Mining Maximal Frequent Itemsets by a Boolean Based Approach

Ansaf Salleb¹, Zahir Maazouzi¹, Christel Vrain ¹

Abstract.

We propose a new boolean based approach for mining frequent patterns in large transactional data sets. A data set is viewed as a truth table with an output boolean function. The value of this function is set to one if the corresponding transaction exists in the data set, zero otherwise. The output function represents a condensed form of all the transactions in the data set and is represented by an efficient compact data structure. It is then explored with a depth first strategy to mine maximal frequent itemsets. We have developed a prototype, and first experiments have shown that it is possible to rely on a condensed representation based on boolean functions to mine frequent itemsets from large databases.

Keywords: Maximal Frequent Itemsets, Association Rules, Data Mining, Boolean Algebra, Binary Decision Diagrams.

1 Introduction

Mining frequent itemsets is an active area in data mining that aims at searching interesting relationships between items in databases. It can be used to address a wide variety of problems such as discovering association rules, sequential patterns, correlations and much more. A transactional database is a data set of transactions, each composed of a set of items, called an itemset. An itemset is frequent when it occurs "sufficiently" in the database, that is to say in at least a certain proportion of all the transactions, with respect to a given threshold. Since finding frequent itemsets is a time consuming task, especially when databases are dense or when long patterns of itemsets emerge, this has been extended to mining maximal frequent itemsets, i.e. mining the longest frequent itemsets.

We propose a new approach based on properties of boolean algebra since a transactional database can be seen as a truth table with an output function. This function is loaded in main memory by using a Binary Decision Diagram (BDD) introduced in [5, 4]. A tree is then explored on this function recursively in order to mine maximal frequent itemsets. Moreover, the search space is reduced by a preprocessing step that keeps only the frequent variables according to the support threshold, and that reorder them in an increasing order. The present work illustrates that efficient data structures and algorithms manipulating boolean functions coming from digital logic design can be interesting for such data mining task. Our first prototype and experiments have shown that it is a promising research issue.

This paper is organized as follows: in section 2, we describe the basic concepts for mining frequent itemsets. Some theoretical aspects of vectorial boolean algebra, on which our approach relies, are given in section 3. In section 4, we describe our algorithm to compute maximal frequent itemsets. Details on implementation and experimental tests are discussed in section 5. In section 6, we briefly give related works. Finally, we conclude with a summary of our approach, perspectives and extensions of this work. Let us notice that for lack of space, all proofs are omitted.

2 Preliminaries

Let \(\mathcal{I} = \{x_1, x_2, ..., x_6\}\) be a set of items. Let \(\mathcal{T} \) be a data set of transactions, where each transaction is a set of items belonging to \(\mathcal{I} \), called an itemset. The total number of itemsets grows exponentially with \(|\mathcal{I}| \). In order to restrict this number, a minimum support threshold \(\text{MinSupp} \) is specified, and only frequent itemsets, with respect to this threshold are considered. Let \(\mathcal{X} \) be an itemset. The support of \(\mathcal{X} \) is \(\text{Supp}(\mathcal{X}) = \{|t \in \mathcal{T} | \mathcal{X} \subseteq t\} \). \(\mathcal{X} \) is frequent if its support is higher or equal to \(\text{MinSupp} \). This means that \(\mathcal{X} \) is frequent when it is a subset of at least \(\text{MinSupp} \) transactions in \(\mathcal{T} \).

So, mining frequent itemsets is finding all itemsets that satisfy the minimum support threshold. A frequent itemset is maximal when all its subsets are frequent but also when all its supersets are infrequent.

Example 1 Market Basket Analysis Example

<table>
<thead>
<tr>
<th>Tid</th>
<th>ItemSet</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(x_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(x_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>(x_1, x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(x_2, x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(x_2, x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>(x_1, x_2, x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>(x_2, x_5, x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>(x_1, x_2, x_5, x_4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1. Transactional table

Table 2. Truth table

The search space forms a lattice where nodes represent all possible subsets of \(\mathcal{I} \) as illustrated in Figure 1. Looking at the support of each
node is infeasible. So exploring efficiently the search space means restricting the number of nodes to visit in order to find all the frequent itemsets as soon as possible. Lattice nodes can be traversed in either a depth first search (DFS) or a breadth first search (BFS).

In the example above, we consider a set of items $I = \{x_1, x_2, x_3, x_4\}$ and the transactional database given in Table 1 composed of nine transactions each one has a unique identifier Tid. The search space is visualized as a lattice, where each node is an itemset. For a MinSupp of 3 transactions, the frequent itemsets are those above the border. Maximal frequent itemsets are circled nodes.

