Admissible generalizations of examples as rules

Philippe Besnard¹ — Thomas Guyet³ — Véronique Masson^{2,3}

¹ CNRS-IRIT ² Université Rennes-1 ³ IRISA/LACODAM

Machine Learning and Explainability - 8 October 2018

And now . . .

Introduction

Formalizing rule learning

- General formalism
- Notations

Admissibility for generalization

- Formalizing admissibility
- Classes of choice functions

Application to an analysis of CN2

Conclusion

Attribute-value rule learning

	(<i>C</i>)	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)
	Price	Area	Rooms	Energy	Town	District	Exposure
1	low-priced	70	2	D	Toulouse	Minimes	
2	low-priced	75	4	D	Toulouse	Rangueil	
3	expensive	65	3		Toulouse	Downtown	
4	low-priced	32	2	D	Toulouse		SE
5	mid-priced	65	2	D	Rennes		SO
6	expensive	100	5	С	Rennes	Downtown	
7	low-priced	40	2	D	Betton		S

- Task: induce rules to predict the value of the class attribute (C)
- Rules extracted by Algorithm CN2

$$\begin{array}{l} \pi_1^{CN2}: A_5 = {\sf Downtown} \Rightarrow {\sf C} = {\sf expensive} \\ \pi_2^{CN2}: A_2 < 2.50 \land A_4 = {\sf Toulouse} \Rightarrow {\sf C} = {\sf low-priced} \\ \pi_3^{CN2}: A_1 > 36.00 \land A_3 = {\sf D} \Rightarrow {\sf C} = {\sf low-priced} \end{array}$$

Interpretability of rules and rulesets

The logical structure of a rule can be easily interpreted by users

IF conditions THEN class-label

- Rule learning algorithms generate rules according to implicit or explicit principles¹
 - are the generated rules the *interpretable* ones?
 - would it be possible to have different rulesets?
 - why a ruleset would be better than another one from the interpretability point of view?
- ⇒ We need ways to analyze the interpretability of the outputs of rule learning algorithms

¹principles mainly based on statistical properties!

Analyzing the interpretability of rules Analyzing the interpretativeness of ruleset

- Objective criteria on ruleset syntax [CZV13, BS15]
 - size of the rule (number of attributes)
 - size of the ruleset
- Intuitiveness of rules through the effects of cognitive biases [KBF18]
- ⇒ Our approach formalizes rule learning and some expected properties on rules to shed light on properties of some extracted ruleset

Analyzing the interpretability of rules Analyzing the interpretativeness of ruleset

- ► Objective criteria on ruleset syntax [CZV13, BS15]
 - size of the rule (number of attributes)
 - size of the ruleset
- Intuitiveness of rules through the effects of cognitive biases [KBF18]
- ⇒ Our approach formalizes rule learning and some expected properties on rules to shed light on properties of some extracted ruleset

In this talk

- We present the formalisation of rule learning, and we focus on the generalization of examples as a rule
- We introduce the notion of admissible rule that attempts to capture an intuitive generalization of the examples
- We develop the example of numerical attributes

Impact of examples generalization on rule interpretability

	(<i>C</i>)	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)
	Price	Area	Rooms	Energy	Town	District	Exposure
1	low-priced	70	2	D	Toulouse	Minimes	
2	low-priced	75	4	D	Toulouse	Rangueil	
3	expensive	65	3		Toulouse	Downtown	
4	low-priced	32	2	D	Toulouse		SE
5	mid-priced	65	2	D	Rennes		SO
6	expensive	100	5	С	Rennes	Downtown	
7	low-priced	40	2	D	Betton		S

Rules extracted by Algorithm CN2

$$\begin{array}{l} \pi_1^{CN2}: A_5 = {\sf Downtown} \Rightarrow C = {\sf expensive} \\ \pi_2^{CN2}: A_2 < 2.50 \land A_4 = {\sf Toulouse} \Rightarrow C = {\sf low-priced} \\ \pi_3^{CN2}: A_1 > 36.00 \land A_3 = D \Rightarrow C = {\sf low-priced} \end{array}$$

