

Two-by-two Substitution Systems and the Undecidability of the Domino Problem

N. Ollinger (LIF, Aix-Marseille Université, CNRS, France)

The Domino Problem

"Assume we are **given a finite set of square plates** of the same size with **edges colored**, each in a different manner. Suppose further there are infinitely many copies of each plate (plate type). We are **not permitted to rotate or reflect a plate**. The question is to find an effective procedure by which we can **decide**, for each given finite set of plates, **whether we can cover up the whole plane** (or, equivalently, an infinite quadrant thereof) **with copies of the plates** subject to the restriction that **adjoining edges must have the same color**."

(Wang, 1961)

Bits of History: the AEA case

- 1961. Wang and Büchi consider the classical decision problem for AEA first-order formulae. Wang introduces **DP**. Büchi introduces the **Immortality Problem**.
- 1961. The AEA *entscheidungsproblem* is proved undecidable by Kahr-Moore-Wang by considering a simpler problem with dominos.
- 1964. Berger, a student of Wang, proves the undecidability of **DP** providing as a corollary a new proof of the undecidability for AEA.
- 1965. Hooper, a student of Wang, proves the undecidability of **IP** providing as a corollary a new proof of the undecidability for AEA.

Existing Constructions

- Two main type of related activity in the literature:
 (1) construct aperiodic tile sets (small ones);
 (2) give a full proof of the undecidability of **DP** (implies (1)).
- From 104 tiles (Berger, 1964) to 13 tiles (Čulik, 1996) aperiodic sets.
- Seminal self-similarity based proofs:
 - Berger, 1964 (20426 tiles, a full PhD thesis)
 - Robinson, 1971 (56 tiles, 17 pages, long case analysis)
 - Durand et al, 2007 (Kleene's fixpoint existence argument)
- Tiling rows seen as transducer trace based proof:
 - Kari, 2007 (affine maps, short concise proof, reduction from IP)

Motivation for a New Construction

- Undecidability of **DP** proof technic proved useful for variations of **DP** for undecidability in dynamical systems like Cellular Automata: Kari, 1989, 1992, Durand, 1994, Mazoyer and Rapaport, 1997.
- Teaching the proofs in a uniform textbook framework:
 - Affine technics have dependencies on **IP**, also they have not yet been adapted to all the constructions.
 - Self-similarity constructions have big tile sets and/or complex proofs involving tedious case-based reasoning.
- We propose a new self-similarity based construction building on classical proof schemes with concise arguments and few tiles.

Au menu

- 1. Patterns, colorings, and tilings
- 2.2x2 substitutions
- 3. A Set of 104 tiles
- 4. This set is aperiodic
- 5. Enforcing any substitution (sketch)
- 6. Undecidability of the Domino Problem (sketch)

This is a mix of different tools and ideas from:

[Berger 64] The Undecidability of the Domino Problem
[Robinson 71] Undecidability and nonperiodicity for tilings of the plane
[Grünbaum Shephard 89] Tilings and Patterns, an introduction
[Durand Levin Shen 05] Local rules and global order, or aperiodic tilings

Patterns, colorings and tilings

Foreword

- Formal stuff stand on white background.
- Pictures stand on black background.
- This talk is very geometrical: we draw pictures on the Euclidian plane.
- Letters might be represented as colors or even as colored pictures.

Patterns

A pattern \mathcal{P} is a subset of \mathbb{Z}^2 $\mathcal{P} + \mathfrak{u} = \{z + \mathfrak{u} | z \in \mathcal{P}\}$

Powers of two patterns \boxplus^{i} $\boxplus^{i} = \left\{ x \in \mathbb{Z} \middle| 0 \leqslant x < 2^{i} \right\}^{2}$

Two-by-two scaling $\Box(\mathcal{P})$ $\Box(\mathcal{P}) = \{2z + c \mid z \in \mathcal{P}, c \in \boxplus\}$

Colorings

A coloring $\mathcal{C}: \mathcal{P} \to \Sigma$ covers a pattern \mathcal{P} with letters of a finite alphabet Σ .

