
Tree Desriptions, Constraints and InrementalityDenys Duhier (duhier�ps.uni-sb.de)Programming Systems Lab, Universit�at des SaarlandesClaire Gardent (laire�oli.uni-sb.de)Computational Linguistis, Universit�at des SaarlandesAbstrat. In (Duhier and Gardent, 1999), we presented a onstraint-based methodfor enumerating the models satisfying a given tree desriptions and desribed itsappliation to the underspei�ed semanti representation of disourse advoated in(Gardent and Webber, 1998). In this paper, we indiate how the approah may befurther extended to support disourse level inremental proessing.Keywords: inremental proessing, underspei�ed representations, tree desrip-tions, dominane onstraints, onstraint programming, disourse semantis1. IntrodutionIn (Duhier and Gardent, 1999), we presented a onstraint-based ap-proah for solving tree desriptions and desribed its appliation tothe underspei�ed semanti representation of disourse advoated in(Gardent and Webber, 1998). As later work showed, the strength ofthe proposal is that it provides a general logial framework and a pro-essing method whih an be tailored depending on the appliation. Forinstane, (Duhier and Thater, 1999) shows that it an be ustomisedto desription-based syntati parsing while (Egg et al., 1998) adaptsit to deal with underspei�ed semanti representation at the sententiallevel.In this paper, we indiate how the approah may be further extendedto support inremental disourse proessing.We �rst give an informal explanation of how desriptions an beexploited to inrementally proess disourse. Thus Setion 2 motivatesthe use of tree desriptions; Setion 3 skethes an arhiteture for inre-mental proessing whih rests on the notion of Solved Forms; Setion4 gives an intuitive introdution to this notion; And Setion 5 showsthe arhiteture at work by going through some example analyses.We then show how the onstraint-based approah to desriptionspresented in (Duhier and Gardent, 1999) an be extended to permitinremental proessing: Setion 6 introdues the logial framework usedto talk about trees and setion 7 presents a onstraint-based method foromputing the partial strutures built during inremental proessing. 2000 Kluwer Aademi Publishers. Printed in the Netherlands.
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2Our formal presentation follows the reent work of Duhier and Niehren(2000). 2. Desription-Based Inremental ProessingIt is well known from the work of M.P.Marus et al. (1983) and laterpsyholinguisti work (Prithett, 1992; Gorrell, 1995; Sturt and Croker,1996) that the use of desriptions of trees rather than trees nielysupports inremental proessing. The ruial observation is that theuse of dominane rather than strit dominane permits (i) a monotonetreatment of attahment ambiguity and (ii) a distintion to be made be-tween \simple" loal ambiguity and \garden-path" loal ambiguity (i.e.ambiguity that leads to onsious reanalysis of the syntati struturebuilt so far).Gardent andWebber (1998) further extend the use of desriptions todisourse, showing their bene�t for inremental disourse proessing. Inpartiular they argue that disourse semantis exhibits the same typeof loal ambiguities as sentential syntax (simple and garden-path) andthat therefore the same bene�ts arue from the use of desriptions ininremental near-deterministi disourse proessing as in inrementalsyntax (additionally, they argue that the use of desriptions permits adeterministi treatment of global ambiguity).The question therefore arises of how an inremental proessor an bede�ned whih produes the appropriate desriptions. In the psyholin-guisti literature (Gorrell, 1995; Sturt and Croker, 1996), the approahtaken is to de�ne update operations on desriptions whih ensure thatthe inremented desription (i) is tree shaped and (ii) preserves wordorder (the sequential order of the leaves in the tree math the order ofthe words in the input).We propose an alternative approah to desription-based proessingwhih rests on a logial perspetive. In this approah, desriptions areviewed as formulae of a tree logi and trees as models satisfying theseformulae. Moreover, solved forms an be derived from desriptions bymeans of a normalization proess. A solved form is a notion loselyrelated to that of D-tree (Rambow et al., 1995) and is guaranteed tobe satis�able.Within this perspetive, inremental proessing onsists in (i) on-joining the desription built so far with the desription assoiated withthe inoming unit and (ii) omputing the solved forms satisfying thisonjuntion.We now informally desribe the workings of an inremental disourseproessor based on this idea �rst by skething an arhiteture for dis-
