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Abstract

We present a higher-order module discipline with separate compilationand
concurrent dynamic linking. Based on first-order modules one can program
security policies for systems that link modules from untrusted locations (e.g.,
Java). We introduce a pickling operation that writes persistent clones of
volatile, possibly higher-order data structures on the file system. Our pickling
operation respects lexical binding. Our module discipline is based on func-
tors, which are annotated functions that are applied to modules and return
modules. Pickled computed functors can be used interchangeably with com-
piled functors. In contrast to compiled functors, pickled computed functors
can carry computed data structures with them, which has significant practical
applications.

1 Introduction

Modularization is an essential technique for developing and maintaining software
systems [12, 16]. Programming languages support modularization by replacing
complete programs with program fragments calledmodule definitions. Module
definitions reside in individual files and arecompiled separately. Execution of a
module definition installs amodule. Module definitions typicallyimport modules,
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which are identified by file names.Dynamic linking[4] is a scheme, where execu-
tion starts with a single compiled module definition and further module definitions
are loaded and installed only once they are needed. The same module definition
can be used by many different applications.

Modula-2 [16], Modula-3 [10], Oberon [13], Objective Caml [8] and Java [2]
are examples of languages that support modules and separatecompilation. Oberon
and Java also support dynamic linking.

A module definition specifies a function that takes modules asarguments and
returns a module. This observation relates module definitions to definitions of
functional procedures [3]. We will use the termfunctor to stand for the anno-
tated function specified by a module definition. The annotations specify for each
imported module an external name and a type. Our functors aredifferent from
SML’s [9] functors in that SML’s functors do not have annotations.

In functional languages [1, 9], procedures are accommodated as first-class cit-
izens, which provides for powerful programming techniques. Similarly, we will
accommodate functors and modules as first-class citizens. This means that pro-
gram variables can designate modules and functors, and thatfunctor definitions
can be nested into functor definitions.

We will present two significant practical applications of first-class modules and
first-class functors.

First-class modules make it possible to program flexible security policies for
systems that obtain functors from possibly untrusted locations in the Internet (e.g.,
Java). A security policy may, for instance, completely disallow operations on the
local file system or query the user if such an operation is invoked.

For our second application we introduce pickling and unpickling operations.
Pickling writes a persistent clone of a volatile data structure on the file system,
called apickle. Unpickling reads a persistent clone from the file system andobtains
a volatile clone. With first-class functors, pickling offers the possibility to write
computed functors on the file system. Pickled computed functors can be used in
the same way as compiled module definitions.1 In contrast to compiled functors,
computed functors can carry computed data structures with them. This matters
since

1. a computed data structure can now be loaded together with afunctor rather
than being computed a new for each process using it.

2. the functors needed to compute a data structure are not needed by the pro-
cesses using the data structure.

1This comes for free if the compiler is implemented in the samelanguage it compiles. Then the
compiler simply executes the compiled module definition andpickles the obtained functor.
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To the best of our knowledge, these two application of first-class modules and
functors have not been proposed before. The same holds for our general pickling
operation, which respects lexical scoping and accommodates first-class procedures
and functors. Modula-3 [10] has an implementation-dependent pickling operation
that accommodates first-order data structures but breaks security invariants for pro-
cedures.

Higher-order module disciplines have been investigated thoroughly in the con-
text of ML (e.g., [9, 15, 6, 7]). This work focuses on expressive static type systems
and mostly ignores separate compilation. In contrast to ourapproach, functor def-
initions are not seen as compilation units. Compilation units appear as a separate
notion in Objective Caml [8].

Our module discipline assumes a dynamically typed base language. Recon-
ciling our module discipline with a static type system is a difficult research issue.
However, it is important to have a simple reference model of ahigher-order module
discipline and explore its practical applications. This provides practical guidance
for research on the technical difficult issues of static typing. As it comes to typing,
SML and Java provide two important and radically different reference points. In
contrast to SML, Java mixes static with dynamic type checking. Dynamic typing is
a must for dynamically linking systems that load functors from untrusted locations.

Our module system was designed and implemented for the next version of
Oz [14, 11], a dynamically typed, concurrent and higher-order language that bases
synchronization of threads on logic variables and providespowerful primitives for
constraint programming. The use of pickled computed functors in addition to com-
piled functors has proven essential for the applications wehave adapted to the new
module discipline.

Our presentation of the module discipline employs a dynamically typed variant
of SML’s base language extended with concurrent threads. This is a rather generic
choice that does not really commit us to a particular programming language. To
provide for a sufficiently rigorous explanation of dynamic linking, we use futures
as in Multilisp [5]. To our knowledge, this is the first rigorous model of lazy and
concurrent linking (which is employed in Java).

