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Abstract.

We propose a new boolean based approach for mining frequent
patterns in large transactional data sets. A data set is viewed as a
truth table with an output boolean function. The value of this func-
tion is set to one if the corresponding transaction exists in the data
set, zero otherwise. The output function represents a condensed form
of all the transactions in the data set and is represented by an efficient
compact data structure. It is then explored with a depth first strategy
to mine maximal frequent itemsets. We have developed a prototype,
and first experiments have shown that it is possible to rely on a con-
densed representation based on boolean functions to mine frequent
itemsets from large databases.

Keywords: Maximal Frequent Itemsets, Association Rules, Data
Mining, Boolean Algebra, Binary Decision Diagrams.

1 Introduction

Mining frequent itemsets is an active area in data mining that aims at
searching interesting relationships between items in databases. It can
be used to address to a wide variety of problems such as discovering
association rules, sequential patterns, correlations and much more. A
transactional database is a data set of transactions, each composed of
a set of items, called an itemset. An itemset is frequent when it occurs
"sufficiently” in the database, that is to say in at least a certain pro-
portion of all the transactions, with respect to a given threshold. Since
finding frequent itemsets is a time consuming task, especially when
databases are dense or when long patterns of itemsets emerge, this
has been extended to mining maximal frequent itemsets, i.e. mining
the longest frequent itemsets.

We propose a new approach based on properties of boolean alge-
bra since a transactional database can be seen as a truth table with
an output function. This function is loaded in main memory by us-
ing a Binary Decision Diagram (BDD) introduced in [5, 4]. A tree is
then explored on this function recursively in order to mine maximal
frequent itemsets. Moreover, the search space is reduced by a prepro-
cessing step that keeps only the frequent variables according to the
support threshold, and that reorders them in an increasing order. The
present work illustrates that efficient data structures and algorithms
manipulating boolean functions coming from digital logic design can
be interesting for such data mining task. Our first prototype and ex-
periments have shown that it is a promising research issue.

This paper is organized as follows: in section 2, we describe the
basic concepts for mining frequent itemsets. Some theoretical aspects
of vectorial boolean algebra, on which our approach relies, are given
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in section 3. In section 4, we describe our algorithm to compute max-
imal frequent itemsets. Details on implementation and experimental
tests are discussed in section 5. In section 6, we briefly give related
works. Finally, we conclude with a summary of our approach, per-
spectives and extensions of this work. Let us notice that for lack of
space, all proofs are omitted.

2 Préiminaries

LetZ = {x1,x2,...,xn} be a set of items. Let 7 be a data set of
transactions, where each transaction is a set of items belonging to Z,
called an itemset. The total number of itemsets grows exponentially
with |Z]. In order to restrict this number, a minimum support thresh-
old MinSupp is specified, and only frequent itemsets, with respect to
this threshold are considered. Let X’ be an itemset. The support of X’
is Supp(X) = |{t; € T/X C t;}|. X is frequent if its support is
higher or equal to MinSupp. This means that X is frequent when it is
a subset of at least MinSupp transactions in 7.

So, mining frequent itemsets is finding all itemsets that satisfy the
minimum support threshold. A frequent itemset is maximal when all
its subsets are frequent but also when all its supersets are infrequent.

Example 1 Market Basket Analysis Example

Table1l. Transactional table

1 T2 X3 T4 f

0 0 0 0 0

0 0 0 1 1

Tid TtemSet o 0 1 0 1
1 = 0o 0 1 1 1
2 T3 0 1 0 0 1
3 T4 0 1 0 1 1
4 T1,Ta 0 1 1 0 0
5 T2, T4 0 1 1 1 1
6 z3,T4 1 0 0 0 0
I Z1,%2,T4 1 0 0 1 1
8 T2,T3,T4 1 0 1 O 0
9 | 71,%2,73,%4 1 0 1 1 0
1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 1

Table2. Truth table

The search space forms a lattice where nodes represent all possible
subsets of Z as illustrated in Figure 1 . Looking at the support of each
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Figurel. Itemsets lattice of Table 1

node is infeasible. So exploring efficiently the search space means
restricting the number of nodes to visit in order to find all the frequent
itemsets as soon as possible. Lattice nodes can be traversed in either
a depth first search (DFS) or a breadth first search (BFS).