 $\mathfrak{u} \cdot \mathfrak{C}$ is the *translation* of \mathfrak{C} , by a vector $\mathfrak{u} \in \mathbb{Z}^2$, satisfying: $\forall z \in \mathfrak{P}, \quad \mathfrak{u} \cdot \mathfrak{C}(z + \mathfrak{u}) = \mathfrak{C}(z)$

 $\begin{array}{l} \mathcal{C} \text{ occurs in } \mathcal{C}',\\ \text{ denoted } \mathcal{C} \prec \mathcal{C}' \text{ if}\\ \exists \mathfrak{u} \in \mathbb{Z}^2, \quad \mathcal{C} = (\mathfrak{u} \cdot \mathcal{C}')_{|\mathsf{Sup}(\mathcal{C})} \end{array}$

(Quasi-)Periodicity

$$\begin{split} \mathfrak{C} \text{ is periodic with period } \mathfrak{u} \text{ if } \\ \mathfrak{C}_{|\mathcal{P}} &= (\mathfrak{u} \cdot \mathfrak{C})_{|\mathcal{P}} \\ \text{where } \mathfrak{P} &= \text{Sup}(\mathfrak{C}) \cap \text{Sup}(\mathfrak{u} \cdot \mathfrak{C}). \end{split}$$

A set of colorings is *aperiodic* if all its element have no periodicity vector but 0.

$$\begin{array}{l} \mathcal{C} \text{ is } quasi-periodic \text{ if} \\ \forall \mathcal{P} \subseteq_{\text{finite}} \operatorname{Sup}(\mathcal{C}) \exists c \forall u \\ (u \cdot \mathcal{C})_{|\mathcal{P}} = \mathcal{C}_{|\mathcal{P}} \longrightarrow \exists v \leqslant c \\ v \neq \mathbf{0} \ \land \ (v \cdot u \cdot \mathcal{C})_{|\mathcal{P}} = \mathcal{C}_{|\mathcal{P}} \end{array}$$

Subshifts

Let X be the set of colorings with support \mathbb{Z}^2 . Endow X with the product topology of the discrete topology on Σ .

This topology is compatible with the metric d defined for all colorings $\mathcal{C}, \mathcal{C}' \in X$ by $d(\mathcal{C}, \mathcal{C}') = 2^{-\min\{|z|, |\mathcal{C}(z) \neq \mathcal{C}'(z)\}}$.

Such topology is compact and perfect. A subset of X both topologically closed and closed by translations is a *subshift* from symbolic dynamics.

Tilings are the *subshifts of finite type*: subshifts defined by a finite set of forbidden words.

Wang tiles

- A Wang tile is a unit square with colored edges.
- A tile set is a finite set of Wang tiles.
- Tiling is done with translations only (no rotation) by matching colors along edges.

Tiling the whole plane with Wang tiles

Domino Relation

- A domino relation $\Re \subseteq Y \times Y$: $\forall a, b, c, d \in Y^4$ $a \Re c \land a \Re d \land b \Re d \rightarrow b \Re c$
- Right color: $(a, b) \sim_{\mathcal{R}} |a\rangle$
- Left color: $(a, b) \sim_{\mathcal{R}} \langle b |$
- Degenerated pair: $\langle a | = \langle b | \land | a \rangle = | b \rangle$

A *tile set* τ is a triple $(T, \mathcal{H}, \mathcal{V})$

Aperiodicity and **DP**

- If a tile set admits a periodic tiling then it admits a biperiodic tiling.
- Biperiodic tilings are recursively enumerable.
- If a tile set does not tile the plane, there exists a bound on the size of square patterns it can tile.
- Every tile set admits a quasi-periodic tiling.
- We will construct an aperiodic tile set that produces only quasiperiodic tilings.
- In dimension 1, the simplest non periodic biinfinite words are sturmian words. Substitutions is a classical tool to generate them.

