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Abstract

We present a higher-order module discipline with separate compilatidn
concurrent dynamic linking. Based on first-order modules one can program
security policies for systems that link modules from untrusted lonatfe.g.,
Java). We introduce a pickling operation that writes persistent clohes o
volatile, possibly higher-order data structures on the file systampiokling
operation respects lexical binding. Our module discipline is basedruat f
tors, which are annotated functions that are applied to modules and return
modules. Pickled computed functors can be used interchangeably with com-
piled functors. In contrast to compiled functors, pickled computed tirsct

can carry computed data structures with them, which has significant practical
applications.

1 Introduction

Modularization is an essential technique for developing aeintaining software
systems [12, 16]. Programming languages support modatane by replacing
complete programs with program fragments calfeddule definitions Module

definitions reside in individual files and acempiled separatelyExecution of a
module definition installs enodule Module definitions typicallymport modules,



which are identified by file nameB®ynamic linking[4] is a scheme, where execu-
tion starts with a single compiled module definition andHartmodule definitions
are loaded and installed only once they are needed. The samh@erdefinition
can be used by many different applications.

Modula-2 [16], Modula-3 [10], Oberon [13], Objective Carl] and Java [2]
are examples of languages that support modules and separapdation. Oberon
and Java also support dynamic linking.

A module definition specifies a function that takes modulearggments and
returns a module. This observation relates module defirstio definitions of
functional procedures [3]. We will use the terfionctor to stand for the anno-
tated function specified by a module definition. The annotstispecify for each
imported module an external name and a type. Our functorgliffiezent from
SML’s [9] functors in that SML's functors do not have annaias.

In functional languages [1, 9], procedures are accommddedirst-class cit-
izens, which provides for powerful programming techniqu&amilarly, we will
accommodate functors and modules as first-class citizehss rileans that pro-
gram variables can designate modules and functors, anduthetor definitions
can be nested into functor definitions.

We will present two significant practical applications o$ficlass modules and
first-class functors.

First-class modules make it possible to program flexiblensgcpolicies for
systems that obtain functors from possibly untrusted lonatin the Internet (e.qg.,
Java). A security policy may, for instance, completely Wisa operations on the
local file system or query the user if such an operation iskedo

For our second application we introduce pickling and uripigkoperations.
Pickling writes a persistent clone of a volatile data suiteton the file system,
called apickle. Unpickling reads a persistent clone from the file systemantdins
a volatile clone. With first-class functors, pickling offethe possibility to write
computed functors on the file system. Pickled computed fuaatan be used in
the same way as compiled module definitidni contrast to compiled functors,
computed functors can carry computed data structures witint This matters
since

1. a computed data structure can now be loaded together Wiitictor rather
than being computed a new for each process using it.

2. the functors needed to compute a data structure are ndeddsy the pro-
cesses using the data structure.

IThis comes for free if the compiler is implemented in the sé&ameuage it compiles. Then the
compiler simply executes the compiled module definition pic#les the obtained functor.



To the best of our knowledge, these two application of fitas£ modules and
functors have not been proposed before. The same holds f@eoeral pickling
operation, which respects lexical scoping and accommsdiast-class procedures
and functors. Modula-3 [10] has an implementation-depenhgikling operation
that accommodates first-order data structures but brealsityanvariants for pro-
cedures.

Higher-order module disciplines have been investigatecbilghly in the con-
text of ML (e.qg., [9, 15, 6, 7]). This work focuses on expreesstatic type systems
and mostly ignores separate compilation. In contrast tapproach, functor def-
initions are not seen as compilation units. Compilatiotsuappear as a separate
notion in Objective Caml [8].

Our module discipline assumes a dynamically typed baseuygy Recon-
ciling our module discipline with a static type system is fliclilt research issue.
However, it is important to have a simple reference modelrofjaer-order module
discipline and explore its practical applications. Thieyites practical guidance
for research on the technical difficult issues of staticrigpiAs it comes to typing,
SML and Java provide two important and radically differegfierence points. In
contrast to SML, Java mixes static with dynamic type chegkiDynamic typing is
a must for dynamically linking systems that load functomsriruntrusted locations.

Our module system was designed and implemented for the mesion of
Oz [14, 11], a dynamically typed, concurrent and highereotdnguage that bases
synchronization of threads on logic variables and prov®serful primitives for
constraint programming. The use of pickled computed fusdtoaddition to com-
piled functors has proven essential for the applicationbawe adapted to the new
module discipline.

Our presentation of the module discipline employs a dynalyityped variant
of SML's base language extended with concurrent threads. i3 la rather generic
choice that does not really commit us to a particular prognarg language. To
provide for a sufficiently rigorous explanation of dynamitking, we use futures
as in Multilisp [5]. To our knowledge, this is the first rigar® model of lazy and
concurrent linking (which is employed in Java).

