## Two-by-two Substitution Systems and the Undecidability of the Domino Problem

N. Ollinger (LIF, Aix-Marseille Université, CNRS, France)


## The Domino Problem

"Assume we are given a finite set of square plates of the same size with edges colored, each in a different manner. Suppose further there are infinitely many copies of each plate (plate type). We are not permitted to rotate or reflect a plate. The question is to find an effective procedure by which we can decide, for each given finite set of plates, whether we can cover up the whole plane (or, equivalently, an infinite quadrant thereof) with copies of the plates subject to the restriction that adjoining edges must have the same color."

(Wang, 1961)

## Bits of History: the AEA case

- 1961. Wang and Büchi consider the classical decision problem for AEA first-order formulae. Wang introduces DP. Büchi introduces the Immortality Problem.
- 1961. The AEA entscheidungsproblem is proved undecidable by Kahr-Moore-Wang by considering a simpler problem with dominos.
- 1964. Berger, a student of Wang, proves the undecidability of DP providing as a corollary a new proof of the undecidability for AEA.
- 1965. Hooper, a student of Wang, proves the undecidability of IP providing as a corollary a new proof of the undecidability for AEA.


## Existing Constructions

- Two main type of related activity in the literature:
(1) construct aperiodic tile sets (small ones);
(2) give a full proof of the undecidability of DP (implies (1)).
- From 104 tiles (Berger, 1964) to 13 tiles (Čulik, 1996) aperiodic sets.
- Seminal self-similarity based proofs:
- Berger, 1964 (20426 tiles, a full PhD thesis)
- Robinson, 1971 (56 tiles, 17 pages, long case analysis)
- Durand et al, 2007 (Kleene’s fixpoint existence argument)
- Tiling rows seen as transducer trace based proof:
- Kari, 2007 (affine maps, short concise proof, reduction from IP)


## Motivation for a New Construction

- Undecidability of DP proof technic proved useful for variations of DP for undecidability in dynamical systems like Cellular Automata: Kari, 1989, 1992, Durand, 1994, Mazoyer and Rapaport, 1997.
- Teaching the proofs in a uniform textbook framework:
- Affine technics have dependencies on IP, also they have not yet been adapted to all the constructions.
- Self-similarity constructions have big tile sets and/or complex proofs involving tedious case-based reasoning.
- We propose a new self-similarity based construction building on classical proof schemes with concise arguments and few tiles.


## Au menu

1. Patterns, colorings, and tilings
2. $2 \times 2$ substitutions
3. A Set of 104 tiles
4. This set is aperiodic
5. Enforcing any substitution (sketch)
6. Undecidability of the Domino Problem (sketch)

This is a mix of different tools and ideas from:
[Berger 64] The Undecidability of the Domino Problem
[Robinson 71] Undecidability and nonperiodicity for tilings of the plane
[Grünbaum Shephard 89] Tilings and Patterns, an introduction
[Durand Levin Shen 05] Local rules and global order, or aperiodic tilings

Patterns, colorings and tilings

## Foreword

- Formal stuff stand on white background.
- Pictures stand on black background.

- This talk is very geometrical: we draw pictures on the Euclidian plane.
- Letters might be represented as colors or even as colored pictures.



## Patterns

A pattern $\mathcal{P}$ is a subset of $\mathbb{Z}^{2}$

$$
\mathcal{P}+u=\{z+u \mid z \in \mathcal{P}\}
$$

Powers of two patterns $\boxplus^{i}$ $\boxplus^{i}=\left\{x \in \mathbb{Z} \mid 0 \leqslant x<2^{i}\right\}^{2}$

Two-by-two scaling $\square(\mathcal{P})$
$\square(\mathcal{P})=\{2 z+\mathrm{c} \mid z \in \mathcal{P}, \mathrm{c} \in \boxplus\}$


## Colorings

A coloring $\mathcal{C}: \mathcal{P} \rightarrow \Sigma$ covers a pattern $\mathcal{P}$ with letters of a finite alphabet $\Sigma$.
$\mathrm{u} \cdot \mathrm{C}$ is the translation of $\mathcal{C}$, by a vector $u \in \mathbb{Z}^{2}$, satisfying: $\forall z \in \mathcal{P}, \quad u \cdot \mathcal{C}(z+u)=\mathcal{C}(z)$

