
Axiomatizing Dependeny ParsingUsing Set ConstraintsDenys DuhierProgramming Systems LabUniversity of the Saarland, Saarbr�ukenduhier�ps.uni-sb.deAbstratWe propose a new formulation of dependenygrammar and develop a orresponding axiom-atization of syntati well-formedness with anatural reading as a onurrent onstraint pro-gram. We demonstrate the expressivity ande�etiveness of set onstraints, and desribe atreatment of ambiguity with wide appliabil-ity. Further, we provide a onstraint program-ming aount of dependent disjuntions that isboth simple and eÆient and additionally pro-vides the bene�ts of onstrutive disjuntions.Our approah was implemented in Oz and yieldsparsers with very good performane for our ur-rently middle sale grammars. Constraint prop-agation an be observed to be remarkably e�e-tive in pruning the searh spae.1 IntrodutionModern linguisti theories suh as hpsg (Pol-lard and Sag, 1987) and lfg (Kaplan andBresnan, 1982) are primarily onerned withthe formulation of general strutural priniplesthat determine syntatially well-formed enti-ties, typially represented as hierarhial, pos-sibly typed, feature strutures. While featurestrutures are appealing for their perspiuityand are easily supported by languages with uni-�ation, they have the disadvantage that theresulting grammatial formalisms are hard toparse for both theoretial and pratial rea-sons, even beoming undeidable in the worstase (Kaplan and Bresnan, 1982). These dif-�ulties are magni�ed in languages like Ger-man where free word order and disontinuousonstituents ompliate the formal aount andhandiap parsing tehniques relying on surfaeorder.While muh researh was devoted to the om-pilation of grammatial frameworks based on

typed feature strutures and on the ompatrepresentation and eÆient proessing of dis-juntive feature strutures, reent advanes inonstraint tehnology have reeived rather lessattention in the omputational linguistis (CL)ommunity than they deserve, and their rel-evane has gone largely unnotied. Conur-rent onstraint programming provides today fargreater expressivity and eÆieny than is om-monly assumed.In partiular, set onstraints are emerging asan espeially elegant and omputationally e�e-tive tool for appliations in CL. In an earlier pa-per (Duhier and Gardent, 1999), we desribedhow they ould serve to eÆiently solve dom-inane onstraints and �nd minimal models oftree desriptions. We propose here to show theirappliation to parsing.In this paper, we are going to demonstratehow, with the help of state-of-the-art onstraintprogramming, an elegant and onise axiomatispei�ation of syntati well-formedness be-omes naturally an eÆient program. In so do-ing, we develop a treatment of ambiguity withfairly general appliability. In partiular, weprovide a onstraint-based aount of depen-dent disjuntions (Maxwell and Kaplan, 1989;D�orre and Eisele, 1990; Gerdemann, 1991; Grif-�th, 1990) that naturally supports onstrutivedisjuntion semantis (lifting of ommon infor-mation).Our approah stands in sharp ontrast tomost extant parsing tehniques. We abandonthe generative view; we no longer build partialparses by ombination of smaller ones, as is thease in e.g. hart parsing. Rather, we give aglobal well-formedness ondition and proeed toenumerate its models.We hoose dependeny grammar (DG) asour framework and axiomatize the notion of



a syntatially well-formed dependeny tree ina manner that is partiularly well-suited toonstraint-based proessing: we propose to re-gard dependeny parsing as a �nite on�gura-tion problem that an be formulated as a on-straint satisfation problem (CSP).This view takes advantage of the fat that fora sentene of length n, there are �nitely manypossible trees involving just n nodes. Out ofthis large number, we must selet those that aregrammatial. We do not attempt this throughexplorative generation, but rather via modelelimination. What onstraint programming af-fords us is e�etive model elimination throughonstraint propagation.Maruyama (1990) was the �rst to propose aomplete treatment of dependeny grammar asa CSP and desribed parsing as a proess of in-remental disambiguation. Harper (Harper etal., 1999) ontinues this line of researh andhas proposed several algorithmi improvementswithin the MUSE CSP framework (Helzermanand Harper, 1993). Menzel (Menzel, 1998; Hei-neke et al., 1998; Menzel and Shr�oder, 1998)advoates the use of soft \graded" onstraintsfor robustness e.g. in parsing spoken language.His proposal turns parsing into a more expen-sive optimization problem, but adapts grae-fully to onstraint violations.Our presentation has the advantage overMaruyama's that it follows modern linguistipratie: the grammar is spei�ed by a lexi-on and a olletion of priniples. Further, weillustrate the expressiveness of set onstraintsand seletion onstraints, and demonstrate howthey an provide ompat and elegant enodingsof various forms of ambiguity suh as lexial orattahment ambiguity. Finally, our axiomati-zation of dependeny parsing has the propertythat, modulo details of syntax, it an also be re-garded as a program in a onurrent onstraintprogramming language suh as Oz (Smolka,1995). Several parsers were implemented in Ozas desribed and provide exellent performane,without any sort of optimization.Consider the sentene1 below whih illus-1Joahim Niehren suggests the following sentene,whih exhibits the same struture but sounds more on-vining to the German ear: \Genau diese Flashe Weinhat mir mein Kommissionn�ar versprohen auf der Auk-tion zu ersteigern."