The paper is organized as follows. Section 2 starts with a first-order module
discipline with eager linking. Section 3 introduces moduletypes and link-time
type checking. Section 4 adds concurrent lazy linking basedon module managers.
Section 5 adds first-class modules and shows how they can be used to program
security policies. Section 6 adds pickles. Section 7 adds first-class functors and
discusses pickled computed functors.
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2 Basic Notions

We start with a simple module discipline where all linking isdone before the actual
execution starts. We assume a sequential base language. Functors and modules are
not first-class.

We assume that the language is implemented with acompilerand avirtual ma-
chine(VM). The compiler translatesfunctor definitionsinto functor files. The VM
loads functor files, links the obtained functors and executes them. Functor defini-
tions and functor files reside in a file system whose file names are strings called
URLs. The file system should be thought of as a combination of the local file sys-
tem and the Internet-based virtual file system provided by the URL infrastructure.
The compiler and the VM are invoked at the level of the operating system.

Modulesare volatile structures that exist in a virtual machine. They take the
form of records whosefieldsare often higher-order (e.g., procedures). We distin-
guish betweensystem modulesandapplication modules. System modules provide
access to system resources like the file system and the windowsystem. System
modules are provided by the VM. Application modules are computed by functors.

Every module is associated with amodule name. There are different names for
system modules and application modules. The name of an application module is
the URL from which the functor that computed it was obtained.

A functor is an annotated procedure. The procedure is applied to modules and
returns a module. The annotation fix a name for every argumentmodule, possibly
relative to the URL from which the functor was obtained.

A functor definitionis a text residing on a file. Functor definitions are com-
piled with respect to abase environment, that provides the basic operations of the
language (e.g., operations for arithmetic). We assume thatthe basic operations of
the language do not use system resources like input and output channels. Access
to system resources must be obtained through imported system modules.

The VM is started with a URL, calledroot URL. From the root URL the VM
obtains the so-calledroot functor. The root functor specifies names for its argu-
ment modules, possibly relative to the URL from which it was obtained. If the
root functor needs further application modules, the VM continues by loading the
respective functors. The VM continues loading functors until it has built the com-
pletedependency graph.

The nodes of the dependency graph are module names. The linksof the de-
pendency graph point from a module nameN to the names of the modules that
N imports. Every node of the dependency graph is reachable from the root URL.
Names of system modules appear as leaves of the dependency graph. The depen-
dency graph must be acyclic.

Once all functors of the dependency graph are loaded, the VM applies the
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functors in bottom-up order. It terminates when the application of the root functor
terminates. The choice of the precise bottom-up order (e.g., from left to right) in
which functors are applied is left to the VM.

The reader may wonder why the VM can provide actual services if all it does is
applying functors. The answer is that a functor may use the input/output facilities
of an imported module (e.g., a system module). Typically, this will be done by the
root functor, which will only return a trivial module.

The VM can be called with the root URL and further command lineargu-
ments. The command line arguments can be made visible to the application func-
tors through a system module.

The following things can go wrong while the VM is running.

1. The VM may not be able to obtain a functor from a URL.

2. The functors at the URLs may define a cyclic or an infinite dependency
graph.

3. A functor application may return an (error) exception. (For instance, because
a field of an imported module does not exist or has the wrong type).

If something goes wrong, the VM prints an error message and terminates.
Note that in the current model functors are applied exactly once. This means

that they cannot be used to obtain multiple instances of generic modules. In Sec-
tion 5, we will extend our model so that is provides for multiple applications of
functors.

Any dynamically typed language with lexically scoped first-class procedures
(e.g, Scheme) can be rearranged to support the described module discipline.

3 Module Types

Even in a dynamically typed language we can have some type checking at the
module level. To do so, we needmodule types. A functor now states a type for
each argument module and the result module. Moreover, we need a relation that
defines whether a module typeT1 supportsa module typeT2. If a functor requires
a typeT for an argument module, any module that has a type that supports T can
be used as argument.

The most primitive module types would just list which field names are expected
or provided. ThenT1 supportsT2 if T1 lists at least the field names listed byT2.

Type checking is needed at compile time and at link time. Typechecking at
link time ensures that the support relation is satisfied for each link of the depen-
dency graph. Type checking at compile time may assume that a functor definition
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declares the imported and exported field names and checks that only declared im-
port fields are used and all declared export fields are provided. With suitable syntax
the compiler may alternatively infer all used import fields and all provided export
fields.

One may use types for fields like integer, procedure, or record. In this case the
compiler must check that declared field types are consistently used.

In a statically typed language, one can declare and check more expressive field
types. Now it becomes to inconvenient to declare in each functor definition the
types of all imported and exported fields.