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3ourse level, inremental proessing (setion 3 and 4) and seond byillustrating its operation by means of examples (setion 5).3. An Arhiteture for Disourse ProessingFollowing (Webber and Joshi, 1998; Hitzeman et al., 1995), we viewdisourse parsing as not essentially di�erent from sentene parsing. Inboth ases, a grammar is used whih desribes the syntax and theompositional semantis of natural language. The parser then uses thisgrammar to build the appropriate desriptions.Naturally, the grammar must extend to disourse. We assume agrammar in the spirit of Webber's Lexialised Tree Adjoining Grammar(LTAG) for disourse (Cristea and Webber, 1997; Webber and Joshi,1998; Webber et al., 1999) where disourse onnetives are treatedeither as funtors or as modi�ers and lauses as arguments of thesefuntors and modi�ers.To support inremental proessing, we further assume that Web-ber's LTAG for disourse is modi�ed in two ways. First, the struturesassoiated by the grammar with the disourse units are desriptions oftrees rather than trees. Seond, the syntax/semanti interfae is madepreise by using a synhronous LTAG (Shieber and Shabes, 1990) i.e.two LTAGs, one for the syntax and one for the semantis, whih areinterfaed via a synhronisation relation.In short, the grammar framework we are assuming is a disoursevariant of Kallmeyer's Synhronous Loal Tree Desription Grammar(Kallmeyer, 1998; Kallmeyer, 1999). We assume a synhronous gram-mar to provide a TAG-like disourse grammar with a well-de�nedsyntax/semanti interfae, and we require that the objets de�ned bythe grammars be tree desriptions rather than trees in order to supportinremental proessing both at the syntati and at the semanti level.Given suh a grammar, an inremental disourse parser ould thenfuntion as follows. As eah new disourse unit (i.e. lause or disourseonnetive) is proessed:1. The syntati and semanti desriptions of the new unit, togetherwith any additional onstraints from the syntax/semantis inter-fae, are onjoined to the desription aumulated sofar.2. The resulting desription is then subjeted to a normalization pro-ess that produes the orresponding solved forms.3. If there are no solved forms, the desription is not satis�able andthe parser must baktrak. Otherwise, by appeal to a prefereneriterion, it non-deterministially piks one and proeeds with it.
revision.tex; 17/10/2000; 16:27; p.3



4 4. Tree Desriptions, Dtrees and D-Solved FormsWhile our formalism (Setion 6) is generally more expressive than D-trees, the latter have the advantage of familiarity and an be moreintuitively presented by means of graphial illustrations. For this rea-son, we now desribe a variant of D-trees alled D-solved forms that isappropriate for introduing our formalism and proessing arhiteture.This variant is used throughout Setion 5 to illustrate inrementaldisourse proessing.Rambow et al. (1995) de�ne a D-tree as a tree with dominationedges (d-edges) and immediate domination edges (i-edges). We departslightly from their de�nition and distinguish open and losed nodes:� a losed node has only i-edges. Its arity is �xed. We do not allowa non-monotoni operation suh as sister-adjuntion.� an open node has only d-edges. Its arity is unknown. We do allowmore than 1 d-edge.We draw a d-edge as a solid line, an i-edge as a dotted line with thedominated node lower than the dominating one, a losed node as blakirle, and an open node as a hollow irle. A node may be labelled witha onstant from a given signature: in this ase the label is displayednext to the node. ffa b At eah step of inremental proessing, the urrent desription is aug-mented with new material and this new material is related to earlierone e.g. by d-edges. For example, we might thus obtain a desriptionof the form: f f bThis is not a D-solved form sine there is a losed node with an out-going d-edge. We an obtain a D-solved form either by identifying thetwo end-points of the d-edge, or by propagating the d-edge downward
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5to one of the daughters. Thus, in this ase, there are three possibleD-solved forms: f b ff b f f bOften, onstraints of labeling or preedene an make the proess ofobtaining a D-solved form deterministi. Consider:f g bIdenti�ation of the nodes labeled f and g is not possible sine f 6= g.Also the node labeled  is losed, has no daughters, and annot beidenti�ed with the node labeled g. Therefore only one D-solved formremains: fg b This result an be derived purely through deterministi inferene. InSetion 6.4, we will make preise both the system of inferene rules andthe formal de�nition of a D-solved form.5. Inremental Proessing IllustratedWe now desribe an idealised analysis of examples involving simpleand garden-path ambiguity. The analysis is idealised in that it assumes{ rather than uses { the inremental disourse proessor skethed insetion 3. In other words, the input desriptions are given by reasoningabout the syntax/semanti interfae of the input disourse rather thanby the parsing proess.Given this simplifying assumption, we show that the solved formsomputed from the input desriptions either support determinism (in
