applications and currently ported.gmux

tage of the cluster performance the developer should desgm Mac OS X for the 1A32, IA64, Opteron, and Power-PC

an efficient mapping. When considering large applicatitis t platforms. The FlowVR library is written in C++ and provides

task becomes more complex. It is even more difficult if wiools to build and deploy distributed applications overustr.

consider clusters composed of heterogeneous nodes. More details can be found in [1]. We turn now to present its
The FlowVR framework [1][2] allows to design such disimain features.

tributed applications. It was primarly design with distried A FlowVR application is composed of two main parts, a set

Virtual Reality applications in mind but its model is generaof modules and a data-flow network ensuring data exchange

I. INTRODUCTION

between modules. The user has to create modules, composa eeach host. A module sends a message on the FlowVR
network and map modules on clusters hosts. network by allocating a buffer in a shared memory segment

1) Modules: Modules encapsulate tasks and define a listanaged by the local daemon. If the message has to be

of input and output ports. A module is an endless iteratidorwarded to a module running on the same host, the daemon
reading input data from its input ports and writing new réesubnly forwards a pointer on the message to the destination
messages on its output ports. Messages are also associatedule that can directly read the message. If the message has
with lightweight data calledtampsthat identify the messageto be forwarded to a module running on a distant host, the
and allow routing operations. A module uses three ma@aemon sends it to the daemon of the distant host. Using a
methods: shared memory enables to reduce data copies for improved

« The wait function defines the beginning of a new iteraperformances. Moreover a filter does not run in its own
tion. It is a blocking call ensuring that each connecte@focess. It is a plugin loaded by FlowVR daemons. The goal
input port holds a new message. is to favor the performance by limiting the required numbfer o

« The get function obtains the message available on @ontext switches. As a concequence the CPU load gererated
port. This is a non-blocking call since thveait function by the FlowVR network management can be considered as
guarantees that a new message is available on e&€gligible compared to module load.
module ports.

« Theputfunction writes a message on an output port. Onl
one new message can be written per port and iterationOur complete performance prediction method for FlowVR
This is a non-blocking call, thus allowing to Over|apapplications is described in [3]. For the sake of clarity vaséyo
computations and communications. present in this paper the main principles of our method.

Note that a module does not explicitly address any OtherTo determine performances we only require few informa-

FlowVR component. The only way to gain an access to othtNS- For each module we need to know :
modules are ports. This feature enforces possibility tseeu its computation time : the time needed to perform its
modules in other contexts since their execution does noicied computation when there is no concurrent modules on the
side-effect. An exception is made fpiarallel modules(like processor.
MPI executables) which are deployed via duplicated modules * its processor load : the percentage of the computation
They exchange data outside FlowVR ports, for example via time used for computation and not I/O operations.
the MPI library but they can be apprehended as one singler the amount of data sent on each output port.
logical module. Therefore parallel modules do not break thethe cluster is composed of heterogeneous processors then
FlowVR model. we need the previous informations for each kind of processor
2) The FlowVR NetworkThe FlowVR networkis a data Because FlowVR modules are independant it is possible to
flow graph which specifies connections between modultsst each one without having to run the whole application.
ports. A connection is a FIFO channel with one source and oneThe global application performance depends on the syn-
destination. This synchronous coupling scheme may inttedwchronization scheme and concurrency between modules. If a
latency due to message bufferization between modules whitlodule is synchronized with its predecessor then it should
could induce buffer overflows. To prevent this behaviorint wait until it receives a new message. We define the iteration
active applications classically use”greedy” pattern where time T;; of a module as the time between two consecutive
the consumer uses the most recent data produced, all oldgls to thewait function. If two modules are mapped on the
data being discarded. This is relevant for example whensame node then the operating system scheduler may interleav
program just needs to know the most recent mouse positidimeir executions and change their performances. We define
In this case older positions are usefullness and proceisimg the concurrent computation timE.. as the time needed by
just induces extra-latency. FlowVR enables to implemenhsua module to perform its computation when other modules are
complex message handling tasks without having to recompiteqpped on the same processor. Our goal is to provide for
modules. To perform these tasks FlowVR introduces a neach FlowVR module its iteration tinf€; and its concurrent
network component called filter. Filters are placed betweencomputation time7... With these informations we will be
modules onto connection and have an entire access to afle to predict the amount of data sent and received on each
coming messages. They have the freedom to select, combimetwork interface and to determine if network contentiomym
create or discard messages. occur. We could also predict latency between FlowVR objects
A special class of filters, callegslynchronizersimplements which is a usefull information for interactive applicat®like
coupling policies. They only receive / handle / send stamfiar example Virtual Reality ones.
from other filters or modules to take a decision that will be 1) SynchronizationsPerformances are predicted from the
executed by other filters. This detached components malagplication grapitz,,,; : a set of FlowVR objects mapped on
possible a centralised decision to be broadcasted to $evetaster nodes and connected together with directed FlowVR
filters with the aim to synchronize their policies. For exd@np connectionsG,,, contains synchronizations between mod-
a greedy filter is connected to a synchronizer which seleatles and module locations on the cluster. This allow to deter
in its incoming buffer the newest stamp available and sendsne if some modules are synchronized and wait for messages,
it to the greedy filter. This filter then forwards the messagend if several modules are mapped on the same nodes. With
associated with this stamp to the downstream module. these constraints we are able to predict the behavior of each
The FlowVR network is implemented by a daemon runningiodule in the application.