3 Vectorial aspects of boolean algebra

Assuming readers are familiar with basic notions on boolean algebra [11, 20, 19, 13], we begin in this section by recalling a few definitions on boolean vectors, and some useful operators on these objects [15].

3.1 Boolean vectors

A boolean vector $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ is any n-tuple of values belonging to the set $\{0, 1\}$. Let \mathbb{E}^n be the set of all boolean vectors of size 2^n. For example, $\mathbb{E}^2 = \{(0000), (0001), (0010), (0011), (0100), (0101), (0110), (0111), (1000), (1001), (1010), (1011), (1100), (1101), (1110), (1111)\}$. The dimension of a vector of \mathbb{E}^n is n, and its size is 2^n. A truth table \mathcal{T}^n of dimension n is made up of n boolean vectors, each of them belonging to \mathbb{E}^n. We write $\mathcal{T}^n = [v_1, \ldots, v_n]$. For each index j, $1 \leq j \leq n$, v_j is the j-th vector of \mathcal{T}^n. A truth table $\mathcal{T}^n = [v_1, \ldots, v_n]$ is recursively built as follows: $[\mathcal{T}^{n+1} \circ \mathcal{T}^{n-1}, v_1^{-1} \circ v_2^{-1} \circ v_3^{-1} \circ \ldots \circ v_n^{-2} \circ v_n^{-1}]$, where \mathcal{T}^{n-1} and \mathcal{T}^{n} correspond respectively to the null and identity vectors of dimension n, and \circ represents the concatenation of vectors. For instance, $(0011) \circ (0101) = (00110111)$.

In the following, we use the vectorial product between two boolean vectors: if $\mathbf{s} = (v_1, \ldots, v_k)$ and $\mathbf{w} = (u_1, \ldots, u_k)$, then $\mathbf{s} \cdot \mathbf{w} = (v_1 \cdot u_1, \ldots, v_k \cdot u_k)$. It consists in performing an and operation.

A vectorial function with n variables is a pair whose first element is a truth table and the second one a goal vector of dimension n representing the output [15]. Table 2 shows the truth table of a function with 4 variables whose goal is $f = (0111110101000101)$.

3.2 Boolean vectors and transactional databases

Let us now explain the correspondence between a transactional database and a vectorial function. In our approach, we represent an item with a boolean variable. Given n items, x_1, \ldots, x_n, a set of transactions \mathcal{T} is represented by a vectorial function with n variables.

For instance, the basket analysis example (Example 1) is represented by the function whose truth table is shown in Table 2.

Each line of the truth table corresponds to a possible transaction. The function f is true for all the transactions belonging to \mathcal{T}, and false for the others. Since the structure of a truth table is fixed, giving a boolean vector corresponding to f is sufficient to express the set of transactions \mathcal{T}. Let us notice that we deal with transactions that exist only once in \mathcal{T}. The approach presented in this paper follows this restriction, but our work can be extended to deal with general sets of transactions.

We also represent an itemset by a string of length n built over the alphabet $\{1, \varepsilon\}$. For instance, the string 11111ε corresponds to the itemset $\{x_1, x_2, x_4\}$, since the variable x_3 is not present in the itemset. We call this new representation the hat representation. The set of hat representations of n variables is denoted by \mathbb{H}^n.

Assuming that the variables are ordered by an arbitrary order, it is easy to see that there is a bijection between these two representations. Indeed, let X be an itemset, the transformation consists just in associating the value 1 to the item (or variable) x_i if it belongs to X, and ε if the variable is not present. By this bijection, we can extend the inclusion ordering on sets by the following ordering on hat representation of \mathbb{H}^n:

Definition 1 (Extension of inclusion ordering on \mathbb{H}^n) Let \hat{p} and \hat{q} be elements of \mathbb{H}^n such that $\hat{p} = c_1c_2\ldots c_n$ and $\hat{q} = d_1d_2\ldots d_n$. The order \preceq is recursively defined as follows:

1. $1 \leq \varepsilon, 1 \leq 1, \varepsilon \preceq \varepsilon$
2. $\hat{p} \preceq \hat{q}$ iff $\forall i$, $c_i \preceq d_i$.

This order \preceq can obviously be restricted to \leq as follows:

1. $1 < \varepsilon$
2. $\hat{p} \leq \hat{q}$ iff $\forall i$, $c_i < d_i$ and $\exists j$, $c_j < d_j$.