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6the ase of simple ambiguity) or fore baktraking (in the garden-pathases).5.1. Attahment ambiguityWhen proessing inrementally, it is sometimes unlear how far belowan already existing node, the inoming struture should be attahed.Suh ambiguity is known in the literature as attahment ambiguity. Itis illustrated by the following examples.(1) On the one hand (a) Jon is ontent.On the other hand (b) Mary isn't.(2) On the one hand (a) Jon is ontent if (b) he an read a novel.On the other hand () He is too poor to buy books.(3) On the one hand (a) Jon is ontent if (b) he an read a novel or if() he an go to the moviesOn the other hand (d) He is too poor to do either.Figure 1 gives the syntati and semanti strutures assoiated withexamples (1) and (2). The gray arrows indiate the relations of synhro-nization between syntax and semantis. As these strutures show, (a)might attah arbitrarily low in the syntati as well as in the semantistruture. sotoh sa otoh sb ontrasta bsotoh ssa if sbotoh s ontrastondb a Figure 1. Attahment AmbiguityAttahment ambiguities raise two issues. First, a representation mustbe found whih is ompatible with the theoretially in�nite set of possi-ble ontinuations. Seond, sine suh ambiguities do not lead the hearerdown the garden path, the hosen representation must only ommit to
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7those aspets of syntax/meaning whih annot be defeated by laterinformation.Now we know from Marus' work and from related work in psy-holinguistis (Prithett, 1992; Gorrell, 1995; Sturt and Croker, 1996)that tree desriptions provide the right amount of underspei�ationto solve both these issues: by using dominane rather than strit dom-inane, a �nite representation of the syntati tree an be obtainedwhih is ompatible with every possible ompletion of the sentene.The question we are addressing is this: How an the appropriate treedesriptions be built inrementally from the input disourse?We illustrate this proess by going through the semanti derivationof example (2) and showing how, given some standard assumptionsabout the syntax/semanti interfae, the appropriate solved forms anbe omputed from the onjuntion of the desription built so far withthe desription of the inoming basi disourse unit.For the purpose of this paper, we take basi disourse units to beeither disourse onnetives or lauses. The �rst basi disourse unitin example (2) is on the one hand, a disourse onnetive whih atthe semanti level, denotes a relation of ontrast between two eventu-alities. This is aptured by assoiating with it the following semantirepresentation: ontrastNext the (a) lause Jon is ontent is proessed. Syntatially, sa mustbe part of the �rst argument of the onnetive on the one hand/onthe other hand sine (i) sa is right-adjaent with on the one hand and(ii) on the other hand has not yet been proessed. By ompositionality,the semanti representation a of sa must therefore be part of the �rstsemanti argument of the ontrast relation. Hene, the solved form foron the one hand, Jon is ontent is:ontrastaIntuitively, this solved form indiates that at this stage in proessing,the interpretation available to the hearer/reader is that there is a re-lation of ontrast holding between the eventuality denoted by sa andsome other eventuality.Now onsider how proessing ontinues in a ase where the (a) lauseturns out to attah lower in the tree e.g. in the ase of example (2).Next if is enountered whih is assoiated with a semanti represen-tation similar to that of on the one hand/on the other hand but where
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8the relation labelling the root node is ond (for \ondition") rather thanontrast. By the same reasoning as for sa, the semantis of if must bepart of the �rst semanti argument of on the one hand/on the otherhand. Furthermore, sine in�x if requires a left-hand argument and sa isleft-adjaent to if, sa must be part of this left-hand syntati argumentand onsequently, its semantis a must be part of the onsequent ofthe onditional. Given this, the solved form for on the one hand, Jonis ontent if will be: ontrastond aMoreover, sine all the material to the left of if has been proessed,the onsequent argument of the onditional an be losed:ontrastond aThus the parser proesses attahment ambiguity deterministially bymonotonially adding information to the urrent desription and eahtime omputing the orresponding solved form.5.2. Preferene riterion and garden path sentenesFrom a psyholinguisti perspetive, two types of ambiguities are gen-erally distinguished: those that lead to proessing diÆulties (onsiousre-analysis) and those that do not (unonsious re-analysis).In the preeding setion, we saw how solved forms support a de-terministi treatment of disourse-level ambiguities whih intuitivelydo not seem to involve onsious re-analysis namely, attahment am-biguities. We now show that not all disourse level ambiguities an beproessed deterministially within our framework and thereby predit,as for sentential syntax, that disourse level ambiguities an be oftwo types: those that an be proessed deterministially within thedesription framework and those that annot.The examples we onsider are the following:(4) Beause (a) Jon is easily upset, whenever (b) he ies, () he getsvery nervous.