In the example above, we consider a set of items Z =
{z1, 2, z3, x4} and the transactional database given in Table 1 com-
posed of nine transactions each one has a unique identifier Tid. The
search space is visualized as a lattice, where each node is an item-
set. For a MinSupp = 3 transactions, the frequent itemsets are those
above the border. Maximal frequent itemsets are circled nodes.

3 Vectorial aspects of boolean algebra

Assuming readers are familiar with basic notions on boolean alge-
bra[11, 20, 19, 13], we begin in this section by recalling a few defini-
tions on boolean vectors, and some useful operators on these objects
[15].

3.1 Boolean vectors

A boolean vector & = (v1,va, ..., vy ) is any n-tuple of values be-
longing to the set {0, 1}. Let E™ be the set of all boolean vectors
of size 2™. For example, ﬁ2 = {(0000), (0001), (0010), (0011),
(0100), (0101), (0110), (0111), (1000), (1001), (1010), (1011),
(1100), (1101), (1110), (1111)}. The dimension of a vector of E™

is n, and its size is 2. A truth table T" of dimension n is made
up of n boolean vectors, each of them belonging to E". We write
T = [eT,...,ey]. Foreachindex j, 1 < j <, e isthe j-th vec-
tor of T”. A truth table T* = [e_f, ..., €] is recursively built as fol-
lows: [(" "t @I, er™ @e’f—’{, e;’—’?(ae;” oo, el 1 @er ]
where 0 and 1™ correspond respectively to the null and identity vec-
tors of dimension n, and ® represents the concatenation of vectors.
For instance, (0011) ® (0101) = (00110101).

In the following, we use the vectorial product between two
boolean vectors: if & = (v1,...,v;) and @ = (wx, ..., ws), then
U-wW = (v1 - wi,...,v% - wg). It consists in performing an and
operation.

A vectorial function with n variables is a pair whose first element
is a truth table and the second one a goal vector of dimension n rep-
resenting the output [15]. Table 2 shows the truth table of a function
with 4 variables whose goal is f = (0111110101000101).

3.2 Boolean vectors and transactional databases

Let us now explain the correspondence between a transactional
database and a vectorial function. In our approach, we represent an
item with a boolean variable. Given n items, z1,...,zn, a set of
transactions 7 is represented by a vectorial function with n variables.

For instance, the basket analysis example (Example 1) is repre-
sented by the function whose truth table is shown in Table 2.

Each line of the truth table corresponds to a possible transaction.
The function f is true for all the transactions belonging to 7, and
false for the other ones. Since the structure of a truth table is fixed,
giving a boolean vector corresponding to f is sufficient to express the
set of transactions 7. Let us notice that we deal with transactions that
exist only once in 7. The approach presented in this paper follows
this restriction, but our work can be extended to deal with general
sets of transactions.

We also represent an itemset by a string of length n built over
the alphabet {1, £}. For instance, the string 111 corresponds to the
itemset {z1, z2, x4}, since the variable z3 is not present in the item-
set. We call this new representation the hat representation. The set of
hat representations of n variables is denoted by .

Assuming that the variables are ordered by an arbitrary order, it
is easy to see that there is a bijection between these two represen-
tations. Indeed, let X’ be an itemset, the transformation consists just
in associating the value 1 to the item (or variable) z; if it belongs to
X, and ¢ if the variable is not present. By this bijection, we can ex-
tend the inclusion ordering on sets by the following ordering on hat
representation of I .

Definition 1 (Extension of inclusion ordering on ]f]l”) Letp and ¢
be elements of HI* such that p = cica...cn and § = dids . . . dn.
The order < is recursively defined as follows:
1. 1<¢g1<X1,eX¢;
2. p=RqG iff Vi ¢ =Xd;.
This order < can obviously be restricted to < as follows :
1. 1<e;
2. p=<qg iff Vi ¢s<diand3Ij c¢; <d;.
Example 2
For n = 4, we have 111e < eele. The corresponding itemsets
are respectively {1, z2, zs} and {3}, and we have {z1,z2, 23} D

{zs}

With this correspondence, we have: if X; and X, are two item-
sets, and p1, p» are their corresponding hat representations (prod-
ucts), then X3 D X iff  p1 < po.