The paper is organized as follows. Section 2 starts with &dider module
discipline with eager linking. Section 3 introduces modtylpes and link-time
type checking. Section 4 adds concurrent lazy linking baseghodule managers.
Section 5 adds first-class modules and shows how they candoketogprogram
security policies. Section 6 adds pickles. Section 7 addsdiass functors and
discusses pickled computed functors.



2 Basic Notions

We start with a simple module discipline where all linkinglne before the actual
execution starts. We assume a sequential base languaggoisusnd modules are
not first-class.

We assume that the language is implemented witbrapilerand avirtual ma-
chine(VM). The compiler translatefunctor definitiongnto functor files The VM
loads functor files, links the obtained functors and exectiiem. Functor defini-
tions and functor files reside in a file system whose file namestaings called
URLs The file system should be thought of as a combination of tba file sys-
tem and the Internet-based virtual file system provided byURL infrastructure.
The compiler and the VM are invoked at the level of the opegasystem.

Modulesare volatile structures that exist in a virtual machine. yitake the
form of records whoséeldsare often higher-order (e.g., procedures). We distin-
guish betweesystem moduleandapplication modulesSystem modules provide
access to system resources like the file system and the wisgstem. System
modules are provided by the VM. Application modules are cateqg by functors.

Every module is associated witlm@odule nameThere are different names for
system modules and application modules. The name of ancapiphh module is
the URL from which the functor that computed it was obtained.

A functoris an annotated procedure. The procedure is applied to m®dnid
returns a module. The annotation fix a name for every argumendule, possibly
relative to the URL from which the functor was obtained.

A functor definitionis a text residing on a file. Functor definitions are com-
piled with respect to dase environmenthat provides the basic operations of the
language (e.g., operations for arithmetic). We assumetlieabasic operations of
the language do not use system resources like input andtatpanels. Access
to system resources must be obtained through importednsystadules.

The VM is started with a URL, calletbot URL From the root URL the VM
obtains the so-calletbot functor The root functor specifies names for its argu-
ment modules, possibly relative to the URL from which it wédained. If the
root functor needs further application modules, the VM targs by loading the
respective functors. The VM continues loading functorsl utrttas built the com-
pletedependency graph

The nodes of the dependency graph are module names. Theofitlke de-
pendency graph point from a module naMdo the names of the modules that
N imports Every node of the dependency graph is reachable from thdRb.
Names of system modules appear as leaves of the dependapty gihe depen-
dency graph must be acyclic.

Once all functors of the dependency graph are loaded, the plies the
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functors in bottom-up order. It terminates when the appbicaof the root functor
terminates. The choice of the precise bottom-up order, (am left to right) in
which functors are applied is left to the VM.

The reader may wonder why the VM can provide actual servickii does is
applying functors. The answer is that a functor may use thetioutput facilities
of an imported module (e.g., a system module). Typicalig Will be done by the
root functor, which will only return a trivial module.

The VM can be called with the root URL and further command kmgu-
ments. The command line arguments can be made visible tgthieaion func-
tors through a system module.

The following things can go wrong while the VM is running.

1. The VM may not be able to obtain a functor from a URL.

2. The functors at the URLs may define a cyclic or an infiniteetiglency
graph.

3. Afunctor application may return an (error) exceptioror(lastance, because
a field of an imported module does not exist or has the wrong)typ

If something goes wrong, the VM prints an error message anurates.

Note that in the current model functors are applied exaatiseo This means
that they cannot be used to obtain multiple instances ofrgemedules. In Sec-
tion 5, we will extend our model so that is provides for muéigpplications of
functors.

Any dynamically typed language with lexically scoped fickiss procedures
(e.g, Scheme) can be rearranged to support the describaderdiscipline.

3 Module Types

Even in a dynamically typed language we can have some typekicigeat the
module level. To do so, we needodule types A functor now states a type for
each argument module and the result module. Moreover, we aeelation that
defines whether a module tyfe supportsa module typel,. If a functor requires
a typeT for an argument module, any module that has a type that sigopa@an
be used as argument.

The most primitive module types would just list which fieldmes are expected
or provided. TherT; supportsTy if Ty lists at least the field names listed By

Type checking is needed at compile time and at link time. Teipecking at
link time ensures that the support relation is satisfied &mheink of the depen-
dency graph. Type checking at compile time may assume thatcdr definition
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declares the imported and exported field names and chedksniyadeclared im-
port fields are used and all declared export fields are prdvidéth suitable syntax
the compiler may alternatively infer all used import fielaslall provided export
fields.

One may use types for fields like integer, procedure, or tedorthis case the
compiler must check that declared field types are consigtasgd.

In a statically typed language, one can declare and chec& expressive field
types. Now it becomes to inconvenient to declare in eachtduraefinition the
types of all imported and exported fields.