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9(5) Beause (a) Jon is easily upset, whenever (b) he ies, () he goesto Paris for example, (d) he should pratie yoga.(6) Beause (a) Jon is easily upset, whenever (b) he ies, () he getsvery nervous for example, (d) he should pratie yoga.Intuitively, there is a stark ontrast in proessing ease between (4)and (6): whereas (4) is easy to proess, (6) is muh more diÆult andseems to involve a garden path e�et. The situation is less lear in(5) though there seems to be a slight inrease in proessing diÆultyrelative to (4). In what follows, we show that the desription basedframework skethed here predits these di�erenes and thereby o�ers abasis for experimental testing. Whereas (4) an be proessed determin-istially and (5) implies a very limited baktrak, (6) involves extensivebaktraking.We �rst go through the derivation for (4). By a reasoning similar tothat for example (2) above, after proessing the (a) lause the solvedform is: auseaNext whenever is proessed extending the desription with a binary treerepresenting the when relation. Sine the onnetive beause requirestwo right-hand arguments and whenever is the seond basi disourseitem ourring to its right, the proposition expressed by wheneverand its arguments must be within the sope of beause. Hene thedesription assoiated with Beause (a) Jon is easily upset, wheneveris: ausea whenThis desription has two solved forms:ausea when (7) ausea when (8)
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10Argument Filling Priniple. In order to preserve determinism, somepreferene riterion must be determined whih permits hoosing be-tween the two forms. We use a riterion (heneforth alled the ArgumentFilling Priniple) similar to Gorrell's (1995) Inremental Liensingpriniple or to Sturt and Croker's (1996) preferene for substitutionover adjuntion: we prefer normal forms whih provide material for anearlier argument that was so far empty. Thus here, we prefer (8) beauseit provides material for the seond argument of the ause relation whilst(7) leaves it empty. If we (standardly) assume that the arguments of adisourse relation are given by adjaent material, the fat that wheneveris ommitted to being part of the seond argument of beause meansthat the latter's �rst argument is now losed: it annot be extended bymaterial ouring later in the disourse. Thus the solved form now is:ausea whenNext the (b) lause is proessed whih given the syntax and semantis ofwhenever an only be part of its �rst syntati and semanti argument:ausea whenbAgain sine whenever takes two arguments and the () lause is theseond basi disourse item to its right, () must be within the syntatiand semanti sope of whenever. Given the resulting onstraints, weagain have two solved forms:ausea whenb 
(9) ausea whenb 

(10)
By the Argument Filling Priniple mentioned above, (10) is preferredbeause it �lls the seond valeny of whenever instead of leaving it
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11empty. As a result, the reading obtained for (4) is:ausea whenb  (11)This shows that example (4) an be proessed deterministially. Nowonsider how the derivation would proeed given example (5). In thisase, the next disourse item is the onnetive for example whih takestwo arguments to its left. This annot be satis�ed in (10), therefore wemust baktrak: (9) is the hronologially losest alternative and allowsb and  as arguments for the semanti relation of evidene. Sine forexample ours to the right of the orresponding lauses, no furthermaterial an be added to these arguments and so they an be losed.The resulting solved form is: ausea whenevideneb Finally, the (d) lause is proessed whih permits �lling the open va-leny of whenever. The following semanti representation is thereforeassigned to (5). ausea whenevideneb  dThus for examples suh as (5), the approah predits a limited bak-traking. Intuitively at least, this mathes the fat that example (5)is relatively easy to proess: the garden path e�et indued by \forinstane" is very mild.Now onsider again example (6), in whih the garden path e�etis muh stronger. In this ase, baktraking to the solved form in (9)is not suÆient beause it would involve an evidene relation to beposited between (6b) and (6) and this is ruled out by pragmatis:he gets very nervous annot be taken as giving evidene for he ies.Therefore we must baktrak further and start from the next alternativenamely (7). By the same argument as before, b must be in the �rst
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12argument of when. ausea whenbFurther,  must be below when sine the latter doesn't have all itsarguments yet. Again we obtain two normal forms:ausea whenb 