In Java and Oberon, one declares just the types of the export fields. The types
of the import fields are known by the compiler if they belong tosystem modules
and are otherwise obtained by the compiler from the importedfunctor files.

Modula-2 and Objective Caml use functor definitions and corresponding inter-
face definitions. An interface definition states exported fields together with their
types. A functor definition can only be compiled if the compiled interface def-
initions for the functor and its imported functors are available. Implementations
of Modula-2 and Objective Caml typically represent module types as finger prints
(e.g., MD5 check sums) and check equality of finger prints at link time.

4 Concurrent Linking

We now move to a lazy linking strategy where functors are applied in a top-down
order with respect to the dependency graph. Moreover, a module is only installed
when one of its fields is accessed. This means that execution of functors and in-
stallation of modules are interleaved. This by-need strategy is reminiscent of lazy
functional programming. It is different in that computation is eager except that the
installation of modules is delayed.

We also move to a base language with concurrent threads. In a concurrent
setting lazy linking is particularly useful since threads that do not block on the
installation of a module can continue their computation.

To explain lazy linking, we use the notion of futures from Multilisp [5]. A
future is a placeholder for a data structure that is not yet computed. Once the data
structure is computed, it replaces the future such that the future disappears. Threads
can block on the event that a future is needed. This way the data structure that will
replace a future can be computed by a thread that waits until the future is needed.

We assume that the VM hosts amodule managerthat is responsible for linking
and installation of modules. The module manager host amodule tablethat maps
module names to futures or pairs(M;T) consisting of a moduleM and its typeT.
A module name that is mapped to a future is linked but not yet installed, and a
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module name that is mapped to a pair(M;T) is linked and installed. When the VM
starts, all system modules are linked.

The module manager has a method

link(U;T)
that takes a module nameU and a module typeT and returns a futureM f repre-
senting the module identified byU . When a field ofM f is accessed, the following
happens:

1. If the module identified byU is not yet installed, it is installed.

2. If the type of the installed module supportsT, the futureM f is replaced with
the installed module.

Concurrent applications of the link method are served undermutual exclusion. The
VM starts with linking and requesting the root module. The rest happens through
threads spawned by the link method.

The methodlink(U;T) is defined as follows:

1. If U is not in the domain of the module table, then:

(a) Create a new futureEf and extend the module table such that it maps
U to Ef .

(b) Spawn a new thread as follows (installation ofU):

i. Wait until Ef is needed.
ii. Load a functorF from U ; raise a linking error if this fails.
iii. Link the argument modules ofF.
iv. Apply F to the argument modules (some of them are possibly rep-

resented as futures) and obtain a moduleM.
v. ReplaceEf with the pair(M;TF), whereTF is the result type ofF.

2. LetE be the entry to which the module table mapsU .

3. Create a new futureM f .

4. Spawn a new thread as follows (type checking forU):

(a) Wait untilM f is needed.

(b) Wait until E is a pair(M;TM). (If E is a future, this will request its
elimination.)

(c) If TM supportsT, then replaceM f with M, else raise a linking type
error.
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5. ReturnM f .

Note that concurrent linking makes its possible to havecyclic dependency
graphs. Java admits cyclic dependency graphs since it allows for mutually de-
pendent classes.

In the sequential discipline, the VM terminates once the application of the root
functor terminates. In a concurrent setting it is preferable to have an explicit shut-
down operation since, for instance, threads spawn by the root functor may still be
active when its application terminates. The shutdown operation should be made
available through a system module.

5 First-class Modules

We now move to a setting where modules are first-class citizens. In a dynamically
typed language this is a straightforward extension since our discipline represents
modules anyway as records.

We assume that functors provide first-class access to their argument modules.
First-class modules become interesting if we provide the possibility to freely

create new module managers. Let us assume that a system module provides an
operation

link : moduleTable * URL * moduleType -> module

wheremoduleTable stands for lists of triples

moduleName * module * moduleType

An application

link(mtab,u,t)

will create a new module manager whose initial module table is specified bymtab.
Then the link method of the new module manager will be appliedto (u,t) and
deliver the result of the link operation.

With the link operation we can apply a functor more than once.Hence we can
now have generic modules.

Another application of the link operation is the implementation of security poli-
cies. Suppose we want to install a functor from an untrusted URL. We can do this
with a new module manager whose initial module table provides only secured vari-
ants of the system modules. The secured variants can for instance query the user
if the the untrusted application wants to access the local file system. We have
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sufficient expressivity for constructing secured variantsof system modules since
modules are records and the language is higher-order.

Java’s class loaders provide part of the expressivity of ourlink operation. Java
looses expressivity since classes are in general not first-class.