trates the sort of non-projetive analysis withfronting, srambling and extraposition that istypial of German sentenes.das Buh hat mir Peter versprohen zu lesenthe book has me(dat) Peter promised to read(1)Sine both \das Buh" and \Peter" an be indif-ferently assigned nominative or ausative ase,either one may be subjet of \hat" while theother is ausative objet of \lesen." There arethus two readings.(Fig 1) demonstrates the e�etiveness of on-straint propagation: the two readings are enu-merated in approximately 190ms using a singlehoie point.2 A graphial representation of thepreferred reading is shown in the upper window,while the searh tree is displayed in the lowerwindow.

Figure 1: Parser DemoIn our approah, onstraint propagation aloneonstruts the dependeny tree. Searh is onlyneeded to explore alternatives that annot beruled out by onstraint propagation. In pra-tie, we observe that searh is required to enu-merate readings, but very rarely leads to failurewhere e.g. baktraking is required.Setion 2 introdues the formal framework;Setion 3 presents the novel onstraint program-ming ideas suh as set and seletion onstraints;2We expet better performane when e.g. the sele-tion onstraint is given low-level builtin support. It isurrently implemented in Oz itself.



and in Setion 4 we axiomatize a onstraintmodel for syntati well-formedness in DG andturn the problem into a CSP.2 Formal FrameworkWe now present our notion of a dependenygrammar and of dependeny trees. The formu-lation below ignores issues of word order as theyare beyond the sope of this artile. However,the full treatment inludes ideas derived fromReape's word order domains (Reape, 1994) aswell as from the theory of topologial �elds inGerman sentenes.2.1 Dependeny GrammarIn our formal setting, a dependeny grammar Gis a 7-tuplehWords;Cats;Agrs;Comps;Mods;Lexion;Rulesiwhere Words is a �nite set of strings notat-ing the fully ineted forms of words, Cats isa �nite set of ategories suh as n for noun,det for determiner, or vfin for �nite verb,Agrs is a �nite set of agreement tuples suhas hmas sing 3 nomi, Comps is a �nite setof omplement role types suh as subjet ornp dat for dative noun phrase, Mods is a �niteset of modi�er role types, suh as adj for adje-tives, disjoint from Comps. We write Roles =Comps ℄Mods for the set of all role types; theywill serve to label the edges of a dependenytree. Lexion is a �nite set of lexial entries(see below), and Rules is a family of binaryprediates, indexed by role labels, expressing lo-al grammatial priniples: for eah � 2 Roles,there is �� 2 Rules suh that ��(w1; w2) hara-terizes the grammatial admissibility of an edgelabeled � from mother w1 to daughter w2.A lexial entry is an attribute value matrix(AVM) with signature:2664 string : Wordsat : Catsagr : Agrsroles : 2Comps 3775We write attribute aess in funtional notation.If e is a lexial entry: string(e) is the full form ofthe orresponding word, at(e) is the ategory,agr(e) the agreement, and roles(e) the valenyexpressed as a set of omplement roles.

