
Property Grammar Parsing Seen as
a Constraint Optimization Problem

Denys Duchier, Thi-Bich-Hanh Dao, Yannick Parmentier, and
Willy Lesaint

LIFO - Université d’Orléans - Bât. 3IA - Rue Léonard de Vinci
F-45 067 Orléans cedex 2, France

firstname.lastname@univ-orleans.fr

Abstract. Blache [1] introduced Property Grammar as a formalism
where linguistic information is represented in terms of non hierarchical
constraints. This feature gives it an adequate expressive power to handle
complex linguistic phenomena, such as long distance dependencies, and
also agrammatical sentences [2].

Recently, Duchier et al. [3] proposed a model-theoretic semantics for
property grammar. The present paper follows up on that work and ex-
plains how to turn such a formalization into a constraint optimization
problem, solvable using constraint programming techniques. This natu-
rally leads to an implementation of a fully constraint-based parser for
property grammars.

1 Introduction

Formal grammars typically limit their scope to well-formed utterances. As noted
by [4], formal grammars in the style of generative-enumerative syntax, as they
focus on generating well-formed models, are intrinsically ill-suited for provid-
ing accounts of ill-formed utterances. Formal grammars in the style of model-
theoretic syntax, on the contrary, as they focus on judging models according
to the constraints that they satisfy, are naturally well-suited to accommodate
quasi-expressions.

Blache [2] proposed Property Grammars (PG) as a constrained-based for-
malism for analyzing both grammatical and agrammatical utterances. Prost [5]
developed an approach based on PG and capable not only of providing analyses
for any utterances, but also of making accurate judgements of grammaticality
about them. Duchier et al. [3] provided model-theoretical semantics for PG and
a formal logical account of Prost’s work. In this paper, we show how such a
formalization can be converted into a Constraint Optimization Problem, thus
yielding a constraint-based parser that finds optimal parses using classical con-
straint programming techniques, such as branch-and-bound.

The use of constraint-based techniques for parsing is not new in itself, one
may cite the seminal work of Duchier [6] on Dependency Grammar parsing,
or that of Debusmann et al. [7] on Tree Adjoining Grammar parsing, or more

recently that of Parmentier and Maier [8], who proposed constraint-based exten-
sions to Range Concatenation Grammar parsing. Nonetheless, PG parsing was
lacking such a constraint-based axiomatization.1

The paper is organized as follows. We first introduce property grammars
(section 2). In section 3, we then summarize the model-theoretic semantics of
PG, as defined by Duchier et al. [3]. This semantics is used to define PG pars-
ing as a Constraint Optimization Problem. This definition will be based on two
types of constraints : tree-shapedness constraints, introduced in section 4, and
property-related constraints, introduced in section 5. We then report on the im-
plementation of a constraint-based parser using the Gecode library in section 6.
In section 7, we compare our work with existing parsing environments for PG.
Finally, in section 8, we conclude with some experimental results and hints about
future work.

2 Property grammars

Property grammar [2] is a grammatical formalism where the relations between
constituents are expressed in terms of local constraints2, called properties, which
can be independently violated. This makes it possible to describe agrammatical
utterances (that is, whose description would not respect the whole set of con-
straints), and also to associate a given description with a grammaticality score
(ratio between satisfied and unsatisfied constraints).

These constraints rely on linguistic observations, such as linear precedence
between constituents, coocurrency between constituents, exclusion between con-
stituents, etc. As suggested by Duchier et al. [3], a property grammar can be
usefully understood as exploding classical phrase structure rules into collections
of fine-grained properties. Each property has the form A : ψ meaning that, in a
syntactic tree, for a node of category A, the constraint ψ applies to its children.

For each node of category A, we consider the following properties:

Obligation A : 4B at least one B child

Uniqueness A : B! at most one B child

Linearity A : B ≺ C B children precede C children

1 Note that a first experiment of constraint-based axiomatization of PG was done by
Dahl and Blache [9], we give more information on this later in section 7.

2 Several attemps at characterizing syntactic trees through a system of constraints
were developed in the late nineties. Among these, one may cite D-Tree Substitution
Grammar (DSG) [10], and Tree Description Grammar (TDG) [11]. The main dif-
ference between these formalisms and PG is that the latter has been designed to
provide a way to handle agrammatical sentences. Furthermore, in DSG and TDG,
constraints are expressed using dominance-based tree descriptions, while PG’s con-
straints are applied to syntactic categories.