Impact of examples generalization on rule interpretability

	(<i>C</i>)	(A_1)	(A_2)	(A_3)	(A_4)	(A_5)	(A_6)
	Price	Area	Rooms	Energy	Town	District	Exposure
1	low-priced	70	2	D	Toulouse	Minimes	
2	low-priced	75	4	D	Toulouse	Rangueil	
3	expensive	65	3		Toulouse	Downtown	
4	low-priced	32	2	D	Toulouse		SE
5	mid-priced	65	2	D	Rennes		SO
6	expensive	100	5	С	Rennes	Downtown	
7	low-priced	40	2	D	Betton		S

Rules extracted by Algorithm CN2

$$\begin{array}{l} \pi_1^{CN2}: A_5 = {\sf Downtown} \Rightarrow C = {\sf expensive} \\ \pi_2^{CN2}: A_2 < {\tt 2.50} \land A_4 = {\sf Toulouse} \Rightarrow C = {\sf low-priced} \\ \pi_3^{CN2}: A_1 > {\tt 36.00} \land A_3 = D \Rightarrow C = {\sf low-priced} \end{array}$$

Toward the notion of admissibility

	(<i>C</i>)	(A_1)
	Price	Area
1	low-priced	70
2	low-priced	75
4	low-priced	32
7	low-priced	40

- Rote learning of a rule $A_1 = \{75\} \Rightarrow C =$ low-priced
- ► Most generalizing rule
 A₁ = [32 : 75] ⇒ C = low-priced

▶ Would the following rule be better? $A_1 = [32:40] \cup [70:75] \Rightarrow C =$ low-priced

Toward the notion of admissibility

	(<i>C</i>)	(A_1)
	Price	Area
1	low-priced	70
2	low-priced	75
4	low-priced	32
7	low-priced	40

- Rote learning of a rule $A_1 = \{75\} \Rightarrow C =$ low-priced
- ► Most generalizing rule
 A₁ = [32 : 75] ⇒ C = low-priced

→ Would the following rule be better? $A_1 = [32:40] \cup [70:75] \Rightarrow C =$ low-priced

 \Rightarrow this is the question of admissibility!

Toward the notion of admissibility

	(C) Price	(A ₁) Area
1	low-priced	70
2	low-priced	75
4	low-priced	32
7	low-priced	40

- Rote learning of a rule $A_1 = \{75\} \Rightarrow C =$ low-priced
- ► Most generalizing rule
 A₁ = [32 : 75] ⇒ C = low-priced

→ Would the following rule be better? $A_1 = [32:40] \cup [70:75] \Rightarrow C =$ low-priced

 \Rightarrow this is the question of admissibility!

The notion of admissibility has to capture an intuitive notion of generalization \dots

And now . . .

Introduction

Formalizing rule learning

- General formalism
- Notations

Admissibility for generalization

- Formalizing admissibility
- Classes of choice functions

Application to an analysis of CN2

Conclusion

At a glance

Rule learning is formalized by two main functions

- ϕ : selects possible subsets of data
- f: generalizes examples as a rule (LearnOneRule process [Mit82])

								, <i>S</i> –	$\xrightarrow{f} \pi$
						φ		, , S' -	$f \longrightarrow \pi'$
					/		φ φ	, 5″ -	$f \longrightarrow \pi''$
(C)	(A_1)	(A_2)	(A ₃)	(A_4)	(A ₅)	(A ₆)	_		
Price	Area	#Rooms	Energy	Town	District	Exposure			
low-priced	70	2	D	Toulouse	Minimes				
low-priced	75	4	D	Toulouse	Rangueil				
expensive	65	3		Toulouse	Downtown				
low-priced	32	2	D	Toulouse		SE			
mid-priced	65	2	D	Rennes		SW			
expensive	100	5	С	Rennes	Downtown				
low-priced	40	2	D	Betton		S	ϕ		
								<i>S'''</i> -	$f \longrightarrow \pi'''$

At a glance

Rule learning is formalized by two main functions

- ϕ : selects possible subsets of data
- f: generalizes examples as a rule (LearnOneRule process [Mit82])

At a glance

Rule learning is formalized by two main functions

- ϕ : selects possible subsets of data
- f: generalizes examples as a rule (LearnOneRule process [Mit82])