Example 2

For $n = 4$, we have $1111 \preceq \varepsilon1\varepsilon.1\varepsilon$. The corresponding itemsets are respectively $\{x_1, x_2, x_3\}$ and $\{x_3\}$, and we have $\{x_1, x_2, x_3\} \supset \{x_3\}$.

With this correspondence, we have: if X_1 and X_2 are two itemsets, and \hat{p}_1, \hat{p}_2 are their corresponding hat representations (products), then $X_1 \supset X_2$ iff $\hat{p}_1 \preceq \hat{p}_2$.

Let us notice that if an itemset represented by a hat product \hat{p} is not frequent then all itemsets represented by a hat product \hat{q} such that $\hat{q} \preceq \hat{p}$ are also not frequent, since the frequency of the itemset associated to \hat{q} is less than the frequency associated to \hat{p}. Consequently, in the following, terms given below will be considered as equivalent:

- an item and a boolean variable;
- an itemset and a hat representation;
- an itemset X_1 contains another itemset X_2 ($X_2 \subseteq X_1$) is equivalent to say that the hat representation \hat{p}_1 (corresponding to X_1) is smaller than \hat{p}_2 (corresponding to X_2) with respect to the \preceq ordering;
- a set of transactions is equivalent to a boolean vector.
4 A new approach to compute maximal frequent itemsets

As stated in section 3.2, we represent a set of transactions with a boolean vector f. The itemsets are explored using a binary tree whose nodes are boolean vectors, and the edges are respectively labelled with 1 or ε. Let us consider again the basket analysis example given in Example 1. The corresponding truth table is shown in Table 2, and the associated tree is illustrated in Figure 2. For sake of space, only a part of the tree is drawn.

The following function MFItemsets returns a set of hat representations corresponding to the maximal frequent itemsets associated to the transactions given in the first parameter. In this algorithm we introduce two new notations about set handling. The notation \exists^i is the set of all the subsets of \hat{V}. The set $\{\text{emptyhat}\}$ is a set that contains an empty hat string. It is different of an empty set \emptyset or $\{\emptyset\}$. We denote by n the total number of items in the dataset. The first call of MFItemsets is performed with a level i equal to 0.

```plaintext
function $\text{MFItemsets}(s: \exists^n; l, \text{minsups}: \text{int}; P: \exists^i): \exists^i$
begin
if $\text{frequency}(s) < \text{minsups}$ then return $\emptyset$
elseif $\text{ContainsOne}(P)$ return $\emptyset$
elif $l = n$ and $P = \{\text{emptyhat}\}$ then return $\emptyset$
elif $l = n$ and $P = \emptyset$ then return $\{\text{emptyhat}\}$
else
$s_1 := \exists^{l+1} \cdot s$
$P_1 := \{\hat{p} / \exists p \in P\}$
$Q_1 := \text{MFItemsets}(s_1, l + 1, \text{minsups}, P_1)$
$s_e := s$
$P_e := \{\hat{p} / \exists p \in P \land e \in \{1, \varepsilon\}\} \cup Q_1$
$Q_e := \text{MFItemsets}(s_e, l + 1, \text{minsups}, P_e)$
return $\{\hat{q} / \exists q \in Q_1 \cup \{qf / \exists qf \in Q_1\}\}$
end if
end
```

This algorithm recursively explores a part of the whole tree shown in Figure 2. In each path (represented by a hat representation), an edge labelled with 1 corresponds to the fact that the current variable is fixed. When the label is equal to ε, the variable is not chosen. The level l given in the second parameter identifies the current variable whose nodes are boolean vectors, and the edges are respectively labelled with 1 or ε. The latest son means that the current variable $l + 1$ (since the first level is 0) is not fixed. Thus, all transactions are kept, that is why we have always $s_l = s$. On the other hand, s_1 is computed by performing a vectorial product between the father s and the vector ε^{l+1} corresponding to the current variable. Indeed, this vector is the $(l + 1)^{th}$ column in the truth table (see section 3.1). The intuitive idea of this product is that we keep from positions set to 1 in s those that are also set to 1 in ε^{l+1}. After, P_1 and P_e associated respectively to s_1 and s_e contains the already processed maximal itemsets that can potentially be smaller (w.r.t. \leq) than the path under construction. Let us remark that P does not contain products of size n (number of items), but products of size $n - 1$. Indeed, the prefix is omitted because by construction, it is less (w.r.t. \leq) than the current path. We detail this property as follows. If $c_1 \cdots c_l$ is the path from the root to s, and $p \in P$, then there exists an already computed frequent itemset \hat{q} with $\hat{q} = d_1 \cdots d_l$ and $d_1 \cdots d_l \leq c_1 \cdots c_l$. The inheritance is performed in two ways. The son s_1 inherits only from its father s, but the son s_e inherits from its father s and also from the result of the recursive calls of its brother s_1. The set of itemsets P_1 associated to the son s_1 contains the tail of each element of the set P associated to s for which the head is equal to 1. If $P = \{\{1e_1, e_1e_2, 1e_1\}\}$ then $P_1 = \{e_1, 1e_1\}$. The inheritance associated to the son s_e is the union of two sets. The first, built from its father s, contains the tail of each element of P. As above, if $P = \{\{1e_1, e_1e_2, 1e_1\}\}$ then we keep $\{e_1, 1e_1, e_1e_1\}$. The second set Q_1 is the already computed partial frequent itemsets associated to its brother s_1. This recursive processing is performed until getting a success of a stop test. Once the recursive calls are finished, Q_1 and Q_e corresponding respectively to the maximal itemsets of s_1 and s_e are returned, and a composition, the reverse operation of the inheritance, is performed by adding 1 to the head of all elements of Q_1 and e to the head of all elements of Q_e. The union of these two new itemsets is returned.

