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Theory of self-reproducing automata

Cellular automata emerged in the late 40s from the work of
Ulam and von Neumann.
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Cellular Automata

A cellular automaton (CA) is a discrete dynamical model.

Space is discrete and consists of an infinite regular grid of
cells. Each cell is described by a state among a common
finite set.

Time is discrete. At each clock tick cells change their state
deterministically, synchronously and uniformly according
to a common local update rule.
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Conway’s famous Game of Life

The Game of Life is a 2D CA invented by Conway in 1970.

Space is an infinite chessboard of alive or dead cells.

The local update rule counts the number of alive cells
among the eight surrounding cells :

• exactly three alive cells give birth to dead cells ;

• less than three alive cells kill by loneliness ;

• more than four alive cells kill by overcrowding ;

• otherwise the cell remains in the same state.
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von Neumann self-reproducing CA

A 29 states CA with von Neumann
neighborhood with wires and
construction/destruction abilities.

Self-reproduction using Universal
Computer + Universal Constructor.

(Theory of Self-Reproducing Automata, edited by Burks, 1966)
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Codd self-reproducing CA
A 8 states self-reproducing CA with von Neumann
neighborhood using sheathed wires.

Implemented by Hutton in 2009, several millions cells,
self-reproducing in 1.7× 1018 steps (estimated).

(Cellular Automata, Codd, 1968)
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Langton self-reproducing loops

Langton modifies Codd rule to permit non universal
rotation invariant self-reproduction by 86 cells in 151 steps.

(Langton, 1984)
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The XOR rule

What is a formal definition
of a self-reproducing CA?

The XOR CA

S = Z2

N =

f(xi) =
∑
i
xi (mod 2)

Is the XOR CA a fair example of a self-reproducing CA?
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An old open problem by Ulam

(Ulam, 1960)

Open Pb Does there exist a
CA and a finite configuration
that generates every
possible finite pattern?

ti
m

e
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Outline of the tutorial

Part I Computing inside cellular space

Engineering CA and configurations to achieve computational
tasks. Universalities. Massively parallel computing.

Part II Computing properties of cellular automata

Analyzing given CA to decide both immediate and dynamical
properties. Classical results.

Part III Computation and reduction: undecidability results

Reducing instances of undecidable problems to CA and
configurations to prove undecidability results. Lots of
properties of CA are undecidable.
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Going further

Section I Cellular Automata http://golly.sf.net/

http://www.lif.univ-mrs.fr/~nollinge/acuc/
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Part I
Computing

inside the cellular space

1. Cellular automata

2. A universal model of computation

3. A model of parallel computation



Cellular automata
Definition A CA is a tuple (d, S,N, f ) where S is a finite set
of states, N ⊆finite Zd is the finite neighborhood and
f : SN → S is the local rule of the cellular automaton.

A configuration c ∈ SZd is a coloring of Zd by S.

The global map G : SZd → SZd applies f uniformly and
locally:

∀c ∈ SZ,∀z ∈ Zd, F(c)(z) = f(c|z+N).

A space-time diagram ∆ ∈ SZd×N satisfies, for all t ∈ N,
∆(t + 1) = F(∆(t)).

1. Cellular automata 11/108



Space-time diagram

ti
m

e
g
o
es

u
p

S = {0,1,2}, r = 1, f(x,y, z) =
⌊
6450288690466/39x+3y+z⌋ (mod 3)

1. Cellular automata 12/108



2D cellular automata

Typical high dimension CA in this tutorial: c ∈ SZ2
.

Classical von Neumann neighborhood :

NvN = {0} × {−1,0,1} ∪ {−1,0,1} × {0}

Classical Moore neighborhood :

NMoore = {−1,0,1} × {−1,0,1}

von Neumann

Moore

1. Cellular automata 13/108



1D cellular automata

More restricted low dimension CA, easier to analyze: c ∈ SZ.

Classical first neighbors neighborhood :

Nfirst = {−1,0,1}

Classical one-way neighborhood :

NOCA = {0,1}

1D

OCA

1. Cellular automata 14/108



Configurations

The set of configurations, SZd , is uncountable. What
reasonnable countable subset can we consider?

Recursive configurations are useless, undecidability is
everywhere (Rice theorem).

Finite configurations with a quiescent state.

Periodic configurations are ultimately periodic.

Ultimately periodic configurations compromise.