I)B/. Performance prediction

mod1l mod3
nodel S node3
mod2 *+(mod4
node2 nodel

mod5
node2

mod7
noded

Fig. 1. Example of an application gragH,,,; and its decomposition it sync and G gep

We first determine ifG,,,; is correct. Indeed some graphedges related to concurrency from synchronization edges in
configurations are known to generate buffer overflows @¥,,,. The resulting graph is called the dependency graph
unexpected performances. We have shown in the previdig,. Figure 1 shows an example of an application graph
section that greedy filters are used to prevent buffer ovexad its corresponding dependency gra@f.,. Then we
flows. Moreover modules connected through greedy filtecould consider independently each componentGin,. We
are running asynchronously. This removes performance cdinst check for cycles to determine interdependencies batwe
straints between theses modules. Consequently we could peedecessors. In figure 1, ifiod2 and mod3 were mapped
move greedy connections frof,,,; in our study and only on the same node then we would have a cycle. If several
keep FIFO connections. The resulting gra@h,,. may not predecessors are in the same cycle then performance of each
stay connected. In this case we have several componeptedecessor depends of the performance of the other ones and
Figure 1 shows an example of an application graph and & are not able to directly determir¥e. of modules in the
correspondingGyn. Which has two components. We turncycle. In this case we propose to consider g, of one
now to show that modules in a component could have ontyedecessor module as 5. and to propagate it to determine
one common predecessor module or predecessor moduiesT,. of the other modules following the cycle order. We
arranged in a cycle. In this last case we have a predecesspeat this process along the cycle until we reach conveegen
cycle. If this condition is not satisfied then there is at feasf the concurrent computation time for each module. But
a module in the component with more than one independémtsome cases concurrent computation times may oscillate
predecessor. In this case these predecessors may haverttiffdoecause this process changes the iteration time of eachlenodu
computation times and consequently send messages to ahd could modify the priority between them. But we are able
module at different rates. Because thait function imposes to to determine for each module its minimal and maxiriigl
have one message on all input ports, the module waits for tvbich is obtained respectively when the scheduler gives the
message of the slowest predecessor. Consequently the otiighest and the lowest priority. However we should avoid thi
messages are accumulated into the buffer until it generabeshavior for interactive applications or if we want a modiale
a buffer overflow. Modules from the same component shoutdive the lowest possibiE... In this case the developer should
have the same iteration time because they are synchronjzedune the scheduler to change the priority of modules or bind
the component predecessor. If this constraint is not résgecmodules on processors.

then it means that for a module we haveT.(m) > Ti;(m) Once we have determindd,. for each predecessor module,
i.e.m is slower than it predecessor and consequently messagescquid then compute,. for the other modules. We should
from it are accumulated in the buffer which leads to a buffeyjq, verify that for all modules we havg.. < Tj. If this is

. ¢ °C = 2
overflow. This way we are able to warn the developer [the case then it means that a module receives messages at
his mapping may generate errors and to point out iNCoMeghigher rate than it computes. Messages are then accurhulate

configurations. in the buffer leading to a buffer overflow.