Let us notice that if an itemset represented by a hat product p is
not frequent then all itemsets represented by a hat product ¢ such that
g = p are also not frequent, since the frequency of the itemset asso-
ciated to g is less than the frequency associated to p. Consequently,
in the following, terms given below will be considered as equivalent:

e an item and a boolean variable ;

e an itemset and a hat representation ;

e an itemset X; contains another itemset X (X> C X7 ) is equiv-
alent to say that the hat representation p; (corresponding to A1)
is smaller than p» (corresponding to X>) with respect to the <
ordering ;

e aset of transactions is equivalent to a boolean vector.



4 A new approach to compute maximal frequent
itemsets

As stated in section 3.2, we represent a set of transactions with
a boolean vector f. The itemsets are explored using a binary tree
whose nodes are boolean vectors, and the edges are respectively la-
belled with 1 or . Let us consider again the basket analysis example
given in Example 1. The corresponding truth table is shown in Table
2, and the associated tree is illustrated in Figure 2. For sake of space,
only a part of the tree is drawn.

The following function MFZtemsets returns a set of hat repre-
sentations corresponding to the maximal frequent itemsets associated
to the transactions given in the first parameter. In this algorithm we
introduce two new notations about set handling. The notation 2% is
the set of all the subsets of HL. The set {emptyhat} is a set that con-
tains an empty hat string. It is different of an empty set @ (or {}). We
denote by n the total number of items in the dataset. The first call of
MFItemsets is performed with a level [ equal to 0.

function MFZtemsets(s : f"; I, minsup : int; P : 2%) : 28
begin

if frequency(s) < minsup then return @

elif ContainsOne(P) return ¢

elif{ = nand P = {emptyhat} then return @

elifl = n and P = @ then return {emptyhat}

else
81 1= ?l+1 + 8
Pr:={p/1p € P}
Q1 := MFItemsets(s1,l + 1, minsup, P1)
Se =38
P.:={p/cpePandc € {l,e}}U O
Q. := MFItemsets(se,l + 1, minsup, P:)
return {1§ /g€ @1} U{ed /4 € Q.}

end if

end

This algorithm recursively explores a part of the whole tree shown
in Figure 2. In each path (represented by a hat representation), an
edge labelled with 1 corresponds to the fact that the current variable
is fixed. When the label is equal to &, the variable is not chosen. The
level 1 given in the second parameter identifies the current variable
dealt with. The boolean function stored at a node s gives the transac-
tions that contains the variables set to 1 from the root to that node. In
order to know the maximal itemsets already discovered, we associate
to each node a set P which contains these maximal itemsets.

The algorithm can be divided into two parts: the stop tests and
the recursive calls. Let us begin with the core of the program. There
are always two recursive calls respectively on son s; linked to its fa-
ther with an edge labelled by 1, and on son s, linked with an edge
€. The latest son s. means that the current variable I + 1 (since the
first level is 0) is not fixed. Thus, all transactions are kept, that is
why we have always s. = s. On the other hand, s; is computed by
performing a vectorial product between the father s and the vector
€141 corresponding to the current variable. Indeed, this vector is the
(I + 1)th column in the truth table (see section 3.1). The intuitive
idea of this product is that we keep from positions set to 1 in s those
that are also set to 1 in é&;41. After, P1 and P, associated respec-
tively to s1 and s. contains the already processed maximal itemsets
that can potentially be smaller (w.r.t. <) than the path under con-
struction. Let us remark that P does not contain products of size n
(number of items), but products of size n — [. Indeed, the prefix is
omitted because by construction, it is less (w.r.t. <) than the current