Thanks to locality, one can also consider partial space-time
diagrams to study all configurations.

1. Cellular automata 15/108
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3. A model of parallel computation



Universality in higher dimensions

Construction of universal CA appeared with CA as a tool to
embed computation into the CA world. First, for 2D CA

1966 von Neumann 5 29
1968 Codd 5 8
1970 Conway 8 2
1970 Banks 5 2

A natural idea in 2D is to emulate universal boolean circuits
by embedding ingredients into the CA space: signals, wires,
turns, fan-outs, gates, delays, clocks, etc.

FSM

bus

S T O R E

2. A universal model of computation 16/108



Copper

(
Z2,

{
��,��,

}
, , δ

)

¬(α) ¬(β )

(α) (β )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(α) both north and south, or east
and west, neighbors in state
or ;

(β) at least two neighbors in state
or and either exactly one

neighbor in state or exactly
one neighbor in state .
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Copper: Intersections

2. A universal model of computation 18/108



Copper: Gates

input wire→ ← output wire

A→

B→

← A∨B

A→

B→

← A⊕B

2. A universal model of computation 19/108



Copper: Xing

⊕
⊕

⊕

B

A

(A⊕B)⊕B = A

(A⊕B)⊕A = B

A→ ← B

B→ ← A

2. A universal model of computation 20/108



Copper: AND

A→

A→ ← A∧B

B→ ← A∧B

B→

2. A universal model of computation 21/108



Copper: FSM

circuit

inputs outputs

internal state

Theorem Copper is universal for boolean circuits.

Simulating a universal device requires an ultimately periodic
configuration of infinitely many non quiescent cells.

2. A universal model of computation 22/108



The Game of Life

Theorem GoL is universal for boolean circuits.

The construction uses gliders as signals.

(Conway et al., Winning Ways Vol. 2., 1971)

2. A universal model of computation 23/108



GoL: Eater

2. A universal model of computation 24/108



GoL: Duplicator

2. A universal model of computation 25/108



GoL: Gosper’s p46 Gun

2. A universal model of computation 26/108



GoL: Xing

2. A universal model of computation 27/108



GoL: Combining

G

C

x x

G

C

x X

y

y

C

G

x

G

D

x

D

G

x

E

D

G

E

x

G

C

x C

y

x∧ y

E

G

C

x C

y

E

C

G

x∨ y
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Universality in 1D
Remark Boolean circuits are less intuitive to simulate in 1D,
but it is easy to simulate sequential models of computation
like Turing machines.

(A. R. Smith III, Simple computation-universal cellular spaces, 1971)

1971 Smith III 18
1987 Albert & Culik II 14
1990 Lindgren & Nordhal 7
2004 Cook 2

A cellular automaton is Turing-universality if

... What exactly
is the formal definition? What is a non universal CA?

A consensual yet formal definition is unknown and seems
difficult to achieve. (Durand & Roka, 1999)
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(A. R. Smith III, Simple computation-universal cellular spaces, 1971)

1971 Smith III 18
1987 Albert & Culik II 14
1990 Lindgren & Nordhal 7
2004 Cook 2

A cellular automaton is Turing-universality if... What exactly
is the formal definition? What is a non universal CA?

A consensual yet formal definition is unknown and seems
difficult to achieve. (Durand & Roka, 1999)
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TM à la Smith III

B B (q0,a) a B
B B a (q1,B) B
B B (q1,b) B B
B (q0,B) b B B
B B (q0,a) B B
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TM à la Lindgren & Nordhal

B • B • a q0 • a • B
B ↔ B ↔ a ↔ q0 a ↔ B
B • B • a • q1 B • B
B ↔ B ↔ a q1 ↔ B ↔ B
B • B • q1 b • B • B
B ↔ B q1 ↔ b ↔ B ↔ B
B • B q0 • b • B • B
B ↔ B ↔ q0 b ↔ B ↔ B
B • B • q0 a • B • B
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Universality of Rule 110 à la Cook
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Cook: Details. . .

Uses huge particles and collisions. . .

Theorem Rule 110 is Turing-universal.
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Another path to universality

Remark Boolean circuits are not sequential and can also
simulate parallel models of computation.

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

FSM

This leads to a stronger notion of intrinsic universality on
CA, the ability to simulate any CA.
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Bulking classifications
Idea define a quasi-order on cellular automata, equivalence
classes capturing behaviors.