The attribute-value model

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	•••	A_n
item 1	$a_{1,1}$	a _{1,2}	a _{1,3}	a _{1,4}	$a_{1,5}$	a 1,6	a _{1,7}	• • •	<i>a</i> _{1,n}
item 2	$a_{2,1}$	a _{2,2}	a _{2,3}	a _{2,4}	a _{2,5}	a 2,6	a _{2,7}	•••	a _{2,n}
item 3	$a_{3,1}$	a _{3,2}	a _{3,3}	a _{3,4}	a _{3,5}	a 3,6	a 3,7	•••	a _{3,n}
item 4	$a_{4,1}$	a _{4,2}	a _{4,3}	a _{4,4}	a _{4,5}	<i>a</i> _{4,6}	a _{4,7}	•••	a _{4,n}
item 5	$a_{5,1}$	a _{5,2}	a _{5,3}	a _{5,4}	$a_{5,5}$	a 5,6	a _{5,7}	•••	a _{5,n}
item 6	$a_{6,1}$	a 6,2	a 6,3	a 6,4	$a_{6,5}$	a 6,6	a 6,7	•••	<i>a</i> _{6,<i>n</i>}
item 7	$a_{7,1}$	a _{7,2}	a _{7,3}	a _{7,4}	a _{7,5}	a _{7,6}	a _{7,7}	•••	a _{7,n}
:		•							÷
item <i>m</i>	$a_{m,1}$	<i>a</i> _{m,2}	a _{m,3}	a _{m,4}	а _{т,5}	а _{т,6}	а _{т,7}	•••	a _{m,n}

Rows: items $x_1, x_2, ..., x_m$ Columns: attributes $A_1, A_2, ..., A_n$ $\forall i, j \ a_{j,i} \in \operatorname{Rng} A_i$ Rng A_i denotes the set of possible values for attribute A_i

Subsets of data to generalize

	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9
item 1	$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	a _{1,4}	$a_{1,5}$	$a_{1,6}$	$a_{1,7}$	$a_{1,8}$	$a_{1,9}$
item 2	$a_{2,1}$	a _{2,2}	<i>a</i> _{2,3}	<i>a</i> _{2,4}	$a_{2,5}$	a _{2,6}	a _{2,7}	<i>a</i> _{2,8}	a 2,9
item 3	$a_{3,1}$	$a_{3,2}$	a _{3,3}	a _{3,4}	$a_{3,5}$	$a_{3,6}$	a _{3,7}	<i>a</i> _{3,8}	<i>a</i> _{3,9}
item 4	$a_{4,1}$	<i>a</i> _{4,2}	<i>a</i> _{4,3}	a _{4,4}	$a_{4,5}$	$a_{4,6}$	a _{4,7}	<i>a</i> _{4,8}	<i>a</i> _{4,9}
item 5	$a_{5,1}$	a 5,2	a 5,3	a 5,4	$a_{5,5}$	$a_{5,6}$	a _{5,7}	a 5,8	a 5,9
item 6	$a_{6,1}$	<i>a</i> _{6,2}	<i>a</i> _{6,3}	<i>a</i> _{6,4}	$a_{6,5}$	$a_{6,6}$	a _{6,7}	<i>a</i> _{6,8}	<i>a</i> _{6,9}
item 7	$a_{7,1}$	a 7,2	a 7,3	<i>a</i> 7,4	a _{7,5}	a 7,6	a _{7,7}	a 7,8	a 7,9
item 8	$a_{8,1}$	a _{8,2}	<i>a</i> _{8,3}	<i>a</i> _{8,4}	$a_{8,5}$	$a_{8,6}$	a _{8,7}	a 8,8	a 8,9
item 9	a 9,1	a 9,2	a 9,3	a 9,4	a 9,5	a 9,6	a 9,7	a 9,8	a 9,9

 \Rightarrow "Square" = selection of rows and columns in the data

Rules

A rule π expresses constraints (for a generic item x) which lead to conclusion C(x) (class which the item belongs to)

$$\pi: A_1(x) \in \mathbf{v}_1^{\pi} \wedge \cdots \wedge A_n(x) \in \mathbf{v}_n^{\pi} \to C(x) \in \mathbf{v}_0^{\pi} \qquad (*)$$

where
$$\begin{cases} v_i^{\pi} \subseteq \operatorname{Rng} A_i \text{ pour } i = 1, \dots, n, \\ v_0^{\pi} \subseteq \operatorname{Rng} C. \end{cases}$$

attributes i = 1, ..., n without constraints are such that $v_i^{\pi} = \operatorname{Rng} A_i$.

And now ...