path. We detail this property as follows. If ¢; - - - ¢; is the path from
the root to s, and p € P, then there exists an already computed fre-
quent itemset g with § = dy---dipand dy---di =< ¢1-+-¢. The
inheritance is performed in two ways. The son s; inherits only from
its father s, but the son s inherits from its father s and also from the
result of the recursive calls of its brother s;. The set of itemsets P,
associated to the son s; contains the tail of each element of the set
‘P associated to s for which the head is equal to 1. For instance, if
P = {lele,elee, 11e1} then Py = {ele, 1le1}. The inheritance
associated to the son s. is the union of two sets. The first, built
from its father s, contains the tail of each element of P. As above, if
P = {lele,elee, 111} then we keep {ele, leg, 1e1}. The second
set Q; is the already computed partial frequent itemsets associated
to its brother s;. This recursive processing is performed until getting
a success of a stop test. Once the recursive calls are finished, Q1 and
Q. corresponding respectively to the maximal itemsets of s; and s.
are returned, and a composition, the reverse operation of the inher-
itance, is performed by adding 1 to the head of all elements of Q
and ¢ to the head of all elements of Q.. The union of these two new
itemsets is returned.

The second part of the algorithm concerns the stop tests. There
are four kinds of exit cases. The first one is the classical frequency
cut. The function frequency computes the frequency of a boolean
vector, representing thus a set of transactions. It is exactly the number
of 1 present in the vector. Unlike existing methods, this information
is computed on the fly during the generation of vectors. As will be
explained in the experimental section, each vector of the tree is a
node in the BDD representing the tree. If a vector is not frequent with
respect to the minimum support, all the itemsets that can be generated
from this node are cut, since they cannot be frequent. Indeed, the
function visits all the elements of the lattice presented in Figure 1
following this order : 1111, 111e, 11€1, 11¢g, ..., eeel, ecee. This
corresponds to all leaves from left to right of the tree in Figure 2. If a
node located at path €1 is not frequent, then e1lee is also not frequent,
since this node s and its son s. have the same value. Consequently,
all the itemsets elcscq such that cs, ca € {1, £} are also not frequent,
because €111, elle, elel, elee < elee. Thus the frequency of those
four itemsets are less than the frequency of elee and by the way of
the itemset 1. At this node, the function stops and does not perform
the recursive calls.

The second test is a new original cut based on the notion of inher-
itance already explained. The function ContainsOne(P) is the key
point of this cut. It takes as parameter a set of hat representations and
returns true if the set P contains a hat representation composed only
of character 1. In a formal way:

trueifdp=ci---c,k EPSt.Vic, #¢

ContainsOne(P) = { false otherwise

If ContainsOne(P) is true then there exists p € P such that p =
1---1 and it will be smaller (with respect to <) than any generated
G from the current node. Indeed, p < § = dy ---dy since 1 < d;
for all d; € {1,e}. Therefore, in this case we return an empty set
corresponding to the fact that there is no maximal frequent itemsets
that can be generated from this node.

Finally, the two last tests correspond to the case where a leaf is
reached. If a leaf inherits a non empty set P, then the path p from the
root to this leaf is not maximal. On the other hand, if 7 = 0, then
there is no other already computed maximal itemset § less or equal
to p with respect to <. Remark that these two last cases, dealing
with leaves, are particular cases of the cut due to the ContainsOne
function.
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Example 3

Figure 3 shows the tree generated by
MFTtemsets(0111110101000101, 0,3,#). The corresponding
set of maximal frequent itemsets is {1ee1, elel, ee11}. For sake of
space, only the subtree 1 of the root is drawn.
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Figure3. Maximal frequent itemsets of Example 1 with minsup=3

The minimum support is equal to 3, and the value of P, last pa-
rameter of M FZtemsets is the empty set since there is no maximal
itemsets at the beginning. The symbol { is a cut due to the frequency
test or to the success of the test ContainsOne(P-).

Theorem 1 Let f be a boolean vector corresponding to a set
of transactions 7, and M a given minimum support. Calling
MFItemsets(f,0, M,D) returns all maximal frequent itemsets
and only the maximal frequent itemsets of 7.