21 43er liest das Buhhe reads the book
subjet np adet

1 264 string : erat : proagr : hmas sing 3 nomiroles : fg 3752 264 string : liestat : vfinagr : hmas sing 3 nomiroles : fsubjet,np ag 3753 264 string : dasat : detagr : hneut sing 3 airoles : fg 3754 264 string : Buhat : nagr : hneut sing 3 airoles : fdetg 375Figure 2: Example Dependeny Tree2.2 Dependeny TreesWe assume an in�nite set Nodes of nodes andde�ne a labeled direted edge to be an elementof Nodes � Nodes � Roles. Thus, given a setV � Nodes of nodes and a set E � V�V�Rolesof labeled edges between these node, hV; Ei is adireted graph, in the lassial sense, with la-beled edges. We will restrit our attention to�nite graphs that are also trees.Every node of a dependeny tree ontributesa word to the sentene; the position where thatword is ontributed will be represented by amapping index from nodes to integers. Further,every node must be assigned syntati features(e.g. ase, agreement : : : ), whih will be real-ized by a mapping entry from nodes to lexialentries.A dependeny tree T is then de�ned as a 4-tuple: hV; E ; index; entryiwhere V is a �nite set fw1; : : : ; wng of nodes, E



is a �nite set of labeled edges wi �! wj betweenelements of V, and hV; Ei is a tree as de�nedabove.index is a bijetion from V to [1: :n℄ assigningto eah node a linear position in the orrespond-ing sentene, and entry : V 7! Lexion assigns alexial entry to eah node in V.Example. Figure 2 ontains a graphial de-pition of a dependeny tree. The upper partshows nodes represented as boxes onneted bylabeled direted edges. The integer appearing ineah box is the position whih index assigns tothe node. For ease of reading, the linearizationof the sentene is also provided and a dotted lineindiates for eah node the orresponding wordin the sentene. The lower part of the �guredisplays for eah node the lexial entry whihentry assigns to it.Figure 3 shows the dependeny tree for ex-ample sentene (1). In plaes where the valueassignment is fully unonstrained (i.e. all assign-ments are aeptable), we have used the stan-dard \don't are" notation ` '.Well-Formedness. A dependeny tree isgrammatially admissible i� onditions (2), (3)and (4) below are satis�ed. First, any omple-ment required by a node's valeny must be re-alized preisely one:8wi 2 V;8� 2 roles(entry(wi))9!wj 2 V; wi �! wj 2 E (2)Seond, if there is an edge emanating from wi,then it must be labeled either by a omplementtype in wi's valeny or by a modi�er type:8wi �! wj 2 E� 2 roles(entry(wi)) [Mods (3)Third, whenever there is an edge wi �! wj , thenthe grammatial ondition ��(wi; wj) for �� 2Rules must be satis�ed in T :8wi �! wj 2 E T j= ��(wi; wj) (4)2.3 Improving Lexial EonomyTypially, the same full form of a word may or-respond to several distint agreements. In theinterest of a more ompat representation, wewish to ollapse together entries that di�er only

in their agreement. We replae attribute agr byagrs whose values are now sets of agreement tu-ples. Although of less frequent appliability, wedo the same for ategories and replae at byats.Optional omplements are another soure ofonsiderable redundany in the lexion. In-stead of modeling the valeny with just oneset roles(e) of omplement types, we proposeto use instead a lower bound broles(e) and anupper bound drolese(e), suh that broles(e) �drolese(e). broles(e) represents the requiredroles and drolese(e) the permissible roles. Op-tional roles are simply drolese(e) n broles(e).We all the new, more ompat representa-tion a lexion entry to distinguish it from a lex-ial entry whih remains as de�ned earlier. Alexion entry is said to generate lexial entries.The lexial entries generated by (5) below areof the form (6) and orrespond to all solutionsof onstraint (7).26664 string : Sats : Cagrs : Abroles : Rlodrolese : Rhi 37775 (5)264 string : Sat : agr : aroles : r 375 (6) 2 C ^ a 2 A ^ Rlo � r � Rhi (7)This simple formulation illustrates how on-straints an be used to produe ompat repre-sentations of ertain forms of lexial ambiguity.3 Constraint ProgrammingThe foundations of onurrent onstraint pro-gramming (CCP) are well doumented e.g.in (Saraswat et al., 1991; Smolka, 1995) andhave been implemented in the programminglanguage Oz (Mozart Consortium, 1998).Modern onstraint tehnology, as providedby CHIP (Dinbas et al., 1988), lp(FD)(Codognet and Diaz, 1996), ECLiPSe (Aggounet al., 1995), ILOG Solver (ILOG, 1996), andOz (Mozart Consortium, 1998) has proven quitesuessful at solving pratial problems withhigh ombinatorial omplexity, suh as shedul-ing and on�guration, that were resisting tradi-tional methods of operations researh.
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det zunp datnp a
1 264 string : dasat : detagr : hneut sing 3 airoles : fg 375 2 264 string : Buhat : nagr : hneut sing 3 airoles : fdetg 3753 264 string : hatat : vfinagr : hmas sing 3 nomiroles : fsubjet,vp pastg 375 4 264 string : mirat : proagr : h sing 3 datiroles : fg 3755 264 string : Peterat : nagr : hmas sing 3 nomiroles : fg 375 6 264 string : versprohenat : vpastagr :roles : fnp dat,vp zug 3757 264 string : zuat : partagr :roles : fg 375 8 264 string : lesenat : vinfagr :roles : fzu,np ag 375Figure 3: Dependeny tree of demo senteneThe key to suess, presented here, is to re-due parsing to a problem that onstraint pro-gramming (CP) is good at, namely on�gura-tion.3.1 Basi NotionsA CSP onsists of a �nite olletion of variables(xi) taking values in �nite domains (Di) anda onstraint � on these variables. A solutionis an assignment � of values to these variablessuh that � is satis�ed. In CP, � is omputedinrementally as a sequene of improving ap-proximations: �(xi) is an approximation of theassignment to xi and is typially spei�ed eitherby listing the remaining values or by providingupper and lower bounds. Initially the approx-imation of xi ontains all of Di. Solutions are