Requirement A : B ⇒ C if a B child, then also a C child

Exclusion A : B 6⇔ C B and C children are mutually exclusive

Constituency A : S children must have categories in S

As an example, let us consider the context free rules NP → D N and NP → N

describing the relation between a noun and a determiner. They are translated
into the following 7 properties:

(1)NP : {D, N}, (2)NP : D!, (3)NP : 4N, (4)NP : N!, (5)NP : D ≺ N, (6)D : {}, (7)N : {}.

(1) indicates that noun phrases only contain nouns or determiners, (2) states
that in a noun phrase, there is at most one determiner. (3) and (4) say that in
a noun phrase, there is exactly one noun. (5) indicates that, in a noun phrase,
a determiner precedes a noun. Finally (6) and (7) state that determiners and
nouns are leaf nodes in a valid syntactic tree.

In this context, if we only consider syntactic trees whose root has category
NP, there are only two trees satisfying all properties:

NP

D N

NP

N

We note that these syntactic trees are not lexicalized. In case we want to
describe lexicalized trees, we can add some more lexical properties, such as

cat(apple) = N

which defines the word apple as being a noun.

About the complexity of PG parsing Deep parsing with PG has been shown to be
theoretically exponential in the number of categories of the grammar and the size
of the sentence to parse [12]. As we shall see in section 7, existing approaches to
deep parsing with PG usually rely on heuristics to reduce complexity in practice.
In our approach, we want to avoid such heuristics. We are interested in studying
the logical consequences of representation choices made in PG, while developing
a parsing architecture for PG fully relying on constraint-satisfaction.

3 Model-theoretic semantics of property grammar

In this section, we give a summary of the model-theoretic semantics of PG de-
veloped by Duchier et al. [3].

First, recall that PGs are interpreted over syntactic tree structures. Two
types of models are considered, according to whether we want to enforce the
satisfaction of all grammatical properties or not : strong models and loose models
(the latter corresponding to the modelization of agrammatical utterances).

Strong models. A syntax tree τ is a strong model of a grammar G iff for every
node of τ and every property of G, if that property is pertinent at that node,
then it is also satisfied. The evaluation of the pertinence of a property depends
on the type of the property. We consider 3 types of properties :

Type 1 : those which apply to a given node, such as obligation. For these prop-
erties, the pertinence only depends on the category of that node,

Type 2 : those which apply to a given couple of nodes (mother-daughter), such
as requirement and constituency. For these properties, the pertinence de-
pends on the category of the mother node, and that of its daughter nodes,

Type 3 : those which apply to a given triple of nodes (mother, daughter1,
daughter2), such as linearity, exclusion and uniqueness. For these proper-
ties, the pertinence depends on the category of the mother node, and those
of its daughter nodes.

Hence, when a node n has more than 2 children, a given property of type 3
has to be considered for every triple of nodes (n, ,). We call the pair consisting
of a property ψ and such a tuple (i.e., singleton, couple or triple of nodes), an
instance of property. For example, the property NP : D ≺ N yields for every node
as many instances as there are pairs of children. Such an instance is pertinent
iff the mother node is of category NP and its children of categories D and N

respectively. In addition, it is satisfied if the first child precedes the second one.
Later in this paper, we will represent the instance of a property A : ψ at a

node n using the following notation (nx refers to a daughter node of n) :

A : ψ@〈n〉 if ψ is of type 1
A : ψ@〈n, n1〉 if ψ is of type 2
A : ψ@〈n, n1, n2〉 if ψ is of type 3

To sum up, every property is instantiated in every possible way at every node.
Furthermore, as mentioned above, in a strong model every property instantiation
that is pertinent has to be satisfied.

Loose models. Unlike strong models, in a loose model of a grammar, for a given
utterance, every instance of property which is pertinent does not have to be
satisfied. More precisely, a loose model is a syntax tree of maximal fitness, where
fitness is the ratio of satisfied instances among those which are pertinent.