(12) ausea whenb 

(13)
Following the argument �lling priniple, we prefer (13). Now evideneneeds to �nd two arguments using material on the left: the only possi-bilities are a and the subtree rooted in when. Moreover the tree belowevidene an be losed sine it is formed only from earlier material.auseevidenea whenb Finally d �lls the seond argument of ause and so we obtain thefollowing semanti representation for (6).auseevidenea whenb d
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136. Dominane ConstraintsIn this setion, we introdue a logial framework for tree desriptions.In 6.1 we introdue a language of dominane onstraints for writing treedesriptions. In 6.2 we give its semantis by interpretation over �nitetree strutures. In 6.3 we intuitively motivate the notion of solved form,and in 6.4 we formally de�ne it in terms of saturation with respet toa system of inferene rules.6.1. LanguageIn (Duhier and Gardent, 1999), we followed a lassial presentation ofdominane onstraints in whih a tree desription is given by a onjun-tion of dominane literals x �� y and labeling literals x:f(x1; : : : ; xn)where variables denote nodes in the tree. x �� y expresses that thenode denoted by x is equal to or a proper anestor of the node denotedby y and x:f(x1; : : : ; xn) expresses that the node denoted by x mustbe formed from the n-ary onstrutor f and the sequene of daughternodes denoted by x1 through xn.However, the onstraint treatment we proposed turned out to bemore general and the added expressivity was notied by Duhier andNiehren (2000) and formalized under the name of dominane on-straints with set operators. It is this revised formulation whih we adoptnow. The abstrat syntax of dominane onstraints with set operatorsis given by: � ::= x R y j x:f(x1; : : : ; xn) j � ^ �0where x; y; xi range over an in�nite set of node variables, f ranges overa �nite signature �, and R ranges over arbitrary subsets of the relationsymbols f=;�+;�+;?g. The symbol �+ denotes proper dominaneand ? represents disjointness. In a dominane literal xR y, R is alleda set operator and is given a disjuntive interpretation: one of therelations in R must hold between the nodes denoted by x and y. Forexample x f=;?g y is satis�ed either if the nodes denoted by x and yare equal, or if they lie in disjoint subtrees.In all tree strutures we have :(xRy) � x:Ry and x(R1 [R2) y �x R1 y _ x R2 y. Thus set operators introdue a ontrolled form ofnegation and disjuntion without admitting full propositional onne-tives.The formal aount an be straightforwardly extended to permitrelations of preedene, see e.g. (Duhier and Thater, 1999). In thisase the set of relation symbols is f=;�+;�+;�;�g.
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146.2. SemantisThe semantis of dominane onstraints with set operators are givenby interpretation over �nite tree strutures. We identify a node in atree with the path that leads to it starting from the root. A path � isa word (i.e. a sequene) of positive integers. We write � for the emptypath and �1�2 for the onatenation of �1 and �2. We say that �0 is aproper pre�x of �, and write �0 �+ �, if there exists �00 6= � suh that� = �0�00. We say that �1 is disjoint from �2, and write �1 ? �2, whenthere exist paths �; �01; �02 and integers i 6= j suh that �1 = �i�01 and�2 = �j�02. A tree-domain is a non-empty pre�x-losed set of paths.A �nite tree � is a triple (D� ; L� ; A� ) of a �nite tree-domain D� , alabeling funtion L� : D� ! �, and an arity funtion A� : D� ! N,and suh that for all � 2 D� , �i 2 D� i� 1 � i � A� (�).We write V� for the set of variables ourring in �. A model of � isa pair (�; �) of a �nite tree � and a variable assignment � : V� ! D�mapping eah variable of � to a node in � . We write (�; �) j= � for therelation of satisfation and de�ne it as follows:(�; �) j= � ^ �0 if (�; �) j= � and (�; �) j= �0(�; �) j= x R y if �(x) r �(y) for some r 2 R(�; �) j= x:f(x1; : : : ; xn) if L� (�(x)) = f ^A� (�(x)) = n ^�(x)i = �(xi) for 1 � i � nKoller et al. (1998) have shown that the satis�ability of propositionallogi formulae an be redued to the satis�ability of dominane on-straints over a signature ontaining a binary onstrutor ons and twoonstants, true and false, thus establishing an NP-hardness result.6.3. Models and Solved FormsA pratial solver annot simply attempt to enumerate the models ofa desription: if � is a model of �, then any tree � 0 whih ontains �is also a model of �. Thus, whenever a desription is satis�able, it hasin�nitely many solutions.Consider the example below. On the right, is a desription � and onthe left is a possible tree model where eah variable is listed next tothe node whih it denotes.