Definition A CA A is algorithmically simpler than a CA B if
all the space-time diagrams of A are space-time diagrams of
B (up to uniform state renaming).

Formally, A⊆ B if there exists ϕ : SA → SB injective such
that ϕ ◦GA = GB ◦ϕ.

That is, the following diagram commutes:

C
ϕ

---------------------------------------------------------------------------------------------------------------→ ϕ(C)

GA
y yGB

GA(C) ---------------------------------------------------------------------------------------------------------------→
ϕ

ϕ(GA(C))
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Bulking quasi-order

Quotient the set of CA by discrete affine transformations,
the only geometrical transformations preserving CA.

The 〈m,n,k〉 transformation of A satisfies:
GA〈m,n,k〉 = σk ◦ om ◦GnA ◦ o−m .

A A〈4,4,1〉

Definition The bulking quasi-order is defined by A à B if
there exists 〈m,n,k〉 and 〈m′, n′, k′〉 such that

A〈m,n,k〉 ⊆ B〈m′,n′,k′〉 .
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The big picture

⊥

U

Nil σ -Per (Zp,+)· · ·

(Zp·q,+)

UR

lvl 0

lvl 1

no recursive “U-1” lvl

Ult Per

Rev

Surj
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Intrinsic universality

Definition A CA U is intrinsically universal if it is maximal
for à, i.e. for all CA A, there exists α such that A⊆Uα.

Theorem There exists Turing universal CA that are not
intrinsically universal.

where Turing universality is obtained in a very classical way to ensure

compatibility with your own definition.

Theorem Boolean circuit universal 2D CA are also
intrinsically universal.

(Delorme et al., 2011)
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Using boolean circuits

Every 2D intrinsically universal CA can be converted to a
1D intrinsically universal CA [Banks 1970].

FSM FSM FSM FSM FSM FSM FSM FSM FSM FSM FSM slice

Cut slices of a periodic configuration, catenate them
horizontally, use the adequate neighborhood.

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

FS
M

The neighborhood can be transformed into radius 1 at the
cost of increase of the number of states.
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Using highly parallel Turing machines

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

table ← ↓ → table ← ↓ → table ← ↓ →

Use one Turing-like head per macro-cell, the moving
sequence being independent of the computation.
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More intricate: 6 states

A 6 states intrinsically universal CA of
radius 1 embedding boolean circuits
into the line.

left Op

right Op
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Parallel language recognition
In the 70s CA have been studied as a model of massive
parallelism, in particular as language recognizers.

A CA (S,N, f ) recognizes a language L ⊆ Σ∗ in time t(n)
with border state # and accepting states Y ⊆ S if for each
u ∈ Σ∗, starting from the configuration ω#u#ω, at time
t(|u|) the state of cell 0 is in Y if and only if u ∈ L.

Real time: t(n) = n

Linear time: t(n) = αn

u

?

t(|u|)
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Example: palindromes

Recognizing palindromes in real time with 16 states.

# b a a b a a a b a a b #

# → (b,a) (a,b) (a,a) (b,a) (a,a) (a,b) (a,a) (b,a) (a,b) ← #

# → (b,a) (a,a) (a,a) (b,b) (a,a) (a,a) (a,b) ← #

# → (b,a) (a,b) (a,a) (b,a) (a,b) ← #

# → (b,a) (a,a) (a,b) ← #

# → (b,b) ← #

# Y #

# Y #

# Y #

# Y #

# Y #

# Y #

# b a a a a b b #

# → (b,a) (a,a) (a,a) (a,b) (a,b) ← #

# → (b,a) (a,b) (a,b) ← #

# → (b,b) ← #

# N #

# N #

# N #

# N #
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Real time vs Linear time

Theorem Every language recognized in time t(n) = n+ T(n)
is recognized in time t(n) = n+ T(n)/k for all k. The cost of
acceleration is paid using more states.

Same techniques as for Turing machine acceleration.

Theorem[Ibarra] Every language recognized in linear time
is recognized in real time if and only if the class of real time
langages is closed by mirror image.

Open Pb Does Real time = Linear time?
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Firing Squad Synchronization Pb

CA can also solve purely parallel tasks.

Definition A CA solves the FSSP if for all
n > 0 starting from #GBn−1# it eventually
enters #Fn# and the fire state F never
appears before.