2×2 substitutions

Substitutions

- Geometric substitutions provide a convenient recursive way to define aperiodic colorings of the plane.
- Subtle geometrical arguments are required: discuss dissection, inflation, scaling factor, etc.
- The classical L (or chair) substitution.

2×2 Substitutions

 A 2×2 substitution system maps a finite alphabet to 2×2 squares of letters on that alphabet.

 $s:\Sigma\to\Sigma^{\boxplus}$

• The substitution is iterated to generate bigger squares.

 $S:\Sigma^{\mathcal{P}}\to\Sigma^{\square(\mathcal{P})}$

 $\forall z \in \mathcal{P}, \forall c \in \mathbb{H},$ $S(\mathcal{C})(2z + c) = s(\mathcal{C}(z))(c)$

 $S(u \cdot \mathcal{C}) = 2u \cdot S(\mathcal{C})$

Another L-style substitution

Pattern closure?

- What is a coloring of the plane generated by a substitution?
- One possibility is to consider a *closure* of generated patterns up to translations.
- Difficult to check...

$$\begin{split} & \mathcal{C} \in X_s \text{ if } \\ & \forall \mathcal{C}' \prec_{\text{finite}} \mathcal{C} \exists a, i \ \mathcal{C}' \prec S^i(a) \end{split}$$

Limit set!

• The global map of a substitution is continuous.

 $X = \Sigma^{\mathbb{Z}^2}$

- Take the limit set of iterations of the global map closed up to translations.
- More colorings!

 $\Lambda_{S} = \bigcap_{n} \Lambda_{S}^{n} \text{ where } \Lambda_{S}^{0} = \Sigma^{\mathbb{Z}^{2}}$ $\Lambda_{S}^{n+1} = \{ \mathfrak{u} \cdot S(\mathcal{C}) | \mathcal{C} \in \Lambda_{S}^{n}, \mathfrak{u} \in \boxplus \}$

History

An history for a coloring $\mathcal{C} \in X$ is a sequence $(\mathcal{C}_i, \mathfrak{u}_i) \in (X \times \boxplus)^{\mathbb{N}}$ such that $\mathcal{C}_0 = \mathcal{C}$ and $\mathcal{C}_i = \mathfrak{u}_i \cdot S(\mathcal{C}_{i+1})$, for all $i \in \mathbb{N}$.

Proposition 1. The set Λ_S is precisely the set of colorings admitting histories.

$$\supseteq \mathcal{C}_0 \in \Lambda_S$$

Compacity argument

History of a coloring in the limit set

Stories

The story at position $z \in \mathbb{Z}^2$ for an history $(\mathcal{C}_i, \mathfrak{u}_i) \in (X \times \boxplus)^{\mathbb{N}}$ is the sequence $(\mathfrak{a}_i, \mathfrak{v}_i) \in (\Sigma \times \boxplus)^{\mathbb{N}}$ such that, for all $i \in \mathbb{N}$, $\mathfrak{a}_i = \mathfrak{s}(\mathfrak{a}_{i+1})(\mathfrak{v}_i)$ and $\mathfrak{a}_i = \mathcal{C}_i(z_i)$ where $z_i \in \mathbb{Z}^2$ is the only position such that z is an element of the pattern $\mathcal{P}_i = \boxplus^i - \sum_{j=0}^{i-1} 2^j \mathfrak{u}_j - 2^i z_i$.

Finding stories of neighbors starting from a story works like incremeting an odometer.

Proposition 2. Every history can be reconstructed from 1,2, or 4 of its stories.

Unambiguity and aperiodicity

A substitution is *aperiodic* if its limit set Λ_S is aperiodic.

A substitution is *unambiguous* if, for every coloring \mathcal{C} from its limit set Λ_S , there exists a unique coloring \mathcal{C}' and a unique translation $\mathfrak{u} \in \mathbb{H}$ satisfying $\mathcal{C} = \mathfrak{u} \cdot S(\mathcal{C}')$.

Every unambiguous substitution admits a unique history.