2) Concurrency:To predict performances we also take into at this step for each module we have ifs,, its 7;; and
account the concurrency between modules mapped on {}¢ are able to point out a module which could generate
same cluster node because the scheduler may interleave thgjfer overflows. With these informations we are able to
executions and change the time they need for computati%mpare mappings and to choose the one which takes the
The way the processor load is distributed between modulgsst advantage of the cluster processors. However we cannot
depends of the scheduler policy. In our study we choose d@arantee that the best mapping we obtain at this level is
model the Linux scheduler policy [4] which gives the prigrit the pest application mapping. Indeed if we optimize modules
to modules which wait the most. iteration times then we increase the amount of communiestio

To represent concurrency relations between modules we dalween modules. This could lead to network contentions.
edges intoGs,,. from concurrent modules to predecessdConsequently we should study the communication scheme of
modules mapped on the same processor. We distinguish thtbee mapping to verify if it is compatible with the module

performances. We could also determine the bandwidiiV,. needed by a

3) Communications:In this section we determine thecluster noden to receive its data :

]iar?r?]ugt of data sent and received on each network interface node(sre(e))#node(dest(e))
appl - —

We aggume that communications between objects mappegw"‘(n) B p dz B Vie) x Plsre(e)) (3)
on the same node are free because messages are stored in a node(dest(c))=n
shared memory and local objects only exchange pointers tdf the required bandwidth is greater than the available
messages. In our study we consider networks with point-toetwork bandwidth then messages are accumulated in the
point connections in full-duplex mode. Each netwdyk has sending buffer until it is full and we have a buffer overflow
a given bandwidthB1Wi and latencyLs. error. This way we are able to point out network bottlenecks

We also assume that synchronizer communications aneapplication mappings.
negligible compared to other communications. Indeed elen i 4) Latency between FlowVR object¥he latency repre-
synchronizations occure at the frequency of the fastesuieodsents the time needed by a message to be propagated from a
involved in the synchronization, they require only few stamFlowVR object to another through the application graph. In
information compared to the size of the message sent by thiseractive applications, like Virtual Reality ones, tratency
module. is critical between interaction and visualization modukbe

Consequently we define a new gragh.... which is user should see the result of its interaction within the &sor
obtained fromG,,; by removing synchronizers. We also adghossible delay to keep an interactive feeling.
additional edges irZcomm to represent communications out We determine the latency between two objects from a path
of the FlowVR communication scheme, for example commthe message should follow between them. A path contains a set
nications between several instances of a MPI module. Fdr east FlowVR objects and edges between them. We assume that
iteration we add output edges and input edges respectiwelyfifters like broadcastor mergeones do not introduce latency.
and from other MPI instances. We define for each eélge We compute the latency by adding iteration times of each

» a source objectsrc(e) which is the FlowVR object module in the path and the network latency for each edges.

sending a message through This latency is reached in the best case when a module has
« a destination objeafest(e) which is the FlowVR object no concurrent and consequently its messages are not liiffere
receiving message fromvc(e). If several modules are mapped on the same node then their
» a volumeV(e) of data sent through it. It is equal to themessages are buffered and sent one by one. This process
size of the message sent byc(e). add extra latency and in the worst case messages from other
We provide a functionnode(o) which returns the node modules mapped on the same node and sent on the same
hosting a given FlowVR objeat. network are stored in the buffer. Consequently we could add
For the sake of clarity in the following sections we definéhe time each other message needs to be sent through the
the frequency of a module: as follow : network to the best case latency. This way we obtain the
1 latency in the worst case situation.
F(m) = To(m) (1) If the latency is too high then the developer should min-

imize it by increasing frequencies of modules in the path
Indeed the volume of data sent by a module depends onlyg¥fby mapping several modules on the same node to reduce

its frequency. communication latencies.
We begin our study by a traversal 6f..,,., to determine
for each filter its frequency and the data volume it received I1l. CASE STUDY

and sent. The frequency of a filter depends of its nature. For il h with fluid il .
a greedy filter f,,oeq, it is equal to the frequency of the We illustrate our approach with our fluid-particles applica

destination modulenges: : F(foreedy) = F(maest). FOr a]tclon. In [_3] W(fe rr]1:';1\:j¢ﬁshown th:tlwe were able ;o opt_lm_lze
broadcast filter it is equal to the frequency of the sourceatbj "eduencies of the different modules. We now study optimiza