Theorem[Minksy] A CA solves FFSP in
time 3n− 1 with 15+1 states.
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Mazoyer’s solution

Remark No CA can solve the FSSP in
time less than 2n− 2.

Theorem[Mazoyer 1984] A CA
solves FSSP in optimal time with
6+1 states.
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Cellular automata
Definition A CA is a tuple (d, S, r , f ) where S is a finite set
of states, r ∈ N is the neighborhood radius and
f : S(2r+1)d → S is the local rule of the cellular automaton.

A configuration c ∈ SZd is a coloring of Zd by S.

The global map G : SZd → SZd applies f uniformly and
locally:
∀c ∈ SZ,∀z ∈ Zd, F(c)(z) = f(c(z − r), . . . , c(z + r)).

A space-time diagram ∆ ∈ SZd×N satisfies, for all t ∈ N,
∆(t + 1) = F(∆(t)).
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Discrete dynamical systems

Definition A DDS is a pair (X, F) where X is a topological
space and F : X → X is a continuous map.

Definition The orbit of x ∈ X is the sequence (Fn(x))
obtained by iterating F .

In this tutorial, X = SZ is endowed with the Cantor topology
(product of the discrete topology on S), and F is a
continuous map invariant by translation.
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Topology
Definition A topological space is a pair (E,O) where
O ⊆ P(E) is the set of open subsets satisfying:

• O contains both ∅ and E;

• O is closed under union;

• O is closed under finite intersection.

S is endowed with the discrete topology: O = P(S).

SZd is endowed with the Cantor topology: the product
topology of the discrete topology.

O =
{∏

Xi
∣∣∣Xi ⊆ S ∧ Card({i|Xi ≠ S}) < ω

}

Cantor topology is metric and compact.
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Cylinders

Definition The cylinder [m] ⊆ SZd with radius r á −1
generated by the pattern m ∈ S[−r ,r]d is

[m] =
{
c ∈ SZd

∣∣∣∀p ∈ Zd,
∥∥p∥∥∞ à r ⇒ c(p) =m(p)}

0−r r

Proposition Cylinders are a countable clopen generating
set.

Notation [m] ≺ [m′] means [m] is a sub-cylinder of [m′],
i.e. [m′] ⊂ [m].
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Metric

Proposition Cantor topology is metric

∀c, c′ ∈ SZd , δ(c, c′) = 2−min
{
‖p‖∞

∣∣∣cp≠c′p}

0−6 3 4 6

c

c′

δ(c, c′) = 1/8

Remark Open balls of δ exactly correspond to cylinders.
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Compact

Proposition Every sequence of configurations (ci) ∈ SZ
dN

admits a converging subsequence.

Proof by extraction:

By recurrence, let
(
c0
i

)
= (ci).

It is alway possible to find:

• a cylinder [mn] of radius n and

• an infinite subsequence
(
cn+1
i

)
de

(
cni+1

)
such that for all i ∈ N, cn+1

i ∈ [mn].

By construction [mn+1] ⊂ [mn] and
(
ci+1

0

)
is a converging

subsequence of (ci) (to
⋂
[mi]): δ(cn+1

0 , cn+2
0 ) à 2−n.
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König trees
Remark Cantor topology is essentially combinatorial.

Remark Main properties can be obtained using extraction.

König’s Lemma Every infinite tree with finite branching
admis an infinite branch.

Definition The König tree AC of a set of configurations
C ⊆ SZd is the tree (VC , EC) where

VC = {[m]|C ∩ [m] ≠∅}
EC =

{
([m], [m′])

∣∣[m] ≺ [m′]∧ r([m′]) = r([m])+ 1
}

The root of the tree is the cylinder [] = SZd of radius −1.
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Toppings

The König tree of a non empty set of configurations is an
infinite tree with finite branching.

...

...
...

...
...

...

To each infinite branch ([mi]) is associated a unique
configuration

⋂
[mi].

Definition The topping AC of a König tree is the set of
configurations associated to its infinite branches.
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König topology

The König topology is defined by its closed sets: toppings
of König trees.

The complementary of a closed set is the union of
cylinders that are not nodes of the tree.

Theorem Cantor and König topologies are the same.

Most topological concepts can be explained using trees:

• dense sets;

• closed sets with non empty interior;

• compacity;

• Baire’s theorem.
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Continuity

Proposition clopen sets are finite unions of cylinders.