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15f f x1g x2f x4; x11 x5; x12  x6; x13 ff x7f x8 x10  f x9   x3 x1 : f(x2; xf )^ x1 �� x7^ x1 �� x10^ x2 �� x4^ x2 �� x11^ x4 �� x4^ x4 �� x6^ x7 : f(x8; x9)^ x11 : f(x12; x13)^ x13 : There is muh in this tree whih is not required to model �. All thesuperuous information is shown in gray. If we remove the gray parts,we are left with a muh simpler tree shape:f x1x2f x4; x11x5; x12  x6; x13 f x7x8x10 x9x3
Suh a shape is what we introdued in Setion 4 under the name of D-solved forms. It may be helpful to draw an analogy between D-solvedforms and most-general uni�ers. Firstly, just like a most general uni�erinstantiates two terms only as far as neessary to make them equal, aD-solved form expliitates only as muh of the shape of the tree as isneessary to model the desription. Seondly, if there is a uni�er foran equation t1 = t2 between �rst-order terms, then there exist groundsolutions. Similarly, if � has a D-solved form, then there exist �nitetrees whih satisfy it.6.4. Solved Forms and Inferential SaturationHopefully, the intuition underlying the notion of D-solved form hasbeome lear and we now de�ne it formally. In this, we follow Duhierand Niehren (2000) who desribe an abstrat solver based on inferen-tial saturation aording to the propagation and distribution rules ofFigure 2.The proess of inferential saturation is de�ned as follows: a propa-gation rule has the form �1 �! �2 and is said to apply to � whenever�1 � � and �2 n � 6= ;. In this ase, we proeed with � ^ �2. Adistribution rule has the form �1 �! �02_�002 and is said to apply when
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16Propagation Rules x;y �! false�! x�� xx�� y ^ y �� z �! x�� zx:f(x1; : : : ; xn) ^ y:f(y1; : : : ; yn) ^ x = y �! xi = yix:f(: : :) ^ y:g(: : :) �! x := y if f 6= gx:f(: : : ; xi; : : : ; xj ; : : :) �! xi ? xj if i 6= jx:f(: : : ; y; : : :) �! x�+ yx R1 y ^ x R2 y �! x (R1 \R2) yx R y �! x R0 y if R � R0x R y �! y R�1 xx? y ^ y �� z �! x? zx�� z ^ y �� z �! x :? yx�� y ^ x:f(x1; : : : ; xn) ^ ^ni=1xi :�� y �! x = yDistribution Rulesx�� y ^ x:f(x1; : : : ; xn) �! xi �� y _ xi :�� yx :? y �! x�� y _ x :�� yFigure 2. Rule System of Duhier & Niehren�1 � �, �02 n� 6= ; and �002 n� 6= ;. In this ase, we non-deterministiallyproeed with either � ^ �02 or � ^ �002 .A D-solved form of � is a saturation of � that does not ontainfalse. In other words, it is a onsistent saturation of �. Duhier andNiehren (2000) proved that a D-solved form is satis�able and that thesaturation-based solver is sound and omplete.The �rst alternative of the �rst distribution rule implements thepropagation of a d-edge downward to a daughter as we desribed inSetion 4. Repeated appliation of its seond alternative together withthe last propagation rule implements identi�ation.The seond distribution rule takes are of desriptions whih arenot yet tree shaped. A lassial example is quanti�er sope ambiguity.Consider the sentene \every yogi has a guru" whose underspei�edsemanti representation in the spirit of (Egg et al., 2000) albeit muhsimpli�ed is: forallyogi existsguruhas
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17In onjuntion with the next-to-last propagation rule, the 2nd distri-bution rule derives the two D-solved forms below whih orrespond tothe two possible soping arrangements:forallyogi existsguru has
existsguru forallyogi hasA D-solved form is de�ned as a onsistent saturation of a desription.The graphial representation whih we have been using is essentially aonvenient summary of the D-solved form, where redundant onstraintshave been omitted, in partiular all literals x��y whih an be deduedby transitivity (3rd propagation rule).While the graphial representation is intuitive and helpful for il-lustration, it is not as expressive as the formalism and some literalspresent in a D-solved form annot always be faithfully represented. Forexample literals of strit dominane x�+ y and of disjointness x? y.7. Constraint-Based Inremental ParsingThe NP-hardness result of Koller et al. (1998) is not a show-stopper, butit requires that a pratial solver