0sre © F(forondeast) = F(osre). The data volume sent bytlons of the communication schemes.
a filter depends also of its nature. For example a broadcg\st
filter sends the message it receives on its output ports wiitho ™
modifying its size whereas a merge filter sends only oneOur cluster consists of two different sets of nodes. The first
message which contains messages it receives. For eachredget (nodes 1 to 8 in figure 2) is built with dual Xeon processors
G.omm We are able to compute the data volume sent througherconnected with a gigabit Ethernet and a Myrinet nekwor
it in a second by multiplying the frequency of its source obje The second one (nodes 11 to 18) with 8 dual-core dual Opteron
by the amount of data sent through it. processors networked with two gigabit Ethernet interfaces
Then we could determine for each node the bandwightti, This cluster is giving a total of 48 processors.
required to send data on a given network. This is done byTo visualize our applications we use a display wall of 4
adding data volumes of each edgeonnected from this node projectors (2x2), each one connected to a different node.
(src(e)) to another nodedest(e)) through this network :

The cluster

node(src(e))#node(dest(e)) B. The app“catlon

BWs(n) = Z Vie) x F(src(e)) (2) The fluid-particles application is composed of the follogvin
node(sre(e))=n modules :

——————
beginit

[Myrinet : 2Gb/s

NN R R o
) 2 152 5 I8 5 e =

Y P R
[GigaEthernetl : 1Gb/s — -
% 1% % 1% 15 1% 17] 18 Simulation
| ()] 6] 6] 155 6] 6] |6 velocity | pointer | endit
[GigaEthernet2 : 1Gb/s velocity|pointer]

Particles

endlt

positions

Fig. 2. The cluster and its networks

« the flow simulationmodule based on an MPI version of Viewer
the Stam’s simulation [5] computes fluid forces. The fluid sone | endd
is discretized on a 500x500 grid.
« the particle systenmodule adds forces from the simula- T T T TR TR
tlon_to a set of particles. We consider a set of 400x400 Renderer
particles. rasram] pror Joutatas TJouwtar] [rege frortare]onard)
« the viewer module transforms particles into graphical
primitives. Fig. 3. The fluid-particle application simplified dataflowagh

« the renderer module displays the scene on the screen.

;hﬁy must be mapped on nodes with projectors connecte%odules are mapped as described in table I. The simulation

. the joypad module which we could enabled if the sim-S mapped on four nodes with two instances by node to take

.advantage of the dual processors.
ulation runs at an interactive frequency to interact wnﬁ 9 P

the fluid. Module Nodes Prediction(ms) Resultyms)
The data flow of the application is described in figure 3. e sTé ggc 8T1 ?f
. . . . imulation y 0, 1,
The flow simulation may be distributed over several nodes | paricies | {1,234 | 80 20 81 20
to increase its frequency. In this case each node only censid | viewer {1,2,3,4 | 80 15 81 15
a local subdomain of the simulation. After each iteration of [Renderer | {1,2,3, 4 | 40 40 30-40 30-40

the simulation module subdomains are sent to merge filters TABLE |

in order to create the global domain. Then we use a binary

broadcast scheme to send the global domain to each insthnce o]]

the particle system module. Particles are then transfotoyed | N€ particles, viewer and renderer modules are mapped on
the viewer module and broadcasted to each renderer moddf¢ Same nodes and we should take care of the concurrency

An example of an automatically generated graph with On%‘[Ween them to determine their concurrent computatioa.tim
two instances of each module is shown in figure 4. Even i€ particles and the viewer modules have a highest priority

this simple case the graph contains a total of 40 FlowVRver the renderer module because they are waiting more. Thus
objects. It illustrates the complexity for the developemap the scheduler should map the particles and the viewer msdule

efficiently each object of the application without a perfamae ©On different nodes and the renderer module do not run at

model. For the sake of clarity we only consider a simplifief!ll speed. We note tha¥..(particles) + Tec(viewer) <
representation of the graph in the following sections. Te.(simulation). This means that the particles and the viewer
modules are not executed at the same time because when