Definition A mapping G : SZd → SZd is local in p ∈ Zd if
there exists a radius r such that:

∀c, c′ ∈ SZd ,
[
c|r
]
=
[
c′|r
]
⇒ G(c)p = G(c′)p .

Proposition A mapping G : SZd → SZd is continuous if and
only if it is local in every point.
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Curtis-Hedlund-Lyndon Theorem

Definition The translation σk : SZd → SZd with vector k ∈ Zd

satisfies:

∀c ∈ SZd ,∀p ∈ Zd, σk(c)p = cp−k .

Theorem[Hedlund 1969] Continuous mapping commuting
with translations are exactly global maps of CA.

Thus CA can be given by there global map.

Remark CA have a dual nature: discrete dynamical systems
with a description as finite automata.
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Symbolic dynamics

A central object in symbolic dynamics is subshift.

Definition A subshift of SZd is a set of configurations both
closed and invariant by translation.

Ex . . . abaababaaa . . .

X =
{
c ∈ {a,b}Z

∣∣∣∀p ∈ Z, cp = b ⇒ cp+1 = a
}

Remark Subshifts are also very natural when studying CA.
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Langage of a subshift

Definition The language L(X) of a subshift X is the set of
finite patterns appearing in X.

Proposition A subshift is characterized by its language.

L =
{
c ∈ SZd

∣∣∣∀r á 0,∀m ∈ S[−r ,r]d ,m ≺ c ⇒m ∈ L
}

Warning It might be that L(L) ≠ L.
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Forbidden words

Proposition A subshift is characterized by the set of its
forbidden words: the complementary of its language.

Proposition Subshifts are in bijection with minimal sets of
forbidden words (for set inclusion).

Ex X = S{bb}
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SFT, tilings, soficity

Definition A subshift of finite type (SFT) is defined by a
finite set of forbidden words.

Proposition The set of SFT is invariant by CA preimage.

Remark SFT correspond to tilings: colorings with local
uniform constraints.

Definition A sofic subshift is the image of a SFT by a CA.

Proposition 1D sofic subshifts are subshifts that admit a
regular language of forbidden words.
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Configurations

Definition A configuration c ∈ SZd is periodic, with period
(pi) ∈ N∗d, if

∀p ∈ Zd,∀(ki) ∈ Zd, c(p) = c(p + (k1p1, . . . , kdpd)) .

Notation. Gp denotes G restricted to periodic
configurations.

Definition A configuration c ∈ SZd is s-finite if s is quiescent
(f(s, . . . , s) = s) and

Card
({
p ∈ Zd

∣∣∣c(p) ≠ s}) < ω .

Notation. Gf denotes G restricted to s-finite configurations.
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Immediate properties

Definition A CA G : C → C is:

• injective if ∀x,y ∈ C, F(x) ≠ F(y);
• surjective if ∀x ∈ C, F−1(x) ≠∅;

• bijective if both injective and surjective.

Definition A bijective CA G is reversible if there exists a CA
H such that H = G−1.

Corollary Every bijective CA is reversible.
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Garden of Eden and orphans

Definition A configuration of a CA is a garden of Eden if it
has no preimage.

Proposition A CA is surjective if and only if it has no
garden of Eden.

Definition Given a CA, a pattern m ∈ S[−r ,r]d is an orphan if
m has no preimage.

Proposition A CA is surjective if and only if it has no
orphan.
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Moore-Myhill

Theorem[Moore 1962] G surjective ⇒ Gf injective.

Theorem[Myhill 1963] Gf injective ⇒ G surjective.

Corollary G injective ⇒ G bijective.

Let’s prove it!

Lemma For all d,n, s, r ∈ N, there exists k big enough so
that (

sn
d − 1

)kd
< s(kn−2r)d
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Key picture

n

n

n

n

n

n

n

n

kn

kn

kn− 2r

kn− 2r
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G surjective ⇒ Gf injective

Let G be a CA with radius r that is not injective on s-finite
configurations. There exists two patterns p1 and p2 of size
nd bordered by s on a width r with a same image. Replacing
p1 by p2 in any configuration does not change its image.

Consider square patterns of side kn. Their images are
patterns of side kn− 2r . There exists s(kn−2r)d possible
images for at most (snd − 1)kd preimages. By previous
lemma, there is an orphan thus G is not surjective.
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Gf injective ⇒ G surjective

Let G be a non surjective CA with radius r . It admits an
orphan of size nd.