derived by a searh proess onsisting of alter-nating propagation and distribution steps untilall variables are determined or a ontradition isderived. A variable xi is said to be determinedwhen its approximation �(xi) has been reduedto a single value.In CCP, � is alled the store and primi-tive onstraints are implemented by onurrentagents that observe the store and orrespond-ingly improve the urrent approximations by de-riving new basi onstraints aording to theirdelarative semantis. Basi onstraints are e.g.I = 5, I 6= 5, 5 2 S or 5 62 S.Propagation. This is a proess of determin-isti inferene. It removes from every approxi-mation �(xi) all values that an be inferred to



be inonsistent with �. In pratie only a heaploal inferene proess is applied suh as \aronsisteny."Distribution. When propagation hasreahed a �xed point but not all variablesare determined, searh beomes neessary toe.g. enumerate the possible assignments of anon-determined variable x. Whih variableto pik and how to enumerate the values isexpressed by a distribution (or labeling) strat-egy. For example the \�rst-fail" strategy piksa variable that has fewest remaining possiblevalues in its domain; its intended e�et is tokeep the branhing fator in the searh tree assmall as possible.3.2 Set ConstraintsModern onstraint tehnology not only supports�nite domain variables, denoting integers, butalso �nite set variables, denoting �nite sets of in-tegers (Gervet, 1995; M�uller and M�uller, 1997).One of our ontributions is to demonstrate theelegane, suintness and eÆieny aruingfrom the use of sets and set onstraints.A set variable S is approximated by a lowerbound bS and an upper bound dSe:bS � S � dSeThese bounds an be tightened by onstraintpropagation. All the usual operations of set the-ory are supported as onstraints. In partiular,we often use S = S1 ℄ : : : ℄ Sn, where ℄ de-notes disjoint union, to state that (Si) forms apartition of S.Our formulation illustrates many appliationsof sets. Of speial interest is the treatment ofattahment ambiguity (or more generally of am-biguous graph onnetivity): we use set vari-ables to represent sets of daughters for eahnode in a tree.3.3 Seletion ConstraintAn essential ontribution of this paper is a gen-eral tehnique for the ompat representationand e�etive treatment of ambiguity suh as lex-ial ambiguity. Consider a variable X that maybe equated with one of n variables (Vi). We rep-resent the hoie expliitly using a �nite domainvariable I 2 f1: :ng and the seletion onstraint :X = hV1; : : : ; Vni[I℄ (8)