The second part of the algorithm concerns the stop tests. There are four kinds of exit cases. The first one is the classical frequency cut. The function frequency computes the frequency of a boolean vector, representing thus a set of transactions. It is exactly the number of 1 present in the vector. Unlike existing methods, this information is computed on the fly during the generation of vectors. As will be explained in the experimental section, each vector of the tree is a node in the BDD representing the tree. If a vector is not frequent with respect to the minimum support, all the itemsets that can be generated from this node are cut, since they cannot be frequent. Indeed, the function visits all the elements of the lattice presented in Figure 1 following this order : 1111, 111e, 11e1, 11ee, ..., eee1, eeee. This corresponds to all leaves from left to right of the tree in Figure 2. If a node located at path $e1$ is not frequent, then $e1e1$ is also not frequent, since this node s and its son s_e have the same value. Consequently, all the itemsets $e1e1e2$ such that $c_2, c_3 \in \{1, \varepsilon\}$ are also not frequent, because $e111, e11e, e1e1, e1ee \leq e1ee$. Thus the frequency of those four itemsets is less than the frequency of $e1ee$ and by the way of the itemset $e1$. At this node, the function stops and does not perform the recursive calls.

The second test is a new original cut based on the notion of inheritance already explained. The function $\text{ContainsOne}(P)$ is the key point of this cut. It takes as parameter a set of hat representations and returns true if the set P contains a hat representation composed only of character 1. In a formal way:

$\text{ContainsOne}(P) = \{\begin{array}{ll}
\text{true} & \exists \exists p = c_1 \cdots c_k \in P \text{ s.t. } \forall i, c_i \neq \varepsilon \\
\text{false} & \text{otherwise}
\end{array}$

If $\text{ContainsOne}(P)$ is true then there exists $\hat{p} \in P$ such that $\hat{p} = 1 \cdots 1$ and it will be smaller (with respect to \leq) than any generated \hat{q} from the current node. Indeed, $\hat{p} \leq \hat{q} = d_1 \cdots d_k$ since $1 \leq d_1 \cdots d_k$ for all $d_i \in \{1, \varepsilon\}$. Therefore, in this case we return an empty set corresponding to the fact that there is no maximal frequent itemsets that can be generated from this node.

Finally, the two last tests correspond to the case where a leaf is reached. If a leaf inherits a non empty set P, then the path \hat{p} from the root to this leaf is not maximal. On the other hand, if $P = \emptyset$, then there is no other already computed maximal itemset \hat{q} less or equal to \hat{p} with respect to \leq. Remark that these two last cases, dealing with leaves, are particular cases of the cut due to the ContainsOne function.
Readers interested in BDDs should refer to [5, 4] for more details.

The symbol \emptyset is the empty set since there is no maximal

itemsets at the beginning. The symbol \emptyset is a cut due to the frequency

test or to the success of the test $\text{ContainsOne}(P_z)$.

The minimum support is equal to 3, and the value of P, last pa-

rameter of $\text{MFI}t\text{emsets}$ is the empty set since there is no maximal

itemsets at the beginning. The symbol I is a cut due to the frequency

test or to the success of the test $\text{ContainsOne}(P_z)$.

Theorem 1 Let f be a boolean vector corresponding to a set

of transactions T, and M a given minimum support. Calling

$\text{MFI}t\text{emsets}(f, 0, M, \emptyset)$ returns all maximal frequent itemsets

and only the maximal frequent itemsets of T.