Introduction

Formalizing rule learning

- General formalism
- Notations

Admissibility for generalization

- Formalizing admissibility
- Classes of choice functions

Application to an analysis of CN2

Conclusion

Eliciting a rule

 S being a square is supposed to capture a rule π requires that every item of S satisfies π

→ generalisation does not capture the statistical representativeness of dataset, but only elicits a rule generalizing all its items

(C)	(A_1)	(A ₂)	(A ₃)	(A ₄)	(A ₅)	(A ₆)
Price	Area	#Rooms	Energy	Town	District	Exposure
low-priced	70	2	D	Toulouse	Minimes	
low-priced	75	4	D	Toulouse	Rangueil	
expensive	65	3		Toulouse	Downtown	
low-priced	32	2	D	Toulouse		SE
mid-priced	65	2	D	Rennes		SW
expensive	100	5	C	Rennes	Downtown	
low-priced	40	2	D	Betton		S
			c			

$$r \downarrow$$

 $A_0 = 2 \land A_4 =$ Toulouse $\Rightarrow C =$ low-priced

(C)	(A_1)	(A ₂)	(A ₃)	(A ₄)	(A ₅)	(A ₆)			
Price	Area	#Rooms	Energy	Town	District	Exposure			
low-priced	70	2	D	Toulo use	Minimes				
low-priced	75	4	D	Toulo use	Rangueil				
expensive	65	3		Toulo use	Downtown				
low-priced	32	2	D	Toulo use		SE			
mid-priced	65	2	D	Rennes		SW			
expensive	100	5	C	Rennes	Downtown				
low-priced	40	2	D	Betton		S			
f L									
$A_0 \in$	$A_0 \in [2,4] \Rightarrow C \in \{low-priced, expensive\}$								

Eliciting a rule (f function)

	(A ₀)	(A_1)	(A ₂)								
	Price	Area	Rooms								
1	low-priced	70	2								
2	low-priced	75	4								
4	low-priced	32	2								
7	low-priced	40	2								
$S_0 =$	$ig $ {low-priced} $S_1 = \{3$	2,40,7	$egin{array}{c} & \downarrow & \ S_2 = \{ S_0, 75 \} \end{array}$	2,4}							

For every attribute A_i, S_i is the set of values of A_i in items of S

Eliciting a rule (f function)

- For every attribute A_i, S_i is the set of values of A_i in items of S
- Each superset of S_i is, theoretically speaking, a generalization of S_i

Eliciting a rule (f function)

- $\overline{(A_1)}$ (A_0) (A_2) Price Area Rooms low-priced 70 2 1 low-priced 75 4 2 32 2 low-priced 4 2 low-priced 40 7 $S_{0} = \{ \text{low-priced} \} \qquad \qquad S_{2} = \{2, 4\}$ $f \mid S_{1} = \{32, 40, 70, 75\} \quad \qquad f$ $\widehat{S}_{0} \qquad \widehat{S}_{1} \qquad \widehat{S}_{2}$
- For every attribute A_i, S_i is the set of values of A_i in items of S
- Each superset of S_i is, theoretically speaking, a generalization of S_i
- The generalisation process thus consists in selecting one of these supersets:
 - f choice function that is given as input a collection of supersets of S_i and picks one

We are looking for an appropriate $\widehat{\cdot}$ for (§) i.e. $A_1(x) \in \widehat{S}_1 \wedge \cdots \wedge A_n(x) \in \widehat{S}_n \to C(x) \in \widehat{S}_0$ (§)

Eliciting a rule (f function)

- $\overline{(A_1)}$ (A_0) (A_2) Price Area Rooms 70 low-priced 2 1 low-priced 75 4 2 32 2 low-priced Δ 2 low-priced 40
- For every attribute A_i, S_i is the set of values of A_i in items of S
- Each superset of S_i is, theoretically speaking, a generalization of S_i
- The generalisation process thus consists in selecting one of these supersets:
 - f choice function that is given as input a collection of supersets of S_i and picks one

We are looking for an appropriate $\widehat{\cdot}$ for (§) i.e. $A_1(x) \in \widehat{S}_1 \wedge \dots \wedge A_n(x) \in \widehat{S}_n \to C(x) \in \widehat{S}_0$ (§) Generalization of $S_i : \widehat{S}_i = f(\{Y \mid S_i \subset Y \subset \operatorname{Rng} A_i\})$ Notion of admissibility: propositions Generalization of S_i : $\widehat{S}_i = f(\{Y \mid S_i \subseteq Y \subseteq \operatorname{Rng} A_i\})$ What collection $\mathcal{X} = \{\widehat{S}_i \mid S_i \subseteq \operatorname{Rng} A_i\}$ would do?