In Java and Oberon, one declares just the types of the explols.fiThe types
of the import fields are known by the compiler if they belongsystem modules
and are otherwise obtained by the compiler from the impduadtor files.

Modula-2 and Objective Caml use functor definitions andexponding inter-
face definitions. An interface definition states exportetti$i¢ogether with their
types. A functor definition can only be compiled if the coregilinterface def-
initions for the functor and its imported functors are aafalié. Implementations
of Modula-2 and Objective Caml typically represent moduyieets as finger prints
(e.g., MD5 check sums) and check equality of finger printgéttime.

4 Concurrent Linking

We now move to a lazy linking strategy where functors areiagdph a top-down
order with respect to the dependency graph. Moreover, a mdslonly installed
when one of its fields is accessed. This means that executifumators and in-
stallation of modules are interleaved. This by-need gsaie reminiscent of lazy
functional programming. It is different in that computatis eager except that the
installation of modules is delayed.

We also move to a base language with concurrent threads. tm@uent
setting lazy linking is particularly useful since threatiattdo not block on the
installation of a module can continue their computation.

To explain lazy linking, we use the notion of futures from Midp [5]. A
futureis a placeholder for a data structure that is not yet compudedte the data
structure is computed, it replaces the future such thauttued disappears. Threads
can block on the event that a future is needed. This way tleesdatcture that will
replace a future can be computed by a thread that waits batfliture is needed.

We assume that the VM hostsreodule managethat is responsible for linking
and installation of modules. The module manager hasbdule tablehat maps
module names to futures or paifél, T) consisting of a modul® and its typeT .

A module name that is mapped to a future is linked but not ystalled, and a



module name that is mapped to a g, T) is linked and installed. When the VM
starts, all system modules are linked.
The module manager has a method

link(U, T)

that takes a module nanie and a module typd@ and returns a futur®s repre-
senting the module identified by. When a field oMy is accessed, the following
happens:

1. If the module identified by is not yet installed, it is installed.

2. Ifthe type of the installed module suppoftsthe futureM; is replaced with
the installed module.

Concurrent applications of the link method are served undéual exclusion. The
VM starts with linking and requesting the root module. Thst teappens through
threads spawned by the link method.

The methodink(U, T) is defined as follows:

1. If U is not in the domain of the module table, then:
(a) Create a new futurgé; and extend the module table such that it maps
U to Es.
(b) Spawn a new thread as followisgtallation olJ):
i. Wait until E¢ is needed.
ii. Load a functor from U; raise a linking error if this fails.
ii. Link the argument modules d¥.

iv. Apply F to the argument modules (some of them are possibly rep-
resented as futures) and obtain a module

v. ReplaceE; with the pair(M, Tg), whereTr is the result type ofF .
2. LetE be the entry to which the module table maps
3. Create a new futurl;.
4. Spawn a new thread as followgfe checking folJ):

(a) Wait untilM; is needed.

(b) Wait until E is a pair(M,Ty). (If E is a future, this will request its
elimination.)

(c) If Ty supportsT, then replacevi; with M, else raise a linking type
error.



5. ReturnMs.

Note that concurrent linking makes its possible to hayelic dependency
graphs Java admits cyclic dependency graphs since it allows fauably de-
pendent classes.

In the sequential discipline, the VM terminates once thdiegjion of the root
functor terminates. In a concurrent setting it is prefezablhave an explicit shut-
down operation since, for instance, threads spawn by thefunootor may still be
active when its application terminates. The shutdown djmerahould be made
available through a system module.

5 First-class Modules

We now move to a setting where modules are first-class cgizena dynamically
typed language this is a straightforward extension sinced@meipline represents
modules anyway as records.
We assume that functors provide first-class access to tigginmeent modules.
First-class modules become interesting if we provide tresibdity to freely
create new module managers. Let us assume that a systemenprduides an
operation

link : nodul eTable * URL * nodul eType -> nodul e
wherenodul eTabl e stands for lists of triples

nodul eNane * nodul e * nodul eType
An application

link(ntab,u,t)

will create a new module manager whose initial module tab$pecified byrt ab.
Then the link method of the new module manager will be appiegu, t ) and
deliver the result of the link operation.

With the link operation we can apply a functor more than ortence we can
now have generic modules.

Another application of the link operation is the impleméiaia of security poli-
cies. Suppose we want to install a functor from an untrusted.\We can do this
with a new module manager whose initial module table pravimdy secured vari-
ants of the system modules. The secured variants can fantesiquery the user
if the the untrusted application wants to access the localsfistem. We have



sufficient expressivity for constructing secured variasftsystem modules since
modules are records and the language is higher-order.