5 Implementation and experimental results

We have implemented a prototype in C, where the main data struc-
ture used is BDDs (compact Direct Acyclic Graph data structure).
Readers interested in BDDs should refer to [5, 4] for more details.
Each vector is not stored statically, but is represented by a BDD.
All new computed vectors are pointers to their corresponding BDDs,
and these vectors share mutually sub-BDDs. The set representing
the maximal frequent itemsets is also represented by a BDD. Con-
sequently, the tree built by MFZtemsets function does not really
exist and it is just a representation of its execution. Huge data sets
used in our experiments have been completely stored in main mem-
ory.

The size of the graph, i.e. the number of nodes does not depend
on the number of items [7, 8]. We should also notice that the com-
plexity of our algorithm is proportional to the size of the BDD being
operated on, and so it is more efficient for compact graphs. A tech-
nique to reduce efficiently the size of the graph is variable ordering.
Many algorithms have been studied [16, 9, 17] in the field of binary
decision diagrams. In our experiments, we have made an ordering <
based on their support. A variable z; < z; if the support of z; is less
than the support of x;. This strategy allows us to cut as soon as possi-
ble useless items. Another feature of our method is that no scanning

outitcioroonzor IS performed to compute the frequency of a vector, since the whole

database is stored in main memory. Tables 3 and 4 show experiments
made on a Pentium 500 Mhz with 256 Mb of main memory. Table
3 gives time execution for synthetic databases® generated by an al-
gorithm designed by the IBM Quest project and described in [3]. In
this kind of databases, T represents the average size of a transaction,
I the average size of maximal frequent itemsets, and D is the num-
ber of transactions. The number of items of each synthetic database
exceeds one thousand (1000) and the number of transactions is 100
thousands and 200 thousands transactions. Table 4 corresponds to the
Mushroom? real database.

6 Reated works

During the last years, a wide variety of algorithms for mining fre-
quent itemsets have been proposed. Apriori [2, 3] is certainly the
most popular algorithm, it uses an iterative way to explore the fre-
quent itemsets. MaxEclat and MaxClique [21] are algorithms based
on graph theory, they use decompositions of the lattice into sub-
lattices in order to mine maximal frequent itemsets. MaxMiner [12]
explores maximal frequent itemsets by using a lookahead pruning
strategy. PincerSearch [14] starts a bottom-up and a top-down search
in the lattice at the same time while looking for maximal frequent
patterns. GenMax [10] uses a backtracking search for enumerat-
ing all maximal frequent itemsets and eliminates progressively non-
maximal ones. Mafia [6] uses a depth first method and some prun-
ing strategies to mine maximal frequent itemsets. Depth-project [1]
uses a dynamic reordering in order to reduce the search space. A
good evaluation of the existing approach in mining maximal frequent
itemsets on both dense and sparse databases is given in [10]. Our ap-
proach differs from approaches described above, since it is based on
a compact representation of the data set. For the time being, our ap-
proach is not comparable to the methods cited above, since we do not
handle yet datasets with multiple instance transactions.

2 http://www.almaden.ibm.com/cs/quest/syndata.html
3 ftp://ftp.ics.edu/pub/machine-learning-databases/mushroom/



7 Conclusion

We present a new approach based on boolean algebra to mine maxi-
mal frequent itemsets in transactional databases. We first consider the
database as a truth table with an output boolean function. This latter
is represented in memory with a graph-based data structure dedicated
for boolean functions: Binary Decision Diagrams. This allows an ef-
ficient loading of transactions in main memory and so avoid making
expensive scans of the database: the output function is sufficient to
mine frequent patterns and it is loaded in a preprocessing step in one
scan of the database. Moreover, seraching the set of transactions in-
cluding a given itemset is processed by making iteratively the product
of the boolean function by vectors representing the items.

We have already obtained preliminary and encouraging results, but
our approach is new and the algorithm can still be improved by in-
tegrating cut strategies used in known algorithms such as GenMax
[10]. However, in our approach we have made the assumption that
the data set does not contain several occurrences of a same transac-
tion. In future works, we plan to extend the approach to handle data
sets containing many occurrences of transactions. This approach will
be tested on a real application for mining association rules in Ge-
ographic Information systems [18]. Finally, we notice that our ap-
proach allows an interesting extension in mining frequent itemsets
with negation.
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