What choice function(s) can in practice capture these expected algebraic properties?

Notion of admissibility: propositions

Generalization of S_i : $\widehat{S}_i = f(\{Y \mid S_i \subseteq Y \subseteq \operatorname{Rng} A_i\})$

What collection $\mathcal{X} = \{\widehat{S}_i \mid S_i \subseteq \operatorname{Rng} A_i\}$ would do?

- (i) $\operatorname{Rng} A_i \in \mathcal{X}$
- (ii) if X and Y are in \mathcal{X} then so $X \cap Y$.
 - \mathcal{X} is a closure system upon $\operatorname{Rng} A_i$.
 - ► îs an operation enjoying weaker properties than closure operators; alternatives looked at:
 - pre-closure operator
 - capping operator

What choice function(s) can in practice capture these expected algebraic properties?

Notion of admissibility: propositions

Generalization of S_i : $\widehat{S}_i = f(\{Y \mid S_i \subseteq Y \subseteq \operatorname{Rng} A_i\})$

What collection $\mathcal{X} = \{\widehat{S}_i \mid S_i \subseteq \operatorname{Rng} A_i\}$ would do?

- (i) $\operatorname{Rng} A_i \in \mathcal{X}$
- (ii) if X and Y are in \mathcal{X} then so $X \cap Y$.
 - \mathcal{X} is a closure system upon $\operatorname{Rng} A_i$.
 - ► ÷ is an operation enjoying weaker properties than closure operators; alternatives looked at:
 - pre-closure operator
 - capping operator

What choice function(s) can in practice capture these expected algebraic properties?

- Proposal for some classes of choice functions generating specific types of operators
- Concrete examples of such functions for numerical rules

Weakening closure operators

List of Kuratowski's axioms [Kur14] (closure system):

$$\widehat{\emptyset} = \emptyset S \subseteq \widehat{S} \subseteq \operatorname{Rng} A_i \widehat{\widehat{S}} = \widehat{S} \widehat{S \cup S'} = \widehat{S} \cup \widehat{S'}$$
 (pre-closure)

Actually, we downgrade Kuratowski's axioms as follows

$$\begin{array}{ll} \widehat{S} \subseteq \widehat{S'} \text{ whenever } S \subseteq S' & (\text{closure}) \\ \widehat{S} = \widehat{S'} \text{ whenever } S \subseteq S' \subseteq \widehat{S} & (\text{cumulation}) \\ \widehat{S \cup S'} \subseteq \widehat{S} \text{ whenever } S' \subseteq \widehat{S} & (\text{capping}) \end{array}$$

Lemma: Kuratowksi \Rightarrow closure \Rightarrow cumulation \Rightarrow capping

Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every upward closed $\mathcal{X} \subseteq 2^Z$ and every $\mathcal{Y} \subseteq 2^Z$:

1.
$$f(2^{Z}) = \emptyset$$

2. $f(\mathcal{X}) \in \mathcal{X}$
3. $f(\mathcal{X} \cap \mathcal{Y}) = f(\mathcal{X}) \cup f(\mathcal{Y})$
whenever $\bigcup \min(\mathcal{X} \cap \mathcal{Y}) = \bigcup \min \mathcal{X} \cup \bigcup \min \mathcal{Y}$
Then, $\widehat{\cdot} : 2^{Z} \to 2^{Z}$ as defined by
 $\widehat{\mathcal{X}} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$

is a pre-closure operator upon Z.

Intuition: Z is $\operatorname{Rng} A_i$ \mathcal{X} (and \mathcal{Y} , too) is a collection of intervals over $\operatorname{Rng} A_i$ moreover, \mathcal{X} is a collection containing all super-intervals of an interval belonging to the collection

Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every upward closed $\mathcal{X} \subseteq 2^Z$ and every $\mathcal{Y} \subseteq 2^Z$:

1.
$$f(2^{Z}) = \emptyset$$

2. $f(\mathcal{X}) \in \mathcal{X}$
3. $f(\mathcal{X} \cap \mathcal{Y}) = f(\mathcal{X}) \cup f(\mathcal{Y})$
whenever $\bigcup \min(\mathcal{X} \cap \mathcal{Y}) = \bigcup \min \mathcal{X} \cup \bigcup \min \mathcal{Y}$
Then, $\widehat{\cdot} : 2^{Z} \to 2^{Z}$ as defined by
 $\widehat{\mathcal{X}} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$

is a pre-closure operator upon Z.