For a more detailed definition of this model-theoretic semantics of PG, we
refer the reader to [3] . In the next sections, we show how this formalization of
PG can be converted into a Constraint Optimization Problem, thus yielding a
constraint-based parser that finds optimal parses.

4 Representing tree models using a grid

Our approach needs to enumerate candidate tree models, and to retain only
those of maximal fitness. Since we do not know a priori the number of nodes of

our models, we propose to use a grid as a substrate, and to enumerate the trees
which can be laid out on this grid.

For an utterance of m words, we know that each tree model has m leaves
(PG do not use ε nodes). Unfortunately, we do not know the maximum depth of
each tree model. We may use some heuristics to automatically assign a value n
to the tree depth3. We chose to parametrize the associated parsing problem with
a maximum tree depth n. Fixing this parameter allows us to layout a model over
a subset of the nodes of an n×m grid. To represent our tree model, we will use
a matrix W such that wij (with 1 ≤ i ≤ n, and 1 ≤ j ≤ m) refers to the node
located at position (i, j) on the grid (rows and columns are numbered starting
from 1, coordinate (1,1) being in the bottom-left corner). As an illustration of
such a layout, see Fig. 1. We present in this section the constraints used to build
a tree model on an n×m grid.

n
↑

→ m(1,1)
N V D N

Peter eats the apple

S

NP

VP

NP

Fig. 1. Parse tree laid on a grid

Active nodes. Let V be the set of all nodes. A node is active if it is used by the
model and inactive otherwise. We write V + for the set of active nodes and V −

for the rest. We have:

V = V +] V −

where] represents “disjoint union”. Following the modeling technique of [13],
for each node w, we write ↓w for it’s children, ↓+w for its descendants, ↓∗w for w
and its descendants. Dually, we write ↑w for w’s parents, ↑+w for its ancestors,
↑∗w for w and its ancestors. Constraints relating these sets are:

↓+w =]{↓∗w′ | w′ ∈ ↓w} ↓∗w = {w}] ↓+w
↑+w =]{↑∗w′ | w′ ∈ ↑w} ↑∗w = {w}] ↑+w

3 Due to the intrinsic recursive nature of language, the possibility to find an adequate
depth value, i.e. not too big to prevent useless computations, and not too small to
avoid missing solutions, is an open question.

Disjoint unions are justified by the fact that we are interested in tree models
(i.e., we do not allow for cycles). We additionally enforce the duality between
ancestors and descendants:

w ∈ ↑w′ ⇔ w′ ∈ ↓w

and that each node has at most one parent:

|↑w′| ≤ 1

Inactive nodes have neither parents nor children:

w ∈ V − ⇒ ↓w = ↑w = ∅

Since the root of the tree is still unknown, we write R for the set of root nodes.
A tree model must have a single root:

|R| = 1

and the root node cannot be a child of any node:

V + = R] (]{↓w | w ∈ V })

Projection. We write ⇓w for the set of columns occupied by the tree anchored
in w. As leaf nodes are located on the first row, their projection corresponds to
their column, and only it :

⇓w1j = {j}

There are no interleaving projections (hence the disjoint union):

⇓wij =]{⇓w | w ∈ ↓wij} 1 < j ≤ m

There are no holes in the projection of any node (trees are projective):

convex(⇓w) ∀w ∈ V

Dealing with symmetries. There are many ways of laying out a given tree on a
grid. For instance, a four-node and three-leaf tree has among others the following
layouts :

In order to have a unique way of laying out a tree, we add specific anti-
symmetric constraints (the models satisfying these constraints are called rectan-
gular trees) :

1. all leaves are located on the first row of the grid (i.e., the bottom row),

2. the left-most daughter of any node is located on the same column as its
mother node (this implies the subtree of a given node n occupies columns
on the right of n),

3. every node is above any of its descendant nodes (this implies the subtree of
a given node n occupies rows that are below that of n),

4. every internal node must have a daughter node in the row directly below
(this implies there are no empty rows below the root node).