C. Performance predictions and results a message is sent by the simulation it is processed by the
We study three different cluster configurations to show hoparticles module then by the viewer module and the simuiatio

to apply our approach in each case. First the applicationtias not yet sent a new message. The consequence of this

mapped on an homogeneous cluster with only one networkmark is that we could tell the scheduler to bind the paticl

Then we add a second network and we modify the corand the viewer modules to the same processor. In this last

munication scheme to show how to take advantage of thase the renderer module is bind to the other processor to

two networks. Finally we consider an heterogeneous clustake the best advantage of it. This is what we have done for

with three different networks. In each case we study sevethls mapping.

mappings to show how to optimize both module frequenciesWe first verify for each module that the concurrent com-

and communication schemes. putation time is not greater than the iteration time. Then we
1) Homogeneous cluster connected with one netwdvk: compute the amount of data sent and received by each node.

first consider a cluster with eight dual processor nodesdsodrhe simulation grid o600 x 500 is distributed on four nodes,

1 to 8 in our cluster on figure 2) connected with a gigabé&ach node with @50 x 250 (62500 cells) local grid. Each cell

Ethernet network. in the grid contains a vector of two floats (8 bytes) repreagnt

a force. On node 3.5M B are gathered per iteration from Results are the same as the previous mapping (table Il) with
the other simulation nodes to build the full grid 6/ B a single network but this time the application runs without
which is then broadcasted to nodes 1 and 3. The iteratibaffer overflows.
time of the simulation is equal ®0ms, consequently we have 3) Heterogeneous cluster and networkéfe now consider
BW,(node5) = 18.75M B/s. andBW(node5) = 50M B/s. our application on the full cluster with 16 nodes (figure 2).
We apply the same reasoning to node 1 which receivesir goal is to reduce the computation time of the simulation
simulation data from node 5 and viewer data from nodes %, have the best performances, to maximize the number of
3 and 4. It also sends viewer data to renderer modules particles to catch fine details like vortices in the flow, and t
nodes 2, 3 and 4. We obtaiB\W,(nodel) = 37M B/s and have an interactive visualization with at least 20 frames pe
BWg(nodel) = 12M B/s. The required bandwidth doesn'tsecond.
exceed the physical bandwidth of the gigabit Ethernet netwo Consequently we could consider using the eight nodes with
Consequently we could predict that this mapping will work.four processors for a total of 32 processors for the sinati
Results of the mapping are shown in table I. The applicatioh we use all these processors we could predict that the
runs as expected. We note that the concurrent computatigmulation computation time will decrease to 20ms because
time of the renderer varies from 25ms to 35ms becausethie simulation complexity is linear. However this meang tha
depends on the scene view point and the number of visible simulation will produce 200MB/s and our networks are not
particles. able to transmit this amount of data. Moreover in the previou
We now try the same mapping on the eight other nodes wittapping we have a concurrent computation time equal to 40ms
the same network (table II). For each simulation node we hawhich corresponds to a frequency of 25Hz. This frequency
four instances of the simulation to take advantage of the foig sufficient if we consider that the visualization shoulah ru

processors. at least at 20Hz to be interactive. Thus we only need 16
We expect the simulation to be twice as fast as in th@ocessors for the simulation i.e. four dual-core dual pssor
previous mapping. nodes or eight dual processor nodes.
The next step is to increase the number of particles. We
Module Nodes Prediction(ms) | Result{ms) are limited in this case by the network bandwidth but also by
Smulation | {15, 16,17, 18 fg Zg 4Tg F;’;;C the graphic card capacit!e_s. We have also a f:opstraint on the
Particles {11,12,13,13 | 40 20 42 18 number of processor but it is not the most restrictive on¢hén
Viewer {11,12,13,14 | 40 15 42 14 first mapping (table Il) the renderer modules on nodes 1 to 4
Renderer | {11,12,13,13 | 10 10 12 712 run at 25Hz (..(renderer) = 40ms). If we increase the par-
TABLE Il ticle system then we decrease the renderer module frequency

which will not be interactive anymore. Consequently we doul
not take advantage of the Myrinet network to consider more
We could predict a buffer overflow because the broadcasdrticles. We could use more powerfull graphic cards on sode
filter on node 15 will send messages of 2MB per iteration] to 14 to remove this bottleneck. If we map particles and

to node 11 and 13. Consequently we ha¥®’;(nodel5) = viewer modules on nodes 11 to 14 we are in the same case
100M B/s which is greater than the available bandwidth ofiescribed in the previous section : an homogeneous cluster
the gigabit Ethernet network. with two networks. Thus we are limited by node 11 which