<u>Numerical attributes</u>: principle of single point (u) interpolation

$$A_i(x) \in [u - r : u + r] \rightarrow C(x) = c.$$

Class of choice functions satisfying capping

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every $\mathcal{X} \subseteq 2^Z$ such that $\bigcap \mathcal{X} \in \mathcal{X}$ and for every $\mathcal{Y} \subseteq 2^Z$ 1. $f(\mathcal{X}) \in \mathcal{X}$

2. if $\mathcal{Y} \subseteq \mathcal{X}$ and $\exists W \in \mathcal{Y}$, $W \subseteq f(\mathcal{X})$ then $f(\mathcal{Y}) \subseteq f(\mathcal{X})$ Then, $\widehat{\cdot} : 2^Z \to 2^Z$ as defined by

$$\widehat{X} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$$

is a capping operator upon Z.

Intuition: Z is $\operatorname{Rng} A_i$ \mathcal{X} (and \mathcal{Y} , too) is a collection of intervals over $\operatorname{Rng} A_i$ moreover, \mathcal{X} is a collection whose intersection is itself a member of the collection Class of choice functions satisfying capping

Theorem. Given a set Z, let $f : 2^{2^Z} \to 2^Z$ be a function st for every $\mathcal{X} \subseteq 2^Z$ such that $\bigcap \mathcal{X} \in \mathcal{X}$ and for every $\mathcal{Y} \subseteq 2^Z$ 1. $f(\mathcal{X}) \in \mathcal{X}$

2. if $\mathcal{Y} \subseteq \mathcal{X}$ and $\exists W \in \mathcal{Y}$, $W \subseteq f(\mathcal{X})$ then $f(\mathcal{Y}) \subseteq f(\mathcal{X})$ Then, $\widehat{\cdot} : 2^Z \to 2^Z$ as defined by

$$\widehat{X} \stackrel{\text{def}}{=} f(\{Y \mid X \subseteq Y \subseteq Z\})$$

is a capping operator upon Z.

Numerical attributes: principle of pairwise point interpolation

And now . . .

Introduction

Formalizing rule learning

- General formalism
- Notations

Admissibility for generalization

- Formalizing admissibility
- Classes of choice functions

Application to an analysis of CN2

Conclusion

Illustrations of the behaviour of CN2

Generation of synthetic data:

- Data with 2 dimensions: a numerical attribute and a symbolic class attribute
- Data with two classes (green and blue)

Objective:

Illustrate the behaviour of the rule learning algorithm in terms of characteristics of generalisation of examples
 based on a pre-closure (*interpolation over single points*)
 based on a capping (*interpolation over pairs of points*)
 Using Algorithm CN2 [CN89]

Separating interesting intervals

Figure: Distributions of the data for the classes blue and green.

Comparison of rules obtained out of uniform distributions vs. normal distributions

- distance between two successive values are small wrt the range of the attribute
- mixing normal distributions causes disparate average distances (pairwise distance between examples)
- the second dataset can be viewed as a super set of the first dataset (add of examples in between examples)

Separating interesting intervals

Figure: Distributions of the data for the classes blue and green.

Expected rules assuming capping or pre-closure for each class:

- topmost dataset:
 - $\nu \in [-\infty:15] \Rightarrow A_0 = \texttt{blue}$
 - $v \in [10:+\infty] \Rightarrow A_0 = \texttt{green}$
- bottom dataset:
 - $v \in [-\infty:15] \Rightarrow A_0 = \texttt{blue}$
 - $\nu \in [0:+\infty] \Rightarrow A_0 = \texttt{green}$

Separating interesting intervals

Figure: Distributions of the data for the classes blue and green.