Java’s class loaders provide part of the expressivity ofinkroperation. Java
looses expressivity since classes are in general not fass-c

6 Pickles

We now extend our model with two operations pickle and urpick he pickle
operationobtains a portable description of a data structure, callgidkle ina VM
and writes it on a file. Thanpickle operatiomeads a pickle from a file and creates
a clone of the original data structure in the VM in which theickle operation
is invoked. In other words, pickling creates a persisteahelof a volatile data
structure, and unpickling creates a volatile clone of aiptnst clone.

We are interested in pickles since we will move to a settingn@tiunctors are
first-class citizens and can hence be pickled. Things wiljdmeralized such that
module managers can load pickled functors produced by VMsedlsas functor
files produced by the compiler.

We need to make precise what we understand under a dataistracd which
data structures can be pickled. To do so, we assume thatrmudge has the data
structures of SML.

We assume an execution model that separates control sesciLe., threads)
from data structures. All data structures reside in an abtisstore, whose states
take the form of a directed graph. The nodes of the graph septeentities like
integers, records, variants (obtained by constructoesjgaable references cells,
procedures (i.e., closures), and operations (i.e., builirocedures). Procedures
are nodes whose departing links point to lexically boundesod-or instance, the
SML expression

let val x =fny =>2z(y) in... end

will bind x to a procedure node with one departing link that points tontbee
bound toz

Given an execution state, the data structure associatédawitodex in the
abstract store is the maximal subgraph of the abstractttatrés reachable from

We distinguish between two types of operations (i.e., fnilprocedures).
Global operationshave the same semantics in every VM (e.g., addition of num-
bers or creation of threads).ocal operationsaffect the resources of a particular
VM and are hence tied to a particular VM. All operations thatavailable through
the base environment at compile time are global. Accesscil laperations can



only be obtained through system modules, which are tieded/t in which they
exist.

A data structure in a VM can be pickled if and only if it does m@ontain
futures or local operations. By excluding futures, we make shat they are not
cut off from the threads that are supposed to eliminate thBynexcluding local
operations, we ensure that loading a pickle will not creatiata structure that
captures local operations of the loading VM. This is an di@esecurity property
of our model (see also Section 5).

If the pickle operation encounters a future, it requestsid lalocks. Once the
future is eliminated it resumes. This way pickling is coniiplatwith lazy linking.

If the pickle operation encounters a local operation, geaian error exception.
Next we make precise what we mean by a clone of a data strudiete be
the original data structure arydbe a clone ok. Then the graphs reachable from

x andy must be graph isomorphic with respect to their rcondy. Moreover,
the reference cells reachable fronmust all be different from the reference cells
reachable frony. Finally, if we redirect all external links into the graphoted by

x to the respective nodes of the graph rooted,joyo difference must be observable
when the VM proceeds.

Modula-3 [10] offers pickles that depend on the implemeotatind that are
different from ours as it comes to procedures and operat®itkles in Modula-3
do not contain procedures. Instead of the actual procedegssymbolic names
will be pickled. When the VM unpickles a pickle, it will try t@solve the symbolic
names with the procedures it knows. Operations are treikieg@riocedures.

7 Computed Functors

We now move to a language with first-class functors. This raehat functor
definitions can contain nested functor definitions, and tinattors computed by
nested definitions can be referred to through program Vasab

We distinguish betweetompiled functoreindcomputed functorsA compiled
functor is obtained by compilation of a functor definitionor@puted functors are
obtained by executing compiled functors whose definiticorgain nested functor
definitions. Compiled functors can only have lexical bimdirto the data struc-
tures of the base environment (see Section 2). Computetbfigsntan have lexical
bindings to all data structures that the creating compitetttors supply to their
definitions.

Since computed functors are first-class, we can pickle th&his becomes
useful, if we assume that module managers can load compitedddrs as well as
pickled computed functors. Pickled computed functors amyccomputed data

10



structures with them. This matters since

1. a computed data structure can now be loaded together Wiitictor rather
than being computed a new for each virtual machine using it.

2. the functors needed to compute the carried with datatateiare not needed
by the virtual machine using it.

To make the introduction of pickled computed functors coiet and to ob-
tain well-structured source files, the compiler should ptseigared definitions
looking as follows:

computed functor
requires Ms

local Ds
functorDefinition
end

HerefunctorDefinitionis an ordinary functor definition, which will create the com-
puted functor. The compiler first transforms the sugarediigin into the ordinary
definition

functor
import pickle Ms
body
Ds
pickle.save(functorDefinition fleName
end

wherepickle is the name of the system module providing pickling fiteName

is the name of the file from which the sugared definition wasioletd (modulo
suitable suffixes). The compiler then compiles the obtaoredihary definition and
starts the VM with the obtained functor file. The VM will exéeuhe preparatory
definitions Ds using the moduleds and then create the computed functor and
pickle it to the right file.
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