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And now . ..

Introduction
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Attribute-value rule learning

~N O O EWw N

(C) (A1) | (A2) (A3) (As) (As) (As)
Price Area | Rooms | Energy Town District Exposure
low-priced 70 2 D Toulouse | Minimes
low-priced 75 4 D Toulouse | Rangueil
expensive 65 3 Toulouse | Downtown
low-priced 32 2 D Toulouse SE
mid-priced | 65 2 D Rennes SO
expensive | 100 5 C Rennes | Downtown
low-priced 40 2 D Betton S

» Task: induce rules to predict the value of the class

attribute (C)
» Rules extracted by Algorithm CN2

7r1CN2 D Ag =

Downtown = C = expensive

7T2CN2 : Ar < 2.50 A Ay = Toulouse = C = low-priced

$N2 . A; > 36.00 A A3 = D = C = low-priced
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Interpretability of rules and rulesets

» The logical structure of a rule can be easily interpreted by
users
IF conditions THEN class-label
» Rule learning algorithms generate rules according to
implicit or explicit principles!
» are the generated rules the interpretable ones?
» would it be possible to have different rulesets?
» why a ruleset would be better than another one from the
interpretability point of view?
= We need ways to analyze the interpretability of the
outputs of rule learning algorithms

Lprinciples mainly based on statistical properties!
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Analyzing the interpretability of rules
Analyzing the interpretativeness of ruleset

» Objective criteria on ruleset syntax [CZV13, BS15]

» size of the rule (number of attributes)
> size of the ruleset
» Intuitiveness of rules through the effects of cognitive
biases [KBF18]

= Our approach formalizes and some expected
properties on rules to shed light on properties of some
extracted ruleset
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Analyzing the interpretability of rules
Analyzing the interpretativeness of ruleset

» Objective criteria on ruleset syntax [CZV13, BS15]

» size of the rule (number of attributes)
> size of the ruleset

» Intuitiveness of rules through the effects of cognitive
biases [KBF18]

= Our approach formalizes and some expected
properties on rules to shed light on properties of some
extracted ruleset

In this talk

» We present the formalisation of rule learning, and we
focus on the

» We introduce the notion of admissible rule that attempts
to capture an intuitive generalization of the examples

» We develop the example of numerical attributes
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Impact of examples generalization on rule

interpretability
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Toward the notion of admissibility

N RN

(C) (A1)
Price Area
low-priced | 70
low-priced | 75
low-priced | 32
low-priced | 40
Al

» Rote learning of a rule
A; = {75} = C = low-priced

» Most generalizing rule
A; = [32:75] = C = low-priced

» Would the following rule be better?

= [32:40] U [70: 75] = C = low-priced
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Toward the notion of admissibility

(C) (A1)
Price Area
1 | low-priced | 70
2 | low-priced | 75
4 | low-priced | 32
7 | low-priced | 40
Al

» Rote learning of a rule
A; = {75} = C = low-priced

» Most generalizing rule
A; = [32:75] = C = low-priced

» Would the following rule be better?

= [32:40] U [70: 75] = C = low-priced

=> this is the question of admissibility!

The notion of admissibility has to capture an intuitive notion

of generalization . ..
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And now . ..

Formalizing rule learning
o General formalism
o Notations
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At a glance

Rule learning is formalized by two main functions
» ¢: selects possible subsets of data

» f: generalizes examples as a rule (LearnOneRule process
[Mit82])

Q) [(A)] (A2) [ (As) | (As) (As) (As)

Price  |Area|#Rooms|Energy| Town District |Exposure
low-priced| 70 2 D Toulouse| Minimes
low-priced | 75 4 D | Toulouse | Rangueil
expensive | 65 3 Toulouse |Downtown
low-priced| 32 2 D Toulouse SE
mid-priced | 65 2 D Rennes sSw
expensive | 100 5 C Rennes |Downtown ‘
low-priced | 40 2 D Betton S 0]

T

5/// f N 7TN/
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The attribute-value model