devise very e�etive means to addressthe ombinatorial omplexity of the task, for example by drastiallyreduing the number of hoies that need be onsidered.An approah based on onstraint propagation has proven partiu-larly suessul. EÆient onstraint programming solvers an be derivedby transformation of a dominane onstraint into a onstraint satisfa-tion problem on �nite sets (Duhier and Gardent, 1999; Duhier andNiehren, 2000).7.1. Enoding into finite sets onstraints DownxEqxSidexUpx xThe idea of the enoding is based on thefollowing observation: when viewed from aspei� node x, the nodes of a solution treeare partitioned into 4 regions: the node interpreting x, all nodes above,all nodes below, and all nodes to the side. Therefore the variables whihthese nodes interpret are similarly partitioned into 4 sets and the idea
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18is to introdue set variables to represent them, then express and solvethe problem in terms of these variables.We are going to present an enoding whih transforms a desription� into a onstraint satisfation problem (CSP) [[�℄℄ expressed solely interms of variables ranging over �nite domains of integers and variablesranging over �nite sets of integers. We write V� for the set of nodevariables in �. In [[�℄℄, every x 2 V� must be enoded by a distintinteger; similarly, every f 2 �. However, in the interest of legibility, wewill leave all suh trival enodings impliit. Our enoding onsists ofthree parts:Representation. for eah node variable x, A1(x) expresses the loalinvariants for the CSP variables introdued for x.Well-formedness onstraints. for eah pair of node variables x; y,A2(x; y) expresses the well-formedness onstraints that must besatis�ed for a solution to be tree-shaped.Problem-spei� onstraints. A3[[�℄℄ forms the problem-spei� on-straints that restrit admissibility to only those tree shapes thatatually satisfy �.7.2. RepresentationWe restrit ourselves to trees with a maximum arity (i.e. branhingfator) max. For the purpose of this paper, max an be the maximumarity used in the input desription �. For eah variable x 2 V�, weintrodue 7+max set variables written Eqx, Upx, Downx, Sidex, Equpx,Eqdownx, Parentx, Downix for 1 � i � max, and one integer variableLabelx. First, we state that x is indeed one of the variables interpretedby the node whih it denotes: x 2 Eqx (14)Eqx, Upx, Downx, Sidex enode the set of variables that are respetivelyequal, above, below and to the side (i.e. disjoint) of x. Thus we have:V� = Eqx ℄Upx ℄Downx ℄ SidexAs desribed in (Duhier and Niehren, 2000), we must improve prop-agation by introduing Eqdownx and Equpx as intermediate results:Eqdownx = Eqx ℄Downx (15)Equpx = Eqx ℄Upx (16)V� = Eqdownx ℄Upx ℄ Sidex (17)V� = Equpx ℄Downx ℄ Sidex (18)
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19Downix enodes the sets of variables in the subtree rooted at x's ithdaughter (empty if there is no suh daughter):Downx = ℄fDownix j 1 � i � maxg (19)The ontribution A1(x) to the enoding is de�ned by:A1(x) = (14) ^ (15) ^ (16) ^ (17) ^ (18)7.3. WellformednessPosing R = f=;�+;�+;?g, the relationship Rxy that obtains in asolution tree between the nodes denoted by x and y must be one in R.For eah r 2 R, we an formulate orresponding onstraints D[[xry℄℄ onthe variables of the CSP that must be satis�ed in this ase. Similarlyfor the negation D[[x :r y℄℄.D[[x= y℄℄ = Eqx=Eqy ^Upx=Upy ^Downx=Downy ^ Sidex=Sidey^ Eqdownx=Eqdowny ^ Equpx=Equpy^ Parentx=Parenty ^ Labelx=Labely ^i Downix=DowniyD[[x := y℄℄ = Eqx k EqyD[[x�+ y℄℄ = Eqdowny � Downx ^ Equpx � Upy ^ Sidex � SideyD[[x :�+ y℄℄ = Eqx k Upy ^Downx k EqyD[[x? y℄℄ = Eqdownx � Sidey ^ Eqdowny � SidexD[[x :? y℄℄ = Eqx k Sidey ^ Sidex k EqyWith these, we an formulate a quadrati number of wellformednessonstraints. For eah r 2 R and x; y 2 V�:D[[x r y℄℄ ^Rxy = r or Rxy 6= r ^ D[[x :r y℄℄ (20)Rxy 2 R (21)The ontribution A2(x; y) to the enoding is de�ned by:A2(x; y) = ^f(20) j r 2 Rg ^ (21)Disjuntive Propagators. The onstrut (C1 or C2) used in (20) isalled a disjuntive propagator. It has the delarative semantis ofdisjuntion but its operational semantis are those of a onstraintrather than a hoie point: when Ci beomes inonsistent with theonstraints derived so far, then (C1 or C2) ommits to (i.e. infers)