As an illustration, among the following trees, only the first one is a rectan-
gular tree (the second tree violates condition 2, the third one condition 3 and
the fourth one condition 4) :

How these 4 conditions are represented in our axiomatization ? First, let us
write c(w) for the column of node w and `(w) for its line:

c(wij) = j `(wij) = i

(1) The words are linked to the bottom row of the grid, which contains the leaves
of the tree. These must all be active:

{w1j | 1 ≤ j ≤ m} ⊆ V +

(2) Any active node must be placed in the column of the left-most leaf of its
subtree:

wij ∈ V + ⇔ j = min⇓wij

This stipulation and the fact (3) every node is above of its descendants are
translated by constraints on the domains of variables. As mentioned above, the
descendants of a node n are on the down-right part of the grid with respect to n.
The dual holds, that is the ancestors of a node n are on the upper-left part of
the grid with respect to n:

↓+wij ⊆ {wlk | 1 ≤ l < i, j ≤ k ≤ m}
↑+wij ⊆ {wlk | i < l ≤ n, 1 ≤ k ≤ j}

(4) Any active non-bottom node has at least one child at the level just below:

wij ∈ V + ⇔ i− 1 ∈ {`(w) | w ∈ ↓wij} 1 < i ≤ n

Categories. In order to model syntax trees, we also need to assign to each active
node a syntactic category. For simplicity, we will assign the category none to all
and only the inactive nodes:

cat(w) = none ⇔ w ∈ V −

For active nodes, the category will be assigned via property-related constraints,
which are introduced in the next section. Finally, words are related to leaves via
their category:

cat(w1j) = cat(wordj)

where wordj refers to the jth word of the sentence to parse.

5 Handling instances of properties

Recall that each property has the form A : ψ, which means that for a node of
category A, the constraint ψ applies to its children. For example the property
A : B ≺ C is intended to mean that, for a non-leaf node of category A and any
two daughters of this node labeled respectively with categories B and C, then
the one labelled with B must precede the one labeled with C. Clearly, for each
node of category A, this property must be checked for every pair of its daughters.
This corresponds to the notion of instances of a property introduced earlier in
section 3.

An instance of a property is a pair of the property and a tuple of nodes to
which it is applied. An instance is pertinent if the node where it is instantiated
is active (i.e., belongs to V +) and the parameter nodes of its tuple have the
categories stipulated in the property. An instance is satisfied if the property is
satisfied. For each instance I we define two boolean variables P (I) and S(I)
denoting respectively its pertinence and its pertinence and satisfaction.

In the following paragraphs,we translate each property of PG into a set of
constraints for our constraint optimization problem.

Properties of type 1 Let us start with properties of type 1, that is to say, whose
instance depends on a single node. The only such property is obligation.

Obligation. The property A : 4B yields instances I of the form:

(A : 4B)@〈wi0j0〉

It is pertinent if wi0j0 is an active node labelled with A:

P (I) ⇔ (wi0j0 ∈ V + ∧ cat(wi0j0) = A)

It is satisfied if at least one of its children is labelled with B:

S(I) ⇔ (P (I) ∧
∨

wij∈↓wi0j0

cat(wij) = B)

Properties of type 2 Let us continue with properties of type 2, whose instance de-
pends on a couple of nodes. These corresponds to requirement and constituency.

Requirement. The property A : B ⇒ C yields instances I of the form:

(A : B ⇒ C)@〈wi0j0 , wi1j1〉

It is pertinent only if wi0j0 is active and wi1j1 is one of its children and their
categories correspond:

P (I)⇔

(
wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧

cat(wi0j0) = A ∧ cat(wi1j1) = B

)
It is satisfied if one of wi0j0 ’s children is labelled with C:

S(I) ⇔ (P (I) ∧
∨

wij∈↓wi0j0

cat(wij) = C)

Constituency. The property A : S yields instances I of the form:

(A : B ≺ C)@〈wi0j0 , wi1j1〉

It is pertinent only if wi0j0 is active and labelled with A and wi1j1 is one of its
children:

P (I)⇔

(
wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧

cat(wi0j0) = A

)
It is satisfied if the category of wi1j1 is in S:

S(I) ⇔ (P (I) ∧ cat(wi1j1) ∈ S)

Properties of type 3 Let us finish with properties of type 3, whose instance
depends on a triple of nodes. These properties are linearity, uniqueness and
exclusion.