Al A A A A Ag A A,
item1l | d11 | d12 | d13 | 914 | 915 | d16 | 91,7 din
item2 | dy1 | @22 | 823 | dx4 | d25 | d26 | A27 an
item3 | d31 | d32 | d33 | d34 | d35 | d36 | 937 as.n
item4 | dq1 | d42 | 943 | d4a4 | A4 | dae | 947 d4.n
itemb5 | ds1 | ds2 | 53 | d54 | ds5 | ds6 | d57 as.n
item6 | dp1 | 962 | 963 | d6,4 | 965 | 96,6 | 96,7 d6,n
item7 | d71 | d7o | d73 | 474 | d75 | d76 | 917 ar.n
itemm | dm1 | dm2 | dm3 | dm4 | dmb | dm6 | dm,7 Am,n

Rows: items xq1, X, ..., X ..
L me e m Vi,j aji € RngA;
Columns: attributes A, A,, ... A, ’

Rng A; denotes the set of possible values for attribute A;
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Subsets of data to generalize

Al | A | A3 | As | As | As | A7 | As | Ag
iteml | 811|812 |13 | 814|815 |d16|d17|d18|d19
item2 | d271 | d22 | 23 | d24 | d25 | d26 | d27 | d2,8 | 92,9
item3 | 4371 | d32 | d33 | 434 |d35 | d36 | d37 |d3s|d39
item4 | d41 | d42 | 43 | d44 | A4 | 46 | d47 | A48 | d4.9
itemb5 | ds1 | d52 | d53 | d54 | d55 | d56 | d57 | 58 | ds59
item6 | d61 | 96,2 | 96,3 | 46,4 | 96,5 | 96,6 | 96,7 | 96,8 | 96,9
item?7 | d71 | d72 | d73 | d74 | d75 | dr6 | d77 | d7,8 | 97,9
item8 | dg1 | dg2 | 483 | d34 | d855 | 98,6 | 98,7 | d8,8 | 98,9
item9 | dg1 | d92 | @93 | d94 | d95 | do6 | d97 | 9,8 | d9.9

= "Square" = selection of rows and columns in the data
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Rules

A rule 7 expresses constraints (for a generic item x) which
lead to conclusion C(x) (class which the item belongs to)
T A(x) €V A NA(X) € v, = C(x) € v (%)

v C RngA; pouri=1,...,n,
where { V7 C Rig C.

attributes / = 1, ..., n without constraints are such that
v = Rng A;.
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And now . ..

Admissibility for generalization
e Formalizing admissibility
o Classes of choice functions
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Eliciting a rule

» S being a square is supposed to capture a rule 7 requires
that every item of S satisfies 7

— generalisation does not capture the statistical
representativeness of dataset, but only elicits a rule

generalizing all its items

‘ © (A ) [ )] @) | (A | (A ‘ @ (A ) [ &) | G | (A | (B
Price |Area|#Rooms|Energy| Town District |Exposure Price Area|#Rooms|Energy| Town District |Exposure
low-priced| 70° 2 D Toulouse| Minimes low-priced | 70 2 D |Toulouse| Minimes
low-priced | 75 4 D Toulouse | Rangueil low-priced | 75 D |Toulouse| Rangueil
expensive | 65 3 Toulouse |Downtown expensive | 65 2 Toulouse|Downtown
low-priced| 32 2 D Toulouse SE low-priced | 32 2 D |Toulouse SE
mid-priced | 65 2 D Rennes SwW mid-priced | 65 2 D Rennes sw
expensive | 100 5 C Rennes |Downtown expensive | 100 5 C Rennes |Downtown
low-priced | 40 2 D Betton S low-priced | 40 2 D Betton S

|

Ao = 2 A Ay = Toulouse = C = low-priced

Ao € [2,4] = C € {low-priced, expensive}
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Eliciting a rule (f function)

» For every attribute A;, S; is the

(A) [(A) ] (A) set of values of A; in items of S
Price Area | Rooms
1 | low-priced | 70 2
2 | low-priced | 75 4
4 | low-priced | 32 2
7 | low-priced | 40 2
So = {low-priced} S ={2,4}

S, = {32,40,70,75}
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Eliciting a rule (f function)

G T T (A » For every attribute A;, S; is the
Price | Area | Rooms set of values of A; in items of S
1 | low-priced | 70 2 .
2 | low-priced | 75 4 » Each superset of §; is,
4 | low-priced | 32 2 a
7 | low-priced | 40 2 . ; !
l l generalization of §;
So = {low-priced} S ={2,4}
J51 = {32,40,70,75} J
v
S S, S
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Notion of admissibility: propositions
Generalization of S;: S: = F({Y | 5, C Y C RngA;})
What collection X = {5; | 5; C Rng A;} would do?