Proposition 3. Unambiguity implies aperiodicity.

Idea. Consider a periodic coloring with minimal period p, construct one of period p/2.

A set of 104 tiles

Tiling Coding

A tile set $(T', \mathcal{H}', \mathcal{V}')$ codes a tile set $(T, \mathcal{H}, \mathcal{V})$, according to a coding rule $t : T \to T'^{\boxplus}$ if t is injective and

 $X_{\tau'} = \{ u \cdot t(\mathfrak{C}) | \mathfrak{C} \in X_{\tau}, u \in \boxplus \}.$

A tile set $(T, \mathcal{H}, \mathcal{V})$ codes a substitution $s : T \to T^{\boxplus}$ if it codes itself according to the coding rule s.

Proposition 4. A tile set both admitting a tiling and coding an unambiguous substitution is aperiodic.

Idea. $X_{\tau} \subseteq \Lambda_S$ and $X_{\tau} \neq \emptyset$.

Coding Scheme 2

- Better scheme: not strictly increasing the number of tiles.
- Problem. it cannot encode any layered tile set, constraints between layer 1 and layer 2 are checked edge by edge.
- **Solution.** add a third layer with one bit of information per edge.

Layer 1. initialization

- 4 tiles to group tiles 2×2.
- Alternate red/blue vertically.
- Alternate light/dark horizontally.
- Simple and very constrained matching rule.

Layer 2. grids

- Tiles carry wires, two on each edge.
- Three kinds of tiles: X, H, V.
- Pairs of wires should be compatible.
- Matching rule: wire colors should match.
- Restrict layer 1 by kind.

Layer 3. corner-ifier

- One more bit of information per edge to find corners.
- 5 different tiles with arrows.
- Matching rule: arrows should match along edges.
- Restrict arrows by kind.
- Important: red wire is a one-way lane.

Canonical substitution

- Copy the tile in the SW corner but for layer 1.
- Put the only possible X in NE that carry layer 1 of the original tile on SW wire.
- Propagate wires colors.
- Let H et V tile propagate layer 3 arrows.
- The substitution is injective.

The tileset can tile the whole plane...

This tile set is aperiodic

Roadmap of the proof

- 1. The tile set admits a tiling;
- 2. The substitution is unambiguous;
- 3. The tile set codes the substitution.
- 4. Apply proposition 4 to conclude.

The tile set admits a tiling

The substitution is unambiguous

• It is injective and the projectors have disjoined images.

we just remove wires and squarifiers that propagate

the preimage of each tiling is a (valid) tiling.

Comparing to Literature

- Although it is no well known, Berger PhD dissertation already contains an aperiodic of 104 tiles. This tile set **does not** appear in the AMS memoir. The tile set also has 3 layers, the first two being isomorphic. The third level is different leading to a different set of tilings and more tedious proof.
- The well known 56 tiles set of Robinson can be found by merging all three colors different from light red into white: this way you obtain 56 tiles isomorphic to Robinson's ones. The set generates more tilings, leading to subtle synchronization (alignment) problems.

Enforcing any substitution

Encode substitutions

- Select the red color of wires: the sequence of squares encode a tree.
- Put a letter on each square.
- Apply the substitution rule to go from one square to the next one.
- Up to projection the substitution limit set is encoded in the set of tilings.

Let π map every tile of $\tau(s')$ to s'(a)(u) where a and u are the letter and the value of \boxplus on layer 1.

Theorem 2. Let s' be any substitution system. The tile set $\tau(s')$ enforces s': $\pi(X_{\tau(s')}) = \Lambda_{S'}$.

Idea. Every tiling of $\tau(s')$ codes an history of S' and every history of S' can be encoded into a tiling of $\tau(s')$.

Undecidability of the Domino Problem

The O2 substitution

Turing computation

- Turing machines can be simulated with tilesets.
- Put an initial computation at the SW corner of each O2 computation square.
- Remove the halting state.
- The tileset tiles the plane iff the Turing machine does not halt.

Thank you for your attention