C occurs in $\mathcal{C}^{\prime}$, denoted $\mathcal{C} \prec \mathcal{C}^{\prime}$ if
$\exists \mathfrak{u} \in \mathbb{Z}^{2}, \quad \mathcal{C}=\left(\mathfrak{u} \cdot \mathcal{C}^{\prime}\right)_{\mid S u p(e)}$



## (Quasi-)Periodicity

$\mathcal{C}$ is periodic with period $u$ if $\mathcal{C}_{\mid \mathcal{P}}=(\mathrm{u} \cdot \mathcal{C})_{\mid \mathcal{P}}$
where $\mathcal{P}=\operatorname{Sup}(\mathcal{C}) \cap \operatorname{Sup}(u \cdot \mathcal{C})$.

A set of colorings is aperiodic if all its element have no periodicity vector but 0 .
$\mathcal{C}$ is quasi-periodic if $\forall \mathcal{P} \subseteq_{\text {finite }} \operatorname{Sup}(\mathcal{C}) \exists c \forall u$ $(u \cdot \mathcal{C})_{\mid \mathcal{P}}=\mathcal{C}_{\mid \mathcal{P}} \rightarrow \exists v \leqslant c$ $v \neq 0 \wedge(v \cdot u \cdot \mathcal{C})_{\mid \mathcal{P}}=\mathcal{C}_{\mid \mathcal{P}}$


## Subshifts

Let $X$ be the set of colorings with support $\mathbb{Z}^{2}$. Endow $X$ with the product topology of the discrete topology on $\Sigma$.

This topology is compatible with the metric d defined for all colorings $\mathcal{C}, \mathcal{C}^{\prime} \in X$ by $d\left(\mathcal{C}, \mathcal{C}^{\prime}\right)=2^{-\min \left\{z \mid, \mathcal{C}(z) \neq \mathcal{C}^{\prime}(z)\right\}}$.

Such topology is compact and perfect. A subset of $X$ both topologically closed and closed by translations is a subshift from symbolic dynamics.

Tilings are the subshifts of finite type: subshifts defined by a finite set of forbidden words.

## Wang tiles

- A Wang tile is a unit square with colored edges.

- A tile set is a finite set of Wang tiles.
- Tiling is done with translations only (no rotation) by matching colors along edges.

$$
\tau \subseteq C^{4}
$$




Tiling the whole plane with Wang tiles

## Domino Relation

A domino relation $\mathcal{R} \subseteq Y \times Y$ :
$\forall a, b, c, d \in Y^{4}$
$\mathrm{aRc} \wedge \mathrm{aRd} \wedge \mathrm{bRd} \rightarrow \mathrm{bRc}$


Right color: $(a, b) \sim_{\mathcal{R}}|a\rangle$
Left color: $(a, b) \sim_{\mathcal{R}}\langle b|$
Degenerated pair:
$\langle\mathrm{a}|=\langle\mathrm{b}| \wedge|\mathrm{a}\rangle=|\mathrm{b}\rangle$
$\langle a| \quad a \quad|a\rangle$
$a$

A tile set $\tau$ is a triple $(T, \mathcal{H}, \mathcal{V})$

## Aperiodicity and DP

- If a tile set admits a periodic tiling then it admits a biperiodic tiling.
- Biperiodic tilings are recursively enumerable.
- If a tile set does not tile the plane, there exists a bound on the size of square patterns it can tile.
- Every tile set admits a quasi-periodic tiling.
- We will construct an aperiodic tile set that produces only quasiperiodic tilings.
- In dimension 1, the simplest non periodic biinfinite words are sturmian words. Substitutions is a classical tool to generate them.


## $2 \times 2$ substitutions

## Substitutions

- Geometric substitutions provide a convenient recursive way to define aperiodic colorings of the plane.

- Subtle geometrical arguments are required: discuss dissection, inflation, scaling factor, etc.
- The classical L (or chair) substitution.



## $2 \times 2$ Substitutions

- A $2 \times 2$ substitution system maps a finite alphabet to $2 \times 2$ squares of letters on that alphabet.

$$
s: \Sigma \rightarrow \Sigma^{\boxplus}
$$

- The substitution is iterated to generate bigger squares.

$$
S: \Sigma^{\mathcal{P}} \rightarrow \Sigma^{\square(\mathcal{P})}
$$

$\forall z \in \mathcal{P}, \forall c \in \boxplus$,

$$
S(\mathcal{C})(2 z+c)=s(\mathcal{C}(z))(c)
$$

$$
S(u \cdot \mathcal{C})=2 u \cdot S(\mathcal{C})
$$



Another L-style substitution

## Pattern closure?

- What is a coloring of the plane generated by a substitution?
- One possibility is to consider a closure of generated patterns up to translations.