Linearity. The property A : B ≺ C yields instances I of the form:

(A : B ≺ C)@〈wi0j0 , wi1j1 , wi2j2〉

I is pertinent if wi0j0 is active, wi1j1 and wi2j2 are its children, and each node is
labelled with the corresponding category:

P (I)⇔

 wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
wi2j2 ∈ ↓wi0j0 ∧ cat(wi0j0) = A∧
cat(wi1j1) = B ∧ cat(wi2j2) = C

Its satisfaction depends on whether the node wi1j1 precedes wi2j2 or not. It is
thus defined as:

S(I) ⇔ (P (I) ∧ j1 < j2)

Uniqueness. The property A : B! yields instances I of the form:

(A : B!)@〈wi0j0 , wi1j1 , wi2j2〉

It is active only if wi0j0 is active and labelled with A and wi1j1 and wi2j2 are its
children and are labelled with B:

P (I)⇔

 wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
wi2j2 ∈ ↓wi0j0 ∧ cat(wi0j0) = A∧
cat(wi1j1) = B ∧ cat(wi2j2) = B

It is satisfied if wi1j1 and wi2j2 are the same node:

S(I) ⇔ (P (I) ∧ wi1j1 = wi2j2)

Exclusion. The property A : B 6⇔ C yields instances I of the form:

(A : B 6⇔ C)@〈wi0j0 , wi1j1 , wi2j2〉

It is pertinent only if wi0j0 is active and labelled with A and wi1j1 and wi2j2 are
its children where either wi1j1 is labelled with B or wi2j2 is labelled with C:

P (I)⇔

 wi0j0 ∈ V + ∧ wi1j1 ∈ ↓wi0j0∧
wi2j2 ∈ ↓wi0j0 ∧ cat(wi0j0) = A∧
(cat(wi1j1) = B ∨ cat(wi2j2) = C)

Its satisfaction relies on the fact that the two children does not both have the
incompatible categories:

S(I)⇔ P (I) ∧ (cat(wi1j1) 6= B ∨ cat(wi2j2) 6= C)

In other terms, if wi1j1 is labelled with B then wi2j2 cannot be labelled with C,
and if wi2j2 is labelled with C then wi1j1 cannot be labelled with B.

As was mentioned in section 3, in the loose semantics of PG, we want to
compute models with the best fitness. To do this, we add an optimization con-
straint.

Optimization constraint. To account for the loose semantics of PG, a prop-
erty instance counts if it is pertinent, it counts positively if satisfied, negatively
otherwise. Let I be the set of all property instances, I0 the subset of pertinent
instances and I+ the subset of positive instances. We want to find models which
maximize the ratio |I+|/|I0|.

Since for each instance I, the variables P (I) and S(I) are boolean, their
reified value is either 0 or 1. We can calculate the cardinality of these sets the
following way:

|I0| =
∑
I∈I

P (I) |I+| =
∑
I∈I

S(I)

6 Implementation

The approach described so far has been implemented using the Gecode constraint
programming library [14].

Each node wij of the grid is identified with an integer k = (i − 1) ×m + j
(where m is the width of the grid). The set of nodes V is defined as V =
{1, . . . , n × m}. V + and V − are two set variables such that V +, V − ⊆ V . All
the constraints related to these sets are implemented using Gecode’s API. The
relations ↓, ↓+, ↓∗ and ↑, ↑+, ↑∗ are encoded using arrays of set variables, whose
indexes are nodes of the grid. We also use arrays of set variables to encode
property-related constraints. As there are many types of constraints and many
instances to consider, the computation of the indexes is slightly more complex
than the ones used for tree-shapedness constraints. Definitions of P (I) and S(I)
are realized using reified constraints. The search for an optimal parse is achieved
using the branch-and-bound search strategy to maximize the ratio |I+|/|I0|.

An example search tree for the grammatical utterance “Peter eats the

apple” is given in Fig. 2. The graphical representation of the search tree has
been built by Gist, the Gecode Interactive Search Tool [15]. On this figure, round
nodes represent choice points, square and triangle-shaped nodes failures, and
diamond-shaped nodes solutions of the constraint optimization problem (in this
example, the last diamond on the right refers to the optimal solution).

Fig. 2. Example search tree

To give an illustration of the complexity of the constraint optimization prob-
lem4 for the parse example of Fig. 2 (sentence “Peter eats the apple”, and
grammar having 19 properties handling 6 categories), the search tree has about
450, 000 nodes, among which 7 are solutions. The optimal syntactic tree is rep-
resented in Fig. 3.