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20the other alternative Cj , for fi; jg = f1; 2g. A formal statement of itssemantis an be found in (Duhier and Niehren, 2000).7.4. Problem speifi onstraintsThe last part of the enoding forms the problem-spei� onstraintsthat further limit the admissibility of well-formed solutions and onlyaepts those whih atually satisfy �.A3[[� ^ �0℄℄ = A3[[�℄℄ ^ A3[[�0℄℄A3[[x R y℄℄ = Rxy 2 RA3[[x:f(x1; : : : ; xn)℄℄ = Labelx = f^i=maxi=n+1 Downix = ;^i=ni=1 (Parentxi = Eqx ^Downix = Eqdownxi ^Upxi = Equpx)7.5. Stating and solving the CSPWe an now formulate the full enoding by onjoining the ontributionsde�ned above.[[�℄℄ = ^x2V� A1(x) ^x;y2V� A2(x; y) ^ A3[[�℄℄To solve [[�℄℄ is to �nd assignments to the CSP variables so that [[�℄℄is satis�ed. This is realized by alternating steps of propagation anddistribution.Constraint propagation performs deterministi inferene that shrinksthe set of possible values that may be assigned to eah variable. Thisset of values is alled the domain of the variable. When only one valueremains in its domain, we say that the variable is determined, i.e. itsassignment has been deided.When, after propagation, there are still undetermined variables, astep of distribution must be performed: one non-determined variable isseleted, its domain is split in two non-empty parts and one of them isnon-deterministially hosen as its new domain.In reality, we do not need to �nd omplete assignments to all vari-ables, rather we need only restrit their domains enough to reah asolved form. Duhier and Niehren (2000) prove that it is suÆientto adapt the distribution rules given in Figure 2 as follows. For eahx:f(x1; : : : ; xn) 2 � and y 2 V�:Rxy 2 f=;�+g �! Rxiy 2 f=;�+g _ Rxiy 62 f=;�+g
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21and for all x; y 2 V�:Rxy 6= ? �! Rxy 2 f=;�+g _ Rxy 62 f=;�+gIn either ase, a distribution step splits the domain of a Rxy into asubset of f=;�+g and a subset of its omplement.7.6. Inremental proessingWe now indiate how the enoding and onstraint-based method de-sribed above an be adapted to support the inremental proessingof desriptions. In this view, proessing onsists of alternating steps ofinformation aquisition and proessing. The desription � is not givenentirely up front; instead it is inrementally aquired.Surprisingly enough, this has no impat on our enoding: we needsimply aommodate the fat that both � and therefore V� are onlyinrementally revealed. This is easily ahieved (i) by representing, inthe CSP, V� as a set variable whih is merely onstrained to ontain thenode variables whih have been revealed so far, (ii) by inrementallyproduing additional onstraints for the CSP as more onjunts of� and more node variables beome available. We omit the details ofthis proedure, as they should be fairly obvious when looking at theenoding.At eah step we derive all orresponding solved forms. An inre-mental near-deterministi solver an be obtained with the additionof a preferene riterion, suh as the Argument Filling Priniple ofSetion 5, that allows us to hose one solved form before proeeding tothe next step. 8. ConlusionIn this paper, we proposed a new appliation for the onstraint-basedtreatment of desriptions presented in (Duhier and Gardent, 1999)namely, inremental disourse parsing. Spei�ally, we have arguedthat, given the appropriate parsing arhiteture, this onstraint-basedapproah ould be tailored to produe the partial strutures built dur-ing the inremental interpretation of disourse.Two important questions remain open. In setion 3, we suggest usinga disourse variant of Kallmeyer's Synhronous Loal Tree DesriptionGrammars to produe the desriptions from whih the partial stru-tures built during inremental proessing are omputed. This impliesthat the desriptions the onstraint solver works with are synhronousdesriptions. It is a matter for further researh how the ontraint-based
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