Indeed the application failed few iterations after wegeceives a total of 74MB/s and we are too close to the network
launched it. Results of theses iterations are shown in tablepandwidth to consider more particles.
We note that the renderer module is four times faster on ¢heseThe |ast possibility is to map particles and viewer modules
nodes. This is due to the different graphic cards and eslpecian nodes 1 to 8. We run two instances of each one on each
to the larger bus between the memory and the graphic carflode to take advantage of the two processors and to reduce
We now propose to add a second network to solve thise latency of the application. In this case node 1 receives t
problem. global grid from the simulation and then broadcast it thfoug
2) Homogeneous cluster connected with two networksthe Myrinet network. Then each viewer module send its data to
With a second network we could decrease the communicatieach renderer module through the gigabit network whichaoul
latency by splitting each message over the two networkss Tiend and receive data at around 80MB/s. If the simulation
requires some work but it is very facilitated by the FlowVRuns at 25Hz we could transmit a maximum of 3.2MB of data
library. We need to add scatter filters after each output pgeér iteration which corresponds to a set of around 600x600
and merge filters before each input port. Another solution garticles.
to bind communications between modules to a given network.Regarding all these parameters we propose the mapping
To remove the bottleneck of the previous mapping weescribed in table Ill. Results are really close to our k.
choose this last solution. We use the two available networ¢e also could show that only four nodes are sufficient to
to perform the broadcast from node 15 to node 11 and Igkrform the computation on particles. Indeed with four reode
Each message is sent through a different network. With thisd two instance of the particles and viewer modules on
configuration only 50MB/s are emitted on each network. each one we could predict thdt.(particles) = 10ms and
Node 11 receives 50MB/s from the simulation and alsf..(viewer) = 9ms and we still haveT..(particles) +
24MB/s from the viewer modules on nodes 12, 13 and 14, (viewer) < Te.(simulation). This information could
Consequently we do not exceed the network bandwidth. be useful on large clusters running several applications to

optimize the number of nodes for each one.

[3] S. Jubertie and E. Melin, “Mapping and performance pogoin for
distributed applications on heterogeneous clusters,"O,IFech. Rep.,
2007.

[4] J. Aas, “Understanding the linux 2.6.8.1 cpu schedulp05.

[5] J. Stam, “Real-time fluid dynamics for games,” roceedings of
the Game Developer Conferenc#larch 2003. [Online]. Available:
citeseer.comp.nus.edu.sg/stam03realtime.html

Module Nodes Prediction(ms) Resultdms)
it cc Ti ch
Simulation | {15, 16, 17, 18, | 40 40 44 44
Particles {1, 2,3,..., 8 40 5 44 5
Viewer {1,2,3,...,8 40 4 44 4
Renderer {11, 12, 13, 13 20 20 25-35 25-35
TABLE Il

IV. CONCLUSION

The FlowVR library highly facilitates the coupling of
distributed applications. The developer could map each par
of the application and synchronize them without adding
modifications to the code. Facilities provided by FlowVR
are necessary to abstract a distributed application froen th
underlying cluster. But this is not sufficient to provide doo
performance to a distributed application because FlowVé&sdo
not provide its own performance model. Consequently withou
performance model we are not able to choose a mapping with
expected performances.

Our performance prediction model gives to the developer
a mean to determine its mapping performances. This way it
is possible to compare several mappings and to find the most
efficient of them. Once again it is a useful tool but it doesn't
give informations on how to obtain the best mapping for a
distributed application on a given cluster.

In this paper we have shown that it is possible to use
our performance prediction model to optimize communicatio
schemes in our applications. Indeed it is often the main
performance limitation for applications distributed onsters
and adding more nodes in a cluster does not solve this
problem. However this constraint limits the number of map-
pings to study and gives to the developer a mean to obtain
good mappings without having to consider all the possible
parameters. For example it could limit the number of instanc
per module or the choice of the network to use. Consequently
we are able to determine if only a subdomain of the cluster is
sufficient. Then the remaining available nodes could be used
for other applications. Our approach could also deternfine i
an application could run on a given cluster with the expected
performances. If this is not the case we are able to pointaut t
limiting factor and to determine the least cluster configiora
able to run the application. Thus we avoid expensive and non
efficient investments.