Fig. 3. Optimal syntactic tree for “Peter eats the apple”

As the parser is still in an early development stage, we do not have any
benchmark. As mentioned above, there are many instances of property to handle,
that is to say, many constraints to evaluate. In practice, our parser can relatively
quickly find a syntactic tree (in less than a second for the example above), but
the proof of optimality can take about a minute.5 While we are mainly interested
in exploring the logical consequences of representation choices made in PG (that
is, without using any heuristic to reduce complexity), we are also interested in
improving the computation of optimal parses, either by:

– parallelizing the exploration of the search tree,
– or enriching the information associated with lexical entries, for example by

using a Part-Of-Speech tagger.

The parser is freely available on demand, and released under the terms of the
GNU General Public License.

7 Comparison with existing work

Among the different approaches to PG parsing, one may cite the seminal work
of Blache and Balfourier [16]. This work was later followed by a series of papers
by Dahl and Blache [9], Estratat and Henocque [17], Van Rullen [12, 18], Blache
and Rauzy [19], and more recently Prost [5].

4 Our PG parsing algorithm using constraint-satisfaction is clearly exponential as all
candidate trees are enumerated.

5 These results are obtained on a 2.6 Ghz processor with 4 Gb of RAM.

The main difference between these approaches and our work, is that, apart
from [9] and [17], they do not rely on a model-theoretic formal semantics of
PG. They rather apply well-known efficient parsing techniques and heuristics
to PG. Thus, [16] uses a constraint selection process to incrementally build the
syntactic tree of a sentence. [12, 18] include hybrid approaches mixing deep and
shallow parsing. In [19], the authors propose to extend symbolic parsing with
probabilities on syntactic categories. [5] uses a chart-based parsing algorithm,
where the items contain optimal sub-trees, used to derive a complete syntactic
tree.

A first attempt to use a constraint satisfaction-based approach to PG pars-
ing is [9]. In their work, the authors encode the input PG into a set of rules
for the Constraint Handling Rule system [20]. Their encoding makes it possi-
ble to directly interpret the PG in terms of satisfied / relaxed constraints on
syntactic categories. On top of this interpretation, they use rewriting rules to
propagate constraint satisfaction / relaxation, and a syntactic tree is built as
a side effect. The main difference with our approach lies in the fact that the
authors control the way a constraint is selected for evaluation, while we rely
on classical constraint-based techniques such as branch-and-bound to select and
propagate constraint evaluations. That is, we clearly distinguish the definition
of the constraint satisfaction problem from its resolution.

Another constraint-based approach to PG parsing is [17]. In their work, the
authors translate a PG into a model in the Object Constraint Language (OCL).
This model is interpreted as a configuration problem, which is fed to a config-
urator. The latter solves the constraints lying in the input model. The result is
a valid syntactic structure. Contrary to our approach, or that of [9], this OCL-
encoding does not allow for relaxed constraints. Hence, it only computes syntac-
tic structures that satisfy the whole set of constraints. In other terms, it cannot
make full advantage of the PG formalism, which describes natural language in
terms of local constraints that can be violated. This feature is particularly useful
when dealing with agrammatical sentences such as those spoken language often
contain.

8 Conclusion

Duchier et al. [3] provided precise model-theoretical semantics for property gram-
mars. In this paper, we extend that work and show how such a formalization can
be converted into a Constraint Optimization Problem, thus yielding a constraint-
based parser capable of finding optimal parses using classical constraint-based
techniques such as branch-and-bound. Furthermore, we have implemented this
convertion and are able to experiment with analyzing both grammatical and
agrammatical utterances.

The work described here is still at an early stage of development. It is not
intended to compete with high-performance parsers, but rather to serve as an
experimental platform for grammar development and linguistic modeling, where

logical consequences are not accidentally hidden by the effect of performance-
oriented heuristics.

In a near future, we plan to work on the definition and implementation of an
extension to branch-and-bound, in order to keep not only one but all syntactic
trees having the maximum fitness.

Acknowledgements

We are grateful to Sylvie Billot, Matthieu Lopez, Jean-Philippe Prost, Isabelle
Tellier and three anonymous reviewers for useful comments on this work.