Consider the set of s-finite configurations the non-quiescent
pattern of which is of side kn− 2r . There are s(kn−2r)d such
patterns. Their s-finite images have patterns of side kn. At
most (snd − 1)kd of them are not orphans. Thus two of the
configurations have a same image, G is not injective on finite
configurations.
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The big picture

G bijective ⇐⇒ G réversible ⇐⇒ G injectiveww� 6~ww ww�~ww4
Gf bijective

6=⇒
�⇐= Gp injective ⇐⇒ Gp bijective~w� ww� 6~ww

Gf surjective =⇒�

6⇐= Gp surjectiveww� 6~ww ww�~ww�

Gf injective ⇐⇒ ΛG = SZ
d ⇐⇒ G surjective

4 means true for d = 1, false for d á 2
� means true for d = 1, open for d á 2
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Examples

Proposition Gp injective ⇒ Gp bijective.

Key CA preserve periods.

Proposition Gf surjective ⇒ Gf injective.

Key Finite configurations are dense + Moore-Myhill.
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Counter-examples

Proposition ∃G surjective 6⇒ Gf surjective.

XOR rule: S = Z2, f(x,y) = x +y (mod 2).

Proposition ∃G, Gf surjective 6⇒ G injective.

controlled-XOR rule: S = {0,1} × Z2,
f((1, x), (_, y)) = (1, x +y (mod 2)) and
f((0, x), _) = (0, x).
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De Bruijn Graph
Definition The De Bruijn graph of a 1D CA (S, r , f ) is the
labelled graph (V , E) where:

• V = S2r ;

• (u, s, v) ∈ E if f(s0, . . . , s2r ) = s where
u = (s0, . . . , s2r−1) and v = (s1, . . . , s2r ).

00

01

10

11

1

0

1

1

0

1 0

0

A convenient tool to decide properties of 1D CA.
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Deciding surjectivity in 1D

Remark A CA G is surjective if and only if G
(
SZd

)
= SZd .

Lemma A 1D CA G is surjective iff L
(
G
(
SZ
))
= S∗.

Theorem[Amoroso, Patt 1972] Surjectivity 1D is decidable.

00

01

10

11

1

0

1

1

0

1 0

0
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Deciding injectivity in 1D

A 1D CA is not injective iff its De Bruijn graph contains two
distinct paths with the same biinfinite word.

00

01

10

11

1

0

1

1

0

1 0

0

If such a pair of paths exist, there exists one with ultimately
periodic paths.

Theorem[Amoroso, Patt 1972] Injectivity is decidable in 1D.
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Symbolic dynamical systems

Definition A SDS is a SDD (X, F) where X is a subshift.

x ∈ X is periodic with period n if Fn(x) = x.

x ∈ X is ultimately periodic with transitory m if Fm(x) is
periodic.

Definition Y ⊆ X is invariant if F(Y) ⊆ Y .

Definition Y ⊆ X is strongly invariant if F(Y) = Y .
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Attractors

Definition The limit set of an invariant clopen V ⊆ X is

ΛF(V) =
⋂
n∈N

Fn(V)

Definition An attractor is the limit set of a non-empty
invariant clopen.

Definition The bassin of an attractor Y is

BF(Y) =
{
x ∈ X

∣∣∣∣ lim
n→∞

δ(Fn(x), Y) = 0
}

Definition A minimal attractor is an attractor with no strict
subset which is also an attractor.
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Limit set

Definition The limit set of a CA
(
SZd , F

)
is the set of

configurations than can appear at all time:

ΛF =
⋂
n∈N

Fn
(
SZ

d)
.

Proposition The limit set is a non empty subshift.

Fn
(
SZd

)
is a non empty subshift and Fn+1

(
SZd

)
⊆ Fn

(
SZd

)
.

Proposition The limit set is the maximal attractor.
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Biinfinite space-time diagrams

Definition A biinfinite space-time diagram ∆ ∈ SZd+1

satisfies:
∀t ∈ Z, ∆(t + 1) = F(∆(t)) .

Proposition The limit set is the set of configurations of
biinfinite space-time diagrams.

Every element x of the limit set admits an infinite chain of
predecessors x = x0, x0 = F(x1), . . . , xn = F(xn+1), . . .
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Nilpotency

Definition A CA with quiescent state q is nilpotent if every
configuration converges in finite time to the
q-monochromatic configuration.