What choice function(s) can in practice capture these
expected algebraic properties?
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What collection X = {5; | 5; C Rng A;} would do?
(I) Rng A e X
(i) if X and Y are in X thenso X NY.

» X is a closure system upon Rng A;.
» © is an operation enjoying weaker properties than closure
operators; alternatives looked at:
» pre-closure operator
» capping operator

What choice function(s) can in practice capture these
expected algebraic properties?
» Proposal for some classes of choice functions generating
specific types of operators

» Concrete examples of such functions for numerical rules
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Weakening closure operators

» List of Kuratowski's axioms [Kur14] (closure system):

SUS=5US (pre-closure)
» Actually, we downgrade Kuratowski's axioms as follows

5 C S whenever S C & (closure)
5 S’ whenever S C S C S (cumulation)
SUS C S whenever S'C S (capping)

Lemma: Kuratowksi = closure = cumulation = capping
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Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let f : 22° — 27 be a function st
for every upward closed X C 24 and every ) C 27:
1. f(24) =10
2. f(X)ex
3. fF(XNY)=Ff(X)UF)
whenever | Jmin(X NY) =Umin X UJmin)
Then, ~: 22 — 2% as defined by

XY rqy|xcvyczy

is a pre-closure operator upon Z.

Intuition: Z is Rng A;
X (and Y, too) is a collection of intervals over Rng A;
moreover, X is a collection containing all super-intervals

of an interval belonging to the collection
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Class of choice functions satisfying pre-closure

Theorem. Given a set Z, let f : 22* 4 9Z be a function st
for every upward closed X C 24 and every ) C 27:

1. f(24) =10

2. f(X)ex

3. f(XNY)=FX)UF)

whenever [ Jmin(X NY) =UminX UJminY

Then, ~: 22 — 2Z as defined by

X¥ryy|xcvyczy

is a pre-closure operator upon Z.
Numerical attributes: principle of single point (u) interpolation

Ai(x )E[u—r u+r]— C(x)=c.
X >< ><><

J;{:

r
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Class of choice functions satisfying capping

Theorem. Given a set Z, let f : 22° s 97 e 3 function st
for every X C 27 such that (\ X € X and for every Y C 24

1. f(X)eXx
2 ifY C X and IW €V, W C F(X) then F(V) C F(X)
Then, ~: 24 — 22 as defined by

O def

XEf{y|xcvyczy)

is a capping operator upon Z.

Intuition: Z is Rng A;
X (and Y, too) is a collection of intervals over Rng A;
moreover, X is a collection whose intersection
is itself a member of the collection
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Class of choice functions satisfying capping

Theorem. Given a set Z, let f : 22° — 2Z be a function st
for every X C 24 such that (X € X and for every ) C 2%

1 f(X)eX
2. ifYC X and3IW €Y, W C F(X) then (V) C F(X)
Then, ~: 24 — 22 as defined by

XY frqy|xcvycz)
Is a capping operator upon Z.

Numerical attributes: principle of pairwise point interpolation

X X X

>A
>A k‘ﬁ
X KX XK
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And now . ..

Application to an analysis of CN2
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lllustrations of the behaviour of CN2

Generation of synthetic data:

» Data with 2 dimensions: a numerical attribute and a
symbolic class attribute

» Data with two classes (green and blue)
Objective:

» lllustrate the behaviour of the rule learning algorithm in
terms of characteristics of generalisation of examples
> based on a pre-closure (interpolation over single points)

> based on a capping (interpolation over pairs of points)
Using Algorithm CN2 [CN89]
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Separating interesting intervals

Comparison of rules obtained out of
uniform distributions vs. normal
distributions

» distance between two successive
values are small wrt the range
of the attribute