Rules learned by CN2, topmost dataset:

• $v \in [-\infty: 10.03] \Rightarrow A_0 = \texttt{blue}$

•
$$v \in [12.73:14.83] \Rightarrow A_0 = \texttt{blue}$$

•
$$v \in [10.65:12.81] \Rightarrow A_0 = \texttt{green}$$

•
$$v \in [15.01:+\infty] \Rightarrow A_0 = \texttt{green}$$

Rules learned by CN2, bottom dataset:

• $v \in [-\infty: 0.96] \Rightarrow A_0 = \texttt{blue}$

•
$$v \in [0.97:2.57] \Rightarrow A_0 = \texttt{blue}$$

•
$$v \in [3.09:10.04] \Rightarrow A_0 = \texttt{blue}$$

•
$$v \in [3.50:7.18] \Rightarrow A_0 = \texttt{green}$$

•
$$v \in [11.55:13.14] \Rightarrow A_0 = \texttt{green}$$

•
$$v \in [13.15:+\infty] \Rightarrow A_0 = \texttt{green}$$

Does density influence the choice of boundaries?

Figure: Distributions of the data for the classes blue and green.

Comparison of rules obtained out of well-separated uniform distributions, for two similar situations

- topmost dataset: same number of examples in both classes
- bottom dataset: the blue class is under-represented as compared to the green class

Does density influence the choice of boundaries?

Figure: Distributions of the data for the classes blue and green.

Observed behaviour:

- no difference between the extracted rules for either dataset
- CN2 systematically chooses the boundary to be the middle of the limits in between the two classes

Does density influence the choice of boundaries?

Figure: Distributions of the data for the classes blue and green.

Behaviour from capping :

 adding extra examples can alter boundaries

⇒ to be insensitive to density of examples corresponds to a *cumulation* operator

And now . . .

Introduction

Formalizing rule learning

- General formalism
- Notations

Admissibility for generalization

- Formalizing admissibility
- Classes of choice functions

Application to an analysis of CN2

Conclusion

Conclusion (1)

- The logical structure of rules makes them easy to read but ...
- The interpretability of rules learned from examples requires, in particular, to take care of the way examples are generalized
 - Example of numerical attributes, but also symbolic attributes with structures (e.g. orders)
- Qualifying the interpretable nature of rule learning outputs is challenging

What can our approach do for rule interpretability

- Our work contributes by giving a way to do such analysis
 - A proposal of a general framework for rule learning
 - A topological study of *admissible generalisations* of examples

Conclusion (2)

Formalisation of rule learning

- ϕ : selects possible subsets of data
- \blacktriangleright $\widehat{\cdot}$: elicits the rule
- $\rightarrow\,$ offer a framework for analysing rule learning algorithms

Conclusion (3)

Admissible generalisation of examples

- Admissible generalisations resulting of a choice among the supersets of the examples
- Proposed topological property of the choice: closure-like operators (pre-closure, capping)
- ► Definition of classes of choice functions
 - Proposal of concrete choice functions upon numerical attributes
 - Can be generalized to symbolic attributes, including attributes with structure (e.g. total order)

Perspectives

- Long term objective: study the characteristics of extracted rulesets
 - Comparing the set of rules extracted by machine learning
- Need a formalism to represent a set of rules
 - A formalism that enables to represent
 - $\rightarrow\,$ rules actually extracted by machine learning algorithms (e.g., Ripper, CN2, etc)
 - $\rightarrow\,$ rules selected using a selection criteria (interestingness measures, etc)
 - Formalize essential notions of rule learning
 - The formalism will be a way to reason about the machine learning algorithms

Bibliography |

- Fernando Benites and Elena Sapozhnikova, *Hierarchical interestingness measures* for association rules with generalization on both antecedent and consequent sides, Pattern Recognition Letters **65** (2015), 197–203.
- Peter Clark and Tim Niblett, *The CN2 induction algorithm*, Machine Learning **3** (1989), no. 4, 261–283.
- Alberto Cano, Amelia Zafra, and Sebastián Ventura, *An interpretable classification rule mining algorithm*, Information Sciences **240** (2013), 1–20.
- Tomás Kliegr, Stepán Bahník, and Johannes Fürnkranz, A review of possible effects of cognitive biases on interpretation of rule-based machine learning models, CoRR **abs/1804.02969** (2018).
- Kazimierz Kuratowski, Topology, vol. 1, Elsevier, 2014.

Tom M Mitchell, *Generalization as search*, Artificial Intelligence **18** (1982), 203–226.