- Difficult to check...
$\mathcal{L} \in X_{s}$ if
$\forall \mathcal{C}^{\prime} \prec_{\text {finite }} \mathcal{C} \exists \mathrm{a}, \mathfrak{i} \mathcal{C}^{\prime} \prec S^{i}(a)$



## Limit set!

- The global map of a substitution is continuous.

$$
X=\Sigma^{\mathbb{Z}^{2}}
$$

- Take the limit set of iterations of the global map closed up to translations.

- More colorings!

$$
\begin{aligned}
& \Lambda_{S}=\bigcap_{n} \Lambda_{S}^{n} \text { where } \Lambda_{S}^{0}=\Sigma^{\mathbb{Z}^{2}} \\
& \Lambda_{S}^{n+1}=\left\{u \cdot S(\mathcal{C}) \mid \mathcal{C} \in \Lambda_{S}^{n}, u \in \boxplus\right\}
\end{aligned}
$$

## History

An history for a coloring $\mathcal{C} \in X$ is a sequence $\left(\mathcal{C}_{i}, u_{i}\right) \in(X \times \boxplus)^{\mathbb{N}}$ such that $\mathcal{C}_{0}=\mathcal{C}$ and $\mathcal{C}_{i}=u_{i} \cdot S\left(\mathcal{C}_{i+1}\right)$, for all $i \in \mathbb{N}$.

Proposition 1. The set $\Lambda_{S}$ is precisely the set of colorings admitting histories.
$\supseteq C_{0} \in \Lambda_{S}$
$\subseteq$ Compacity argument


History of a coloring in the limit set

## Stories

The story at position $z \in \mathbb{Z}^{2}$ for an history $\left(\mathcal{C}_{i}, u_{i}\right) \in(X \times \boxplus)^{\mathbb{N}}$ is the sequence $\left(a_{i}, v_{i}\right) \in(\Sigma \times \boxplus)^{\mathbb{N}}$ such that, for all $i \in \mathbb{N}, a_{i}=s\left(a_{i+1}\right)\left(v_{i}\right)$ and $a_{i}=\mathcal{C}_{i}\left(z_{i}\right)$ where $z_{i} \in \mathbb{Z}^{2}$ is the only position such that $z$ is an element of the pattern $\mathcal{P}_{i}=\boxplus^{i}-\sum_{j=0}^{i-1} 2^{j} u_{j}-2^{i} z_{i}$.

Finding stories of neighbors starting from a story works like incremeting an odometer.

Proposition 2. Every history can be reconstructed from 1,2 , or 4 of its stories.

## Unambiguity and aperiodicity

A substitution is aperiodic if its limit set $\Lambda_{S}$ is aperiodic.
A substitution is unambiguous if, for every coloring $\mathcal{C}$ from its limit set $\Lambda_{S}$, there exists a unique coloring $\mathcal{C}^{\prime}$ and a unique translation $u \in \boxplus$ satisfying $\mathcal{C}=u \cdot S\left(\mathcal{C}^{\prime}\right)$.

Every unambiguous substitution admits a unique history.
Proposition 3. Unambiguity implies aperiodicity.
Idea. Consider a periodic coloring with minimal period $p$, construct one of period $\mathrm{p} / 2$.

##  <br> 区ゆ

is unambiguous


## A set of 104 tiles

## Tiling Coding

A tile set $\left(\mathrm{T}^{\prime}, \mathcal{H}^{\prime}, \mathcal{V}^{\prime}\right)$ codes a tile set $(\mathrm{T}, \mathcal{H}, \mathcal{V})$, according to a coding rule $\mathrm{t}: \mathrm{T} \rightarrow \mathrm{T}^{\text {田 }}$ if t is injective and
$X_{\tau^{\prime}}=\left\{u \cdot t(\mathcal{C}) \mid \mathcal{C} \in X_{\tau}, u \in \boxplus\right\}$.
$\tau \quad \mathscr{H} / \sim \mathcal{H} \quad V / \sim \mathcal{V}$
layer 2

layer 1
new tiles 1

## Aperiodicity

A tile set $(\mathrm{T}, \mathcal{H}, \mathcal{V})$ codes a substitution $\mathrm{s}: \mathrm{T} \rightarrow \mathrm{T}^{\boxplus}$ if it codes itself according to the coding rule s.