The notation hV1; : : : ; Vni[I℄ was hosen to sug-gest seletion of the Ith element of sequenehV1; : : : ; Vni.The idea is that the onstrained value ofX an be approximated from the set of vari-ables that may still be seleted by I fromhV1; : : : ; Vni. Conversely: the remaining do-main of I must be restrited to the positionsfor whih Vi is still ompatible with X.This powerful idea was �rst introdued inCHIP (Dinbas et al., 1988) for �nite domain(FD) variables under the name of `element' on-straint. We extend it here to �nite set (FS)variables.The seletion onstraint an be implementedeÆiently and we outline the intuition in thease where X and (Vi) are set variables. Wewrite bX and dXe for the lower and upper ap-proximations of X and dom(I) for the approxi-mation of I. Given the seletion onstraint (8),propagation maintains the following invariant:\j2dom(I)bVj � bX � X � dXe � [j2dom(I)dVjeand applies the following rule of inferene:bVj 6� dXe _ bX 6� dVje ) I 6= jAs a onsequene of the above invariant, theseletion onstraint implements a form of on-strutive disjuntion (lifting of informationommon to all remaining alternatives). The fatthat the hoie is made expliit by variable Ipermits dependent seletions. For example in(9) the hoie of whih Vi to equate with X andwhih Wi to equate with Y are mutually de-pend: X = hV1; : : : ; Vni[I℄Y = hW1; : : : ;Wni[I℄ (9)These two onstraints an be viewed as realiz-ing the following dependent (or named) disjun-tions (Maxwell and Kaplan, 1989; D�orre andEisele, 1990; Gerdemann, 1991; GriÆth, 1990)both labeled with name I:(X = V1 _ : : :_ X = Vn)I(Y =W1 _ : : :_ Y =Wn)INotational variations on dependent disjuntionhave been used to onisely express ovariantassignment of values to di�erent features in



feature strutures. The seletion onstraintprovides the same notational onveniene anddelarative semantis, but also gives it all theomputational bene�ts that arue from state-of-the-art onstraint tehnology.4 Constraint ModelIn this setion, we develop a onstraint modelfor the formal framework of Setion 2: we intro-due FD and FS variables to enode the quan-tities and mappings it mentions, and formulateonstraints on them that preisely apture theonditions the formal model stipulates. Whatmotivates this redution is the desire to take ad-vantage of the powerful and very eÆient teh-nologial support for onstraint propagation on�nite domains and �nite sets.For our appliation to parsing, we assumethat we are given an input sentene onsisting ofn words s1 s2 : : : sn. The solutions to the CSPobtained as its onstraint model orrespond toall admissible parse trees of the sentene.Our approah takes advantage of the follow-ing observations: (1) there are �nitely manyedges labeled with Roles that an be drawn be-tween n nodes,3 (2) for eah word there are�nitely many lexial entries. Thus the prob-lem is to pik a set of edges and, for eah node,to pik a lexial entry so that (a) the result isa tree, (b) none of the grammatial onditionsare violated. Viewed in this light, dependenyparsing redues to a on�guration problem.4.1 RepresentationNodes and Lexial Attributes: we identifya node with the integer representing its posi-tion in the sentene; thus index is simply theidentity funtion. The lexial entry assigned toeah node w is represented by its attributes. Wewrite at(w), agr(w), and roles(w) for the vari-ables denoting their values.Domains: eah ategory in Cats is enodedby a distint integer. Similarly for eah agree-ment tuple inAgrs4 and eah role inRoles. Thusevery value is represented either by an integeror a set of integers.Daughter Sets: for eah node w 2 V andeah role � 2 Roles, we write �(w) for the set3jV � V � Rolesj = n2 jRolesj4In German, there are 72 distint agreement tuples:4 ases � 3 genders � 3 persons � 2 numbers