Proposition A CA is nilpotent if and only if its limit set is a
singleton.
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SFT example

Let F be the 1D CA with radius 1 and local rule

f(x,y, z) =

1 si (x,y, z) = (1,0,0)
0 sinon

.

ΛF = F
(
SZ
)
= S{11,101}
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Max example

Let F be the 1D CA with radius 1 and local rule

f(x,y, z) =max(x,y, z) .

ΛF = ω0ω +ω1ω +ω01ω +ω10ω +ω10∗1ω

ΛF = S{01n0|n∈N}

ΛF is countable and not SFT.
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Majority example

Let F be the 1D CA with radius 1 and local rule

f(x,y, z) =maj(x,y, z) .

Exercise What is ΛF ?

Hint Consider 01 · 00+ (11+00+)∗ 00+ · 10.
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Language

Proposition For every CA, L(ΛF) =
⋂
n∈N L

(
Fn

(
SZd

))
.

Corollary If ΛF is a SFT then ∃nΛF = Fn
(
SZd

)
.

Consider the first time of appearance of each minimal
forbidden word.

Proposition If ΛF = Fn
(
SZd

)
then ΛF is sofic.

If F is a CA, so is Fn.
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Cardinality

Proposition[CPY89] If ΛF contains two distinct elements
then it contains a non spatially periodic element.

Corollary A limit set is either a singleton either an infinite
set.
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Recursivity

Proposition L(ΛF) is co-recursively enumerable.

Orphans of Fn can be tested thus enumerated.

Proposition[Hurd90] For every co-recursively enumerable
language L ⊆ Σ∗ there exists a CA F , a rational language
R ⊆ S∗ and a morphism ϕ : S∗ → Σ∗ such that

ϕ(L(ΛF)∩ R) = L .

Corollary There exists CA with non recursive limit sets.
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Non rational context free

Proposition[Hurd87] There exists a 1D CA whose limit set
has a non rational context free language.

Exercise Build one!

Hint Consider bouncing particles and walls.
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Context sensitive non context free

Proposition[Hurd87] There exists a 1D CA whose limit set
has a non context free context sensitive language.

Exercise Build one!

Hint Complexify previous example.
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Non recursive 2D

Proposition There exists a 2D CA whose limit set has a non
recursive language.

Exercise Build one!

Hint Consider space-time diagrams of Turing machines.
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Non recursive 1D

Proposition[CPY89] There exists a 1D CA whose limit set
has a non recursive language.

Exercise Build one!

Hint Consider a CA that can simulate every CA.
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Surjectivity and injectivity

Notation FΛ is the restriction of F to ΛF .

Proposition FΛ is surjective.

Proposition If ∀nΛF ≠ Fn
(
SZd

)
then

∀n∃c ∀i < nF i(c) 6∈ ΛF ∧ Fn(c) ∈ ΛF .

Proposition[Taati 2008] If FΛ is injective then

∃nΛF = Fn
(
SZd

)
.
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Bijectivity

Proposition[Taati 2008] If a CA F is injective on its limit
set, the limit set is a SFT and there exists a CA G with the
same limit set and such that GΛ = F−1

Λ .

Let H be a CA such that HΛ = F−1
Λ and let G = Hn+1 ◦ Fn. It

holds
ΛF =

{
c
∣∣Gn(Fn(x)) = x} .
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Stability

A CA is stable if its limit set is obtained in finite time,
otherwise it is unstable.

A subshift is stable if it is the limit set of a stable CA.

A subshift is unstable if it is the limit set of an unstable CA.

Open Pb Can a subshift be both stable and unstable ?
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The Domino Problem (DP)
“Assume we are given a finite set of square plates of the
same size with edges colored, each in a different manner.
Suppose further there are infinitely many copies of each
plate (plate type). We are not permitted to rotate or reflect
a plate. The question is to find an effective procedure by
which we can decide, for each given finite set of plates,
whether we can cover up the whole plane (or, equivalently,
an infinite quadrant thereof) with copies of the plates
subject to the restriction that adjoining edges must have
the same color.”

(Wang, 1961)

a b c d
ab

a c

d

d
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Tiling with a fixed tile

B q0 B B

a

a

a′

q a
q′

a′

q′ a′

a′

q a
q′

a′

q′ a′
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Finite tiling

B

a

q0 B

qf a

B

a

a

a

a′

q a
q′

a′

q′ a′

a′

q a
q′

a′

q′ a′
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Tiling with diagonal constraint
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Undecidability of DP

Theorem[Berger64] DP is recursively undecidable.