» mixing normal distributions
causes disparate average
distances (pairwise distance
between examples)

o
o

10 —s o s 10 1s 20

» the second dataset can be
Figure: Distributions of the data V_'eWEd as a super set of the
for the classes blue and green. first dataset (add of examples
in between examples)
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Separating interesting intervals

Expected rules assuming capping
or pre-closure for each class:
e topmost dataset:
o v E[—00:15] = Ay =Dblue
e v e [l0: +o0] = Ay = green

e bottom dataset:
o v E[—00:15] = Ay =blue
o = o 5 o = 2o 5 eV C [0 : +OO] = AO — green

Figure: Distributions of the data
for the classes blue and green.
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Separating interesting intervals

Figure: Distributions of the data
for the classes blue and green.

Rules learned by CN2, topmost
dataset:

e v € [—00:10.03] = Ap = blue

o v € [12.73:14.83] = Ap = blue
o v €[10.65:12.81] = Ag = green
e v € [15.01: +o0] = Ag = green

Rules learned by CN2, bottom
dataset:

o vE[—00:0.96] = Ag = blue

v € [0.97 : 2.57] = Ap = blue

v € [3.09 : 10.04] = Ao = blue

v € [3.50:7.18] = Ap = green

v € [11.55 : 13.14] = Ay = green
v € [13.15 : +00] = Ap = green
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Does density influence the choice of boundaries?

Comparison of rules obtained out
of well-separated uniform
distributions, for two similar
situations

» topmost dataset: same
number of examples in both
classes

» bottom dataset: the blue
class is under-represented as
compared to the green class

Figure: Distributions of the data
for the classes blue and green.

23 /29



Does density influence the choice of boundaries?

Observed behaviour:

» no difference between the
extracted rules for either
dataset

» CN2 systematically
chooses the boundary to
be the middle of the limits
in between the two classes

Figure: Distributions of the data
for the classes blue and green.
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Does density influence the choice of boundaries?

Behaviour from capping :

» adding extra examples can
alter boundaries

>A
>A ‘<‘>i
>‘< XXX X X X

| >A" Lo <>‘A".i
X X DRIKX

= to be insensitive to density
of examples corresponds

Figure: Distributions of the data to a cumulation operator
for the classes blue and green.
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And now . ..

Conclusion
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Conclusion (1)

» The logical structure of rules makes them easy to read
but ...

» The interpretability of rules learned from examples
requires, in particular, to take care of the way examples
are generalized

» Example of numerical attributes, but also symbolic
attributes with structures (e.g. orders)

» Qualifying the interpretable nature of rule learning
outputs is challenging

What can our approach do for rule interpretability

» Our work contributes by giving a way to do such analysis

» A proposal of a general framework for rule learning
» A topological study of admissible generalisations of
examples
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Conclusion (2)

Formalisation of rule learning

» ¢: selects possible subsets of data
» ~ : elicits the rule
— offer a framework for analysing rule learning algorithms

S 4'() T
f
10} s > !
¢ f
% X > !
O (A ) [ @) @) | @) | (A
Price  |Area|#Rooms|Energy| Town District |Exposure
low-priced| 70 2 D Toulouse| Minimes
low-priced | 75 4 D | Toulouse | Rangueil
expensive | 65 3 Toulouse [Downtown
low-priced| 32 2 D Toulouse SE
mid-priced | 65 2 D Rennes SwW
expensive | 100 5 C Rennes |Downtown
low-priced | 40 2 D | Betton S )

s f > "
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Conclusion (3)

Admissible generalisation of examples

» Admissible generalisations resulting of a choice among the
supersets of the examples

» Proposed topological property of the choice: closure-like
operators (pre-closure, capping)

» Definition of classes of choice functions

» Proposal of concrete choice functions upon numerical
attributes

» Can be generalized to symbolic attributes, including
attributes with structure (e.g. total order)
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Perspectives

» Long term objective: study the characteristics of
extracted rulesets

» Comparing the set of rules extracted by machine learning

» Need a formalism to represent a set of rules
» A formalism that enables to represent
— rules actually extracted by machine learning algorithms
(e.g., Ripper, CN2, etc)
— rules selected using a selection criteria (interestingness
measures, etc)
» Formalize essential notions of rule learning
» The formalism will be a way to reason about the machine
learning algorithms
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