6 Pickles

We now extend our model with two operations pickle and unpickle. Thepickle
operationobtains a portable description of a data structure, calleda pickle, in a VM
and writes it on a file. Theunpickle operationreads a pickle from a file and creates
a clone of the original data structure in the VM in which the unpickle operation
is invoked. In other words, pickling creates a persistent clone of a volatile data
structure, and unpickling creates a volatile clone of a persistent clone.

We are interested in pickles since we will move to a setting where functors are
first-class citizens and can hence be pickled. Things will begeneralized such that
module managers can load pickled functors produced by VMs aswell as functor
files produced by the compiler.

We need to make precise what we understand under a data structure and which
data structures can be pickled. To do so, we assume that our language has the data
structures of SML.

We assume an execution model that separates control structures (i.e., threads)
from data structures. All data structures reside in an abstract store, whose states
take the form of a directed graph. The nodes of the graph represent entities like
integers, records, variants (obtained by constructors), assignable references cells,
procedures (i.e., closures), and operations (i.e., built-in procedures). Procedures
are nodes whose departing links point to lexically bound nodes. For instance, the
SML expression

let val x = fn y => z(y) in ... end

will bind x to a procedure node with one departing link that points to thenode
bound toz.

Given an execution state, the data structure associated with a nodex in the
abstract store is the maximal subgraph of the abstract storethat is reachable fromx.

We distinguish between two types of operations (i.e., built-in procedures).
Global operationshave the same semantics in every VM (e.g., addition of num-
bers or creation of threads).Local operationsaffect the resources of a particular
VM and are hence tied to a particular VM. All operations that are available through
the base environment at compile time are global. Access to local operations can
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only be obtained through system modules, which are tied to the VM in which they
exist.

A data structure in a VM can be pickled if and only if it does notcontain
futures or local operations. By excluding futures, we make sure that they are not
cut off from the threads that are supposed to eliminate them.By excluding local
operations, we ensure that loading a pickle will not create adata structure that
captures local operations of the loading VM. This is an essential security property
of our model (see also Section 5).

If the pickle operation encounters a future, it requests it and blocks. Once the
future is eliminated it resumes. This way pickling is compatible with lazy linking.
If the pickle operation encounters a local operation, it raises an error exception.

Next we make precise what we mean by a clone of a data structure. Let x be
the original data structure andy be a clone ofx. Then the graphs reachable from
x andy must be graph isomorphic with respect to their rootsx andy. Moreover,
the reference cells reachable fromx must all be different from the reference cells
reachable fromy. Finally, if we redirect all external links into the graph rooted by
x to the respective nodes of the graph rooted byy, no difference must be observable
when the VM proceeds.

Modula-3 [10] offers pickles that depend on the implementation and that are
different from ours as it comes to procedures and operations. Pickles in Modula-3
do not contain procedures. Instead of the actual procedurestheir symbolic names
will be pickled. When the VM unpickles a pickle, it will try toresolve the symbolic
names with the procedures it knows. Operations are treated like procedures.

7 Computed Functors

We now move to a language with first-class functors. This means that functor
definitions can contain nested functor definitions, and thatfunctors computed by
nested definitions can be referred to through program variables.

We distinguish betweencompiled functorsandcomputed functors. A compiled
functor is obtained by compilation of a functor definition. Computed functors are
obtained by executing compiled functors whose definitions contain nested functor
definitions. Compiled functors can only have lexical bindings to the data struc-
tures of the base environment (see Section 2). Computed functors can have lexical
bindings to all data structures that the creating compiled functors supply to their
definitions.

Since computed functors are first-class, we can pickle them.This becomes
useful, if we assume that module managers can load compiled functors as well as
pickled computed functors. Pickled computed functors can carry computed data
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structures with them. This matters since

1. a computed data structure can now be loaded together with afunctor rather
than being computed a new for each virtual machine using it.

2. the functors needed to compute the carried with data structure are not needed
by the virtual machine using it.

To make the introduction of pickled computed functors convenient and to ob-
tain well-structured source files, the compiler should accept sugared definitions
looking as follows:

computed functor
requires Ms
local Ds
functorDefinition
end

HerefunctorDefinitionis an ordinary functor definition, which will create the com-
puted functor. The compiler first transforms the sugared definition into the ordinary
definition

functor
import pickle Ms
body

Ds
pickle.save(functorDefinition, fileName)

end

wherepickle is the name of the system module providing pickling andfileName
is the name of the file from which the sugared definition was obtained (modulo
suitable suffixes). The compiler then compiles the obtainedordinary definition and
starts the VM with the obtained functor file. The VM will execute the preparatory
definitionsDs using the modulesMs and then create the computed functor and
pickle it to the right file.
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