The next step in our approach is to provide automated
tools which integrates our model to assist the developeisin h
mapping creation and optimization. We also plan to provide a
solver for automatic optimization of mappings based ontelus
constraints, like network bandwidth, and constraints eefin
by the developer, for example a minimum framerate for a
visualization module.

REFERENCES

[1] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. MeliB. Raffin,
and S. Robert, “Flowvr: a middleware for large scale virtuahlity
applications,” inProceedings of Euro-par 200®isa, Italia, August 2004.

[2] J. Allard, C. Ménier, E. Boyer, and B. Raffin, “Runningrde vr
applications on a pc cluster: the flowvr experience,”Proceedings of
EGVE/IPT 05 Denmark, October 2005.

positionx | positiony | beginit

imulatiSp/0
nodel)

velocity | bqinler | endit

Greedy1/in/0
(nodel)

GreedyX/in/0

om0

beginlt

Joypad
(node1)

GreedyY/in/0
(nodel) 1

(nodel)

~ -
~

3 ~

.
< 7cl5
<

=~ N
o1 | Greedy¥isyncio | !
- (node1) I
|

|
|
\
\
|
30 GreedyX/filter/0 GreedyY/filter/0 \
r / (nodel) (nodel) ’
’ , |
/ ’ |
/ - \
’ |
/ |
positionx \
’
Simulation/1 ! \
/
(node1) \ 618
velocity | pointer ‘\
|
_c31 \
|
|
|
/
1 c35 | c20
/
; nofe1
/
! GreedyY/sync/1
A ¢33 c34 (noded)
I \
\
/I ’veloc\ty | beginl(\ ’velocity | beginl!\ \
1 Particles/0 Particles/1 \ 21
1 (nodel) (nodel) \ N
! (positions [endit (positions [endit |
! €36 €37 !
! \
/ positions | pointer | beginit) positions | pointer | beginit) \
| viebio | viefern * \
| (nodp1) (node1) \
I (scene [endt (scene [endt \\
h < - -
P 66
| c22 c23
[MaxFrequencySynchronizor/Viewer/1
[_c64 \ _c65 (node1) 1c29
N
nogel 79 Greedy1/filter/0 g0 Nogel nagel Greedy1/filter/1
B (node1) I (node1)
I __noged’ L 52 67
e N
scene | dt rkeysmouse | beginit A
53! . Visulrender/o _ Greedy/Render/Viewer/0/in/0 _ _ Greedy/Render/Viewer/1/in/0 . Greedy/Render/Viewer/1/in/1 _
| N\ (nodel)
“‘ outdt |outk€ysmouse | outkeys |end\l g o7 I :
\ — S~ - v 7 |
7 |
GreedyIRendeJel\{\ewer/OIm/l _c58 _c60 - . 73 ’ 75 c70
N v |
[) 7 N | ¥
| [\ wr - » . [
\ l Greedy/Render/Viewer/0/sync/0 54 Greedy/Render/Viewer/L/sync/0 | | Greedy/Render/Viewer/1/filter/1
| | (node1) = (node1) (node1)
| —
| L ; %
| [\ \ 2 |
[\ MaxFrequencySynchronizor/Viewer/0 |
| ca 62 77 ‘ (otiel) Ler2
| N |
LY Id 4
\ -~
61 | Greedy/Render/Viewer/Offilter/0 Greedy/Render/Viewer/1/filter/0 FMerge/1
= (nodel) (nodel)
| 55 ; .

Ze71

«
FMerge/0
(node1)

Greedy/Render/Viewer/O/sync/1
(node1) o

_c63

Greedy/Render

-«
" Greedy/Render/Viewer/Offilter/1
(node1)

Fig. 4. An automatically generated application graph

/ Lms 78)

scene”] dt"| keysmouse | beginit

1_c76

Visulrender/1
(node1)

outdt [outkeysmause [outkeys] endit

_c7a

s

iewer/Lsync/1
(node1)