of immediate daughters of w whose dependenyedge is labeled �, i.e. �(w) = fw0 j w �! w0 2 Eg.Thus, if there is no edge labeled � emanatingfrom w, �(w) is the empty set. Sine �(w) isa subset of V, i.e. a �nite of set of integers inthe onstraint model, we represent it by a FSvariable.Lexion: we onsider the funtion Lex fromwords to sets of lexion entries.Lex(s) = fe 2 Lexion j string(e) = sgWithout loss of generality, we an assume thatLex returns a sequene rather than a set whihallows us to identify the lexion entries of agiven word by position in this sequene.The lexial entry assigned to w is generatedby one of its lexion entries as desribed in Se-tion 2.3. We say that the latter is \seleted" andintrodue variable entryIndex(w) to denote itsposition in the sequene returned by Lex for w.4.2 Lexial ConstraintsWe now expliate the assignment of lexial at-tributes to a node w and demonstrate how lex-ial ambiguity an be axiomatized by redutionto the seletion onstraint.Lexial attribute assignment proeeds in twosteps: (a) seletion of a lexion entry (b) gener-ation of a lexial entry from this lexion entry asdesribed in Setion 2.3. Let us write E for thelexion entry seleted for w and I for its posi-tion in the sequene returned by Lex. They areabstratly de�ned by the following equations:he1; : : : ; eni = Lex(string(w))I = entryIndex(w)E = he1; : : : ; eni[I℄the lexial attributes are obtained as solutionsof formula (7) whih translates into the follow-ing onstraints:at(w) 2 ats(E)agr(w) 2 agrs(E)broles(E) � roles(w) � drolese(E)For pratial reasons of implementation, the se-letion onstraint is only provided for �nite do-mains and �nite sets, but E and (ei) are AVMs.We overome this diÆulty by pushing attribute



aess into the seletion:at(w) 2 hats(e1); : : : ; ats(en)i[I℄agr(w) 2 hagrs(e1); : : : ; agrs(en)i[I℄hbroles(e1); : : : ; broles(en)i[I℄ � roles(w)hdrolese(e1); : : : ; drolese(en)i[I℄ � roles(w)4.3 Valeny ConstraintsEvery daughter set �(w) is a �nite set of nodesourring in the tree:8w 2 V 8� 2 Roles �(w) � VA omplement daughter set �(w) is of ardinal-ity at most 1 (e.g. a verb has at most 1 subjet),and it is non-empty i� � appears in w's valeny.We write j�(w)j for �(w)'s ardinality.8� 2 Comps0 � j�(w)j � 1^ j�(w)j = 1 � � 2 roles(w)A modi�er daughter set has no ardinality re-strition (e.g. a noun an have any number ofadjetives).4.4 Role ConstraintsFor eah role type � 2 Roles our grammar spe-i�es a binary prediate �� expressing a gram-matial ondition between mother and daugh-ter. We assume that ��(w;w0) is de�ned by aformula of a onstraint language that an be in-terpreted over dependeny trees. We will notmake this language expliit here, but detail be-low a few examples. These examples are in-tended to be illustrative rather than normativeand we extend for them no laim of linguistiadequay.Aording to well-formedness ondition (4),for every edge w �! w0, grammatial ondition��(w;w0) must hold. Therefore the tree mustsatisfy the following ondition:8w;w0 2 V 8� 2 Roles w0 2 �(w)) ��(w;w0)Modern onstraint tehnology has eÆient sup-port for suh impliative onditions.5 In par-tiular, if onstraint propagation an show that��(w;w0) is inonsistent in T , then w0 62 �(w)is inferred whih improves the approximationof �(w).5In Oz, this is expressed by the onstrut:or w0 2 �(w) ^ ��(w;w0) [ ℄ w0 62 �(w) end

Subjet. The subjet of a �nite verb must beeither a noun or a pronoun, it must agree withthe verb in person and number, and must havenominative ase. We write nom for the set ofagreement tuples with nominative ase:�subjet(w;w0) � at(w0) 2 fn; prog^ agr(w) = agr(w0)^ agr(w0) 2 nom (10)Adjetive. An adjetive may modify a nounand must agree with it:�adj(w;w0) � at(w) = n^ at(w0) = adj^ agr(w) = agr(w0) (11)Determiner. The determiner of a noun mustagree with the noun and our left-most in itsyield:�det(w;w0) � at(w0) = det^ agr(w) = agr(w0)^ w0 = min(yield(w)) (12)The yield of w is the set of nodes (inludingw) reahable from w by traversing downwardsany number of dependeny edges. We introduevariable yield(w) for this quantity and develop,in Setion 4.6, its onstraint-based axiomatiza-tion. Sine yield(w) ontains w, it is a non-empty set of nodes i.e. integers (Setion 4.1).Thus it is meaningful to speak of its minimumelement, whih we write min(yield(w)).64.5 Treeness ConstraintsOur formal framework simply assumed the\usual" de�nition of treeness: (a) every nodehas a unique mother exept for a distinguishednode, alled the root, whih has none, (b) thereare no yles. We must now provide an expliitaxiomatization of this notion. For this pur-pose we introdue variables daughters(w) andmother(w) for eah node w.The set of immediate daughters of w is simplyde�ned as the union of its daughter sets:daughters(w) = [�2Roles �(w)6Oz supports onstraints of the form I = min(S) be-tween a �nite domain variable I and a �nite set vari-able S.