Remark To prove it one needs aperiodic tile sets.

Idea of the proof

Enforce an (aperiodic) self-similar
structure using local rules.

Insert a Turing machine
computation everywhere using the
structure.

Remark Plenty of different proofs!
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The nilpotency problem (Nil)

Definition A DDS is nilpotent if
∃z ∈ X, ∀x ∈ X, ∃n ∈ N, Fn(x) = z.

Given a recursive encoding of the
DDS, can we decide nilpotency?

A DDS is uniformly nilpotent if
∃z ∈ X, ∃n ∈ N, ∀x ∈ X, Fn(x) = z.

Given a recursive encoding of the
DDS, can we bound recursively n?
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Nilpotency and limit set

Definition The limit set of a CA F is the non-empty subshift

ΛF =
⋂
n∈N

Fn
(
SZ
)

Remark ΛF is the set of configurations appearing in
biinfinite space-time diagrams ∆ ∈ SZ×Z such that
∀t ∈ Z, ∆(t + 1) = F(∆(t)).

Lemma A CA is nilpotent iff its limit set is a singleton.
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2D Nilpotency

2D Nilpotency
Input: a CA (S,N, f ).
Question: Is F nilpotent?

Theorem[CPY89] Nilpotency is undecidable in 2D.

Prove than DP àm Nil2D.

Given a set of Wang tiles τ, build a CA with alphabet τ ∪ {⊥}
where ⊥ is a spreading tiling error state.
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Surjectivity/Injectivity 2D
Theorem[Kari 1990] Both injectivity and surjectivity are
undecidable in 2D.

For surjectivity, using Moore-Myhill, prove that injectivity on
finite is undecidable in 2D.
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Nilpotency 1D
A state ⊥ ∈ S is spreading if f(N) = ⊥ when ⊥ ∈ N.

A CA with a spreading state ⊥ is not nilpotent iff it admits a
biinfinite space-time diagram without ⊥.

A tiling problem Find a coloring ∆ ∈ (S \ {⊥})Z2
satisfying

the tiling constraints given by f .

≡

Theorem[Kari92] NW-DP àm Nil
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Revisiting DP

Theorem[Kari92] NW-DP is recursively undecidable.

Remark Reprove of undecidability of DP with the
additionnal determinism constraint!

Corollary Nil is recursively undecidable.
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More on limit sets

Theorem[Kari 1994] The set of CA whose limit sets satisfy a
non trivial property is never recursive.

Theorem[Guillon Richard 2010] Still true with a fixed
alphabet!

Definition A CA F is weakly nilpotent if

∀c∀p∃t0∀t > t0 F t(c)p = q .

Theorem[Guillon Richard 2008] A CA is weakly nilpotent
if and only if it is nilpotent.
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The periodicity problem (Per)

Definition A DDS is periodic if
∀x ∈ X, ∃n ∈ N, Fn(x) = x.

Given a recursive encoding of the
DDS, can we decide periodicity?

A DDS is uniformly periodic if
∃n ∈ N, ∀x ∈ X, Fn(x) = x.

Given a recursive encoding of the
DDS, can we bound recursively n?
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Undecidability results

Theorem Both Nil and Per are recursively undecidable.

The proofs inject computation into dynamics.

Undecidability is not necessarily a negative result:
it is a hint of complexity.

Remark Due to universe configurations both nilpotency
and periodicity are uniform.

The bounds grow faster than any recursive function: there
exists simple nilpotent or periodic CA with huge bounds.
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The Immortality Problem (IP)

“(T2) To find an effective method, which for every
Turing-machine M decides whether or not, for all tapes I
(finite and infinite) and all states B, M will eventually halt if
started in state B on tape I” (Büchi, 1962)

Theorem[Hooper66] IP is recursively undecidable.

Theorem[KO2008] R-IP àm TM-Per àm Per

Theorem[KO2008] R-IP is recursively undecidable.
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Open Problem

Definition A CA F is positively expansive if

∃ε > 0, ∀x ≠ y, ∃n á 0, d
(
Fn(x), Fn(y)

)
á ε

ε

Question Is positive expansivity decidable?
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