References

1. Blache, P.: Constraints, Linguistic Theories and Natural Language Processing.
Lecture Notes in Artificial Intelligence Vol. 1835. Springer-Verlag (2000)

2. Blache, P.: Property Grammars: a Fully Constraint-Based Theory. In H. Chris-
tiansen, P. Rossen Skadhauge, J.V., ed.: Constraint Solving and Language Pro-
cessing. Springer (2004) 1–16 Lecture Notes in Artificial Intelligence, Vol. 3438.

3. Duchier, D., Prost, J.P., Dao, T.B.H.: A model-theoretic framework for gram-
maticality judgements. In: Conference on Formal Grammar (FG2009), Bordeaux,
France (July 2009)

4. Pullum, G., Scholz, B.: On the Distinction Between Model-Theoretic and
Generative-Enumerative Syntactic Frameworks. In de Groote, P., Morrill, G.,
Rétoré, C., eds.: Logical Aspects of Computational Linguistics: 4th Interna-
tional Conference. Number 2099 in Lecture Notes in Artificial Intelligence, Berlin,
Springer Verlag (2001) 17–43

5. Prost, J.P.: Modelling Syntactic Gradience with Loose Constraint-based Parsing.
Cotutelle Ph.D. Thesis, Macquarie University, Sydney, Australia, and Université
de Provence, Aix-en-Provence, France (December 2008)

6. Duchier, D.: Axiomatizing Dependency Parsing Using Set Constraints. In: Sixth
Meeting on Mathematics of Language, Orlando, Florida (July 1999) 115–126

7. Debusmann, R., Duchier, D., Kuhlmann, M., Thater, S.: TAG Parsing as Model
Enumeration. In: Proceedings of the 7th international Workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+7), Vancouver, Canada (2004) 148–154

8. Parmentier, Y., Maier, W.: Using Constraints over Finite Sets of Integers for
Range Concatenation Grammar Parsing. In: Proceedings of the 6th International
Conference on Natural Language Processing, GoTAL 2008, Advances in Natural
Language Processing, Springer Berlin-Heidelberg (2008) 360–365

9. Dahl, V., Blache, P.: Directly Executable Constraint Based Grammars. In: Actes
des Journées Francophones de Programmation Logique et par Contraintes 2004
(JFPLC-04), Angers, France (2004)

10. Rambow, O., Weir, D., Vijay-Shanker, K.: D-tree substitution grammars. Com-
putational Linguistics 27(1) (2001) 89–121

11. Kallmeyer, L.: Local Tree Description Grammars: A local extension of TAG al-
lowing underspecified dominance relations. Grammars 4 (2001) 85–137

12. van Rullen, T.: Vers une analyse syntaxique à granularité variable. PhD thesis,
Université de Provence, Aix-Marseille 1, France (2005)

13. Duchier, D.: Configuration Of Labeled Trees Under Lexicalized Constraints And
Principles. Journal of Research on Language and Computation 1(3/4) (September
2003) 307–336

14. Gecode Team: Gecode: Generic constraint development environment (2010) Avail-
able from http://www.gecode.org.

15. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and Programming with Gecode
(2010) Available from http://www.gecode.org/doc-latest/MPG.pdf.

16. Blache, P., Balfourier, J.M.: Property Grammars: a Flexible Constraint-Based
Approach to Parsing. In: International Workshop on Parsing Techniques, Beijing,
China (2001)

17. Estratat, M., Henocque, L.: Parsing languages with a configurator. In: Proceedings
of the European Conference for Artificial Intelligence ECAI’2004, Valencia, Spain
(August 2004) 591–595

18. Vanrullen, T., Blache, P., Balfourier, J.M.: Constraint-Based Parsing as an Efficient
Solution: Results from the Parsing Evaluation Campaign EASy. In: Proceedings
of the Language and Resources Evaluation Conference, Genoa, Italy (2006)

19. Blache, P., Rauzy, S.: Mécanismes de contrôle pour l’analyse en Grammaires de
Propriétés. In: Actes, Traitement Automatique des Langues Naturelles (TALN),
P. Mertens, C. Fairon, A. Dister et P. Watrin eds. (2006) 415–424

20. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
ISBN 9780521877763.