5 Implementation and experimental results

We have implemented a prototype in C, where the main data struc-
ture used is BDDs (compact Direct Acyclic Graph data structure).

Readers interested in BDDs should refer to [5, 4] for more details.

Each vector is not stored statically, but is represented by a BDD.

All new computed vectors are pointers to their corresponding BDDs,

and these vectors share mutually sub-BDDs. The set representing

the maximal frequent itemsets is also represented by a BDD. Con-

sequently, the tree built by $\text{MFI}t\text{emsets}$ function does not really

exist and it is just a representation of its execution. Huge data sets

used in our experiments have been completely stored in main mem-

ory.

The size of the graph, i.e. the number of nodes does not depend

on the number of items [7, 8]. We should also notice that the com-

plexity of our algorithm is proportional to the size of the BDD being

operated on, and so it is more efficient for compact graphs. A tech-
nique to reduce efficiently the size of the graph is variable ordering.

Many algorithms have been studied [16, 9, 17] in the field of binary
decision diagrams. In our experiments, we have made an ordering $<$
based on their support. A variable $x_i < x_j$ if the support of x_i is less
than the support of x_j. This strategy allows us to cut as soon as possible
useless items. Another feature of our method is that no scanning
is performed to compute the frequency of a vector, since the whole
database is stored in main memory. Tables 3 and 4 show experiments
made on a Pentium 500 Mhz with 256 Mb of main memory. Table
3 gives time execution for synthetic databases2 generated by an al-
gorithm designed by the IBM Quest project and described in [3]. In
this kind of databases, T represents the average size of a transac-
tion, I the average size of maximal frequent itemsets, and D is the num-
ber of transactions. The number of items of each synthetic database
exceeds one thousand (1000) and the number of transactions is 100
thousands and 200 thousands transactions. Table 4 corresponds to the
Mushroom3 real database.

6 Related works

During the last years, a wide variety of algorithms for mining fre-
quent itemsets have been proposed. Apriori [2, 3] is certainly the
most popular algorithm, it uses an iterative way to explore the fre-
quent itemsets. MaxEclat and MaxClique [21] are algorithms based
on graph theory, they use decompositions of the lattice into sub-
lattices in order to mine maximal frequent itemsets. MaxMiner [12]
explores maximal frequent itemsets by using a lookahead pruning
strategy, PincerSearch [14] starts a bottom-up and a top-down search
in the lattice at the same time while looking for maximal frequent
patterns. GenMax [10] uses a backtracking search for enumerat-
ing all maximal frequent itemsets and eliminates progressively non-
maximal ones. Mafia [6] uses a depth first method and some prun-
ing strategies to mine maximal frequent itemsets. Depth-project [1]
uses a dynamic reordering in order to reduce the search space. A
good evaluation of the existing approach in mining maximal frequent
itemsets on both dense and sparse databases is given in [10]. Our ap-
proach differs from approaches described above, since it is based on
a compact representation of the data set. For the time being, our ap-
proach is not comparable to the methods cited above, since we do not
handle yet datasets with multiple instance transactions.

\footnotesize

2 http://www.almaden.ibm.com/cs/quest/syndata.html

7 Conclusion

We present a new approach based on boolean algebra to mine maximal frequent itemsets in transactional databases. We first consider the database as a truth table with an output boolean function. This latter is represented in memory with a graph-based data structure dedicated for boolean functions: Binary Decision Diagrams. This allows an efficient loading of transactions in main memory and so avoid making expensive scans of the database: the output function is sufficient to mine frequent patterns and it is loaded in a preprocessing step in one scan of the database. Moreover, searching the set of transactions including a given itemset is processed by making iteratively the product of the boolean function by vectors representing the items.

We have already obtained preliminary and encouraging results, but our approach is new and the algorithm can still be improved by integrating cut strategies used in known algorithms such as GenMax [10]. However, in our approach we have made the assumption that the data set does not contain several occurrences of a same transaction. In future works, we plan to extend the approach to handle data sets containing many occurrences of transactions. This approach will be tested on a real application for mining association rules in Geographic Information systems [18]. Finally, we notice that our approach allows an interesting extension in mining frequent itemsets with negation.

ACKNOWLEDGEMENTS

We would like to thank ‘R’égion Centre’ of France and the BRGM ‘Bureau des Recherches G’éologiques et Minières’ for supporting this work. We also wish to thank the anonymous referees for their comments and suggestions for improving this paper.

REFERENCES