Proposition 4. A tile set both admitting a tiling and coding an unambiguous substitution is aperiodic.

Idea. $X_{\tau} \subseteq \Lambda_{S}$ and $X_{\tau} \neq \emptyset$.

## Coding Scheme 2

- Better scheme: not strictly increasing the number of tiles.
- Problem. it cannot encode any layered tile set, constraints between layer 1 and layer 2 are checked edge by edge.
- Solution. add a third layer with one bit of information per edge.
layer $2 \mathcal{H}$-colors $\mathcal{V}$-colors corners
layer 2
layer 1
new tiles




## Layer 1. initialization

- 4 tiles to group tiles $2 \times 2$.
- Alternate red/blue vertically.
- Alternate light/dark horizontally.
- Simple and very constrained matching rule.



## Layer 2. grids

- Tiles carry wires, two on each edge.

- Three kinds of tiles: X, H, V.
- Pairs of wires should be compatible.

- Matching rule: wire colors should match.
- Restrict layer 1 by kind.



## Layer 3. corner-ifier

- One more bit of information per edge to find corners.
- 5 different tiles with arrows.
- Matching rule: arrows should match along edges.
- Restrict arrows by kind.
 -
- Important: red wire is a one-way lane.



## Canonical substitution

- Copy the tile in the SW corner but for layer 1.
- Put the only possible X in NE that carry layer 1 of the original tile on SW wire.
- Propagate wires colors.
- Let H et V tile propagate layer 3 arrows.
- The substitution is injective.
example:



The tileset can tile the whole plane...

..extend ad lib!

This tile set is aperiodic

## Roadmap of the proof

1. The tile set admits a tiling;
2. The substitution is unambiguous;
3. The tile set codes the substitution.
4. Apply proposition 4 to conclude.

## The tile set admits a tiling



## The substitution is unambiguous

- It is injective and the projectors have disjoined images.



each tiling from this set is an image of the canonical substitution.

each tiling from this set is an image of the canonical substitution.


each tiling from this set is an image of the canonical substitution.

each tiling from this set is an image of the canonical substitution.

we just remove wires and squarifiers that propagate


Layers 2 \& 3
the preimage of each tiling is a (valid) tiling.

## Comparing to Literature

- Although it is no well known, Berger PhD dissertation already contains an aperiodic of 104 tiles. This tile set does not appear in the AMS memoir. The tile set also has 3 layers, the first two being isomorphic. The third level is different leading to a different set of tilings and more tedious proof.
- The well known 56 tiles set of Robinson can be found by merging all three colors different from light red into white: this way you obtain 56 tiles isomorphic to Robinson's ones. The set generates more tilings, leading to subtle synchronization (alignment) problems.


## Enforcing any substitution

## Encode substitutions

- Select the red color of wires: the sequence of squares encode a tree.
- Put a letter on each square.
- Apply the substitution rule to
 go from one square to the next one.
- Up to projection the substitution limit set is encoded in the set of tilings.

$$
\mathrm{b}=\mathrm{s}(\mathrm{a})\binom{1}{1}
$$

a

## Substitution enforcement

Let $\pi$ map every tile of $\tau\left(s^{\prime}\right)$ to $s^{\prime}(a)(u)$ where $a$ and $u$ are the letter and the value of $\boxplus$ on layer 1 .

Theorem 2. Let $s^{\prime}$ be any substitution system. The tile set $\tau\left(s^{\prime}\right)$ enforces $s^{\prime}: \pi\left(X_{\tau\left(s^{\prime}\right)}\right)=\Lambda_{s^{\prime}}$.

Idea. Every tiling of $\tau\left(s^{\prime}\right)$ codes an history of $S^{\prime}$ and every history of $S^{\prime}$ can be encoded into a tiling of $\tau\left(s^{\prime}\right)$.

## Undecidability of the Domino Problem



The O2 substitution



## Turing computation

- Turing machines can be simulated with tilesets.
- Put an initial computation at the SW corner of each O2 computation square.
- Remove the halting state.
- The tileset tiles the plane iff the Turing machine does
 not halt.

Thank you for your attention