We model the notion of `mother' of a node asa set of ardinality at most 1. Thus, we anaount for both the presene or absene of amother. The latter ase is needed only for theroot of the dependeny tree.mother(w) � V 0 � jmother(w)j � 1w is a mother of w0 i� w0 is an immediate daugh-ter of w:w 2 mother(w0) � w0 2 daughters(w)Further, treeness requires the existene of aunique root. We therefore introdue the newvariable root to denote the root of the depen-deny tree. This is the only node without amother: root 2 V8w 2 V w = root � jmother(w)j = 0Eah node must �ll preisely one role in the sen-tene; it must either be the root or an immedi-ate daughter of another node:V = frootg ℄ ℄w 2 V� 2 Roles �(w)In order to guarantee well-formedness, we mustadditionally enfore ayliity. We do this be-low in the axiomatization of yields.4.6 Axiomatization of YieldThe notion of yield of a lexial node, i.e. theset of nodes reahable through the transitivelosure of immediate dominane edges (omple-ments and modi�ers), is essential for the expres-sion of grammatial priniples. In a generativeframework, the yield of a node annot be al-ulated until the full dependeny tree rooted atthis node has been onstruted. In this setion,we exhibit a stati axiomatization of yields thatfully exposes the underspei�ation of a yieldto the inferene mehanisms of onstraint prop-agation.Weighted Set. as a preliminary, we in-trodue the weighted set onstraint, betweenboolean variable B and FS variables S1; S2:S1 = B ? S2

whih has the delarative semantis:B ) S1 = S2:B ) S1 = ;Note that, if we make the lassial identi�ationof false with 0 and true with 1, we an alsoexpress it with the seletion onstraint:S1 = B ? S2 � S1 = h;; S2i[B + 1℄The strit yield yield!(w) is the set of nodesstritly below w in the dependeny tree. Inother words, it is formed by the disjoint unionof the yields of its immediate daughters:yield!(w) = ℄w02daughters(w) yield(w0)But daughters(w) is not statially known; so,instead, we reformulate the above as a union ofweighted sets:yield!(w) = ℄w02V(w0 ...2 daughters(w)) ? yield(w0)where w0 ...2 daughters(w) is a \rei�ed" on-straint: it denotes a boolean whih is true i�w0 2 daughters(w) is satis�ed. To obtain theyield of w, we simply add w to its strit yield:yield(w) = fwg ℄ yield!(w) (13)Disjoint union in (13) enfores the onditionthat w must not appear in its own strit yield,thus ruling out loops.4.7 Word-order onstraintsAlthough the treatment of word-order on-straints lies well beyond the sope of this ar-tile, we give here an idea of how they may beaommodated. The tehnique exploits power-ful onstraints on sets, suh as \sequentiality"and \onvexity" (no holes).Consider that adjetives must be plaed be-tween the determiner (if any) and the noun,and, for simpliity of presentation, ignoring thepossibility of PPs, nothing else is allowed toland between the determiner and the noun.That onstraint an be expressed as follows:Seq(det(w); adj(w); fwg)^ Convex(det(w) [ adj(w) [ fwg)



where Seq(S1; : : : ; Sm) is satis�ed whenever forall i < j, all elements of Si are stritly smallerthan all elements of Sj , and Convex(S) when Sis an interval (with no holes).4.8 Creating and Solving the CSPThe CSP for a given sentene is de�ned by thevariables introdued above and by the onjun-tion of all onstraints presented in the preed-ing setions. It is important to notie that allquanti�ation is of the form 8x 2 D �(x) whereD is a �nite statially known set of integers.Suh formulae are expanded in the CSP intoVx2D �(x).To solve the CSP, we need a \labeling" strat-egy. We have only experimented with the fol-lowing obvious one: �rst apply the default na��velabeling strategy on the olletion of mothersets fmother(w) j w 2 Vg, then apply �rst-fail to the olletion of lexion entry seletorsfentryIndex(w) j w 2 Vg, and �nally use againthe default na��ve labeling strategy on the olle-tion of daughter sets f�(w) j � 2 Roles w 2 Vg.5 ResultsWe developed several prototype parsers, forboth German and English, using the tehniquesdesribed in this paper. In addition to whathas been presented, we also support PPs (how-ever, in the ase of ambiguous attahments, weexpliitly enumerate all possibilities), relativelauses, in�nitive lauses, separable verb pre-�xes in German (our tehniques are very e�e-tive in dealing with the ambiguity arising fromthe multipliity of possible verb pre�xes for V2sentenes). We over the following phenom-ena: topialization, fronting (inluding partialfronting), extraposition (although not in its fullgenerality) and srambling. However we are stillmissing many important notions suh as oordi-nation and nested extraposition �elds, and ourpratial overage is still quite far from whatis possible in more mature grammatial frame-works.We have experimented with both relativelysmall hand-rafted lexions and one lexion au-tomatially derived from an annotated orpus(quite large, � 18000 entries, but in pratiedisappointingly sparse). While moderate, ouroverage nonetheless permits experimentationwith fairly intriate sentenes. Our experiene

so far has been quite positive: performane isgood and sales up well with sentene lengthand number of readings, but a systemati eval-uation remains to be done.Sine our framework does not assume any a-priori word order, the hallenge is not to per-mit diÆult linearizations to aount for suhphenomena as fronting, extraposition, or sram-bling, but rather to rule out those that are un-grammatial and to avoid over-generation. Ourmost omplete parser relies on set onstraints toexpress omplex priniples of linear preedene,and borrows ideas from the theory of topolog-ial �elds as well as from Reape's (1994) wordorder domains. While we have developed pow-erful tehniques to express omplex word-orderonstraints, we have not yet arrived at a satis-fatory formal aount for them.Our urrent researh proeeds along 4 lines:(a) extend the grammatial overage, (b) de-velop a formal framework for word-order on-straints in the style of the present artile, ()push beyond the limits of dependeny grammarto aount for e.g. \headless" onstrutions, (d)integrate a onstraint-based treatment of se-mantis (Egg et al., 1998) with our treatmentof syntax.6 ConlusionIn this artile, we ontributed a new presenta-tion of dependeny grammar that follows mod-ern linguisti pratie, and provided an ax-iomatization of syntati well-formedness whoseeonomy and elegane arues primarily fromthe expressivity of set and seletion onstraints.This axiomatization regards dependeny pars-ing as a on�guration problem and expresses itas a CSP.Within the paradigm of onurrent onstraintprogramming, our axiomatization also has a di-ret omputational reading as a program. Asould be observed in Figure 1, this program isquite eÆient in two respets:1. Constraint propagation is very e�etive atpruning the searh spae. The example of(Fig 1) makes preisely one hoie to enu-merate the two possible readings of the sen-tene. In (Fig 4), parsing of an 18 wordsentene with ambiguous PP attahmentis demonstrated. Again, onstraint prop-agation is strong enough to permit optimal



Figure 4: Enumerating PP Attahmentsenumeration of all parses without any fail-ure.2. Absolute performane is also quite satis-fatory, even without any sort of optimiza-tion: the two readings of (Fig 1) are enu-merated in 190ms and the 9 readings of(Fig 4) in 910ms. Our preliminary resultsappear to be typially about 1 order ofmagnitude faster than those reported byHarper (Harper et al., 1999). We intendto look into this more losely.We desribed an e�etive treatment of ambigu-ity resting on set and seletion onstraints. Inpartiular we showed how seletion onstraintsprovided a CP aount of dependent disjun-tions with the added bene�ts of onstrutivedisjuntion.In losing, it is our hope that this paper willhelp promote awareness of reent advanes inonurrent onstraint tehnology and of theirrelevane to omputational linguistis, and thatthe tehniques we desribed will �nd applia-tions in other grammatial frameworks.Aknowledgements. The author is espe-ially grateful to Joahim Niehren for his exten-sive help in revising and improving this paper.ReferenesAbderrahamane Aggoun, David Chan, PierreDufresne, Eamon Falvey, Hugh Grant,Alexander Herold, Geo�rey Maartney,Miha Meier, David Miller, Shyam Mu-dambi, Bruno Perez, Emmanuel VanRossum, Joahim Shimpf, Periklis An-dreas Tsahageas, and Dominique Henryde Villeneuve. 1995. ECLiPSe 3.5. Usermanual, European Computer Industry Re-
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