PATHWIDTH is NP-hard for weighted trees
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Abstract. The pathwidth of a grap&’ is the minimum clique number @f minus one, over all interval
supergraphd? of G. We prove in this paper that traTHWIDTH problem is NP-hard for particular
subclasses of chordal graphs, and we deduce that the probiteains hard for weighted trees. We also
discuss subclasses of chordal graphs for which the protdquolynomial.

1 Introduction

Graph searching problems, already introduced in the 6(,;shfve become popular in computer science
with the seminal papers of Parsons [24, 23] and of Petrovd#d]have been widely studied since the late
70’s. In graph searching we are given a contaminated grdpbdges are contaminated) and we aim to
clean it using a minimum number of searchers. There are @evatiants of the problem, let us consider
here thenode searchingntroduced by Kirousis and Papadimitriou [16]. A searclpstensists in one of the
following operations: (1) place a searcher on a vertex,d&)ave a searcher from a vertex. A contaminated
edge becomes clear if both its endpoints contain a seaklaear edge is recontaminated at some step
if there exists a path from this edge and a contaminated eshgkno internal vertex of this path contains
a searcher. Thaode search numbesf a graph is the minimum number of searchers required tanclea
the whole graph, using a sequence of search steps. By thiésreflLaPaugh [19] and Bienstock and
Seymour [2], the node search game is monotone: there alwésts a cleaning strategy, using a minimum
number of searchers, such that a clear edge will never bataninated during the search process.

Thevertex separation numbef a graph is defined as follows. layoutof a graphG is a total order-
ing (v1,ve,...,v,) ON its vertex set. The separation number of a given layoutasiaximum, over all
positionsi, 1 < i < n, of the number of vertices ifw., . . ., v; } having neighbours ifv; 1, ..., v,}. (In-
formally, one can think that at stépthe part of the graph induced by the fitstertices has been cleaned,
the rest is contaminated, and we need to guard all clearcesitiaving contaminated neighbours in order
to avoid recontamination.) Theertex separation numbeif a graphG is the minimum separation number
over all possible layouts af.

Pathwidthhas been introduced in the first article of Robertson and $eymGraph Minor series [28].
The pathwidth of an arbitrary gragh is the minimum clique number off minus one, over all interval
supergraph#f of GG, on the same vertex set.

Actually, the three graph parameters mentioned above aresathe same. For any graph its path-
width pwd(G) is exactly the vertex separation number, and is also equlétaode search number minus
one, [15]. From now on we consider theTHWIDTH problem, i.e. the problem of computing the pathwidth
of the input graph.

ThePATHWIDTH problem is NP-hard, even for co-bipartite graphs [32] amafdhal graphs [11]. On the
positive side, it is fixed parameter tractable: Bodlaenderlsloks [3] proposed an algorithm that, given
an arbitrary grapltz and a paramete, the algorithm decides ifwd(G) < k in a running time which is
linear inn (the number of vertices of the graph) but, of course, exptiglein . By [3], PATHWIDTH is
polynomially tractable for all classes of graphs of bounttedwidth. For trees and forests there exist sev-
eral algorithms solving the problem é(n log n) time [20, 8]; recently, Skodinis [29] and Peng et al. [25]
gave a linear time algorithm. Even the unicyclic graphsawted from a tree by adding one edge, require
more complicated algorithms in order to obtain @ logn) time bound [7]. Chotet al. [6] extended
the techniques used on trees and obtain a polynomial aigosblving the problem on block graphs, i.e.
graphs in which each 2-connected component induces a clidueze exist some other geometric graph



classes for which theATHWIDTH problem is polynomial, for example permutation graphs Bgsed on
this result, Peng and Yang [26] solved the problem for biearbipartite graphs.

Suchan and Todinca [30] gave éfn?) computing the pathwidth of circular-arc graphs; circuliar-a
graphs are intersection graphs of a family of arcs of a cygele (iext section for more details on intersection
graphs). The technique used in [30] exploits the geomdtictire of circular arc graphs and the fact that
such a graph can be naturally cut using some sets of scaiftihesds of the cycle). A similar approach
has been used before for computing the treewidth of cireamgraphs [31] and the treewidth of circle
graphs [17]. Circle graphs are intersection graphs of a Sehords of a cycle, i.e. each vertex of the
graph corresponds to a chord and two vertices are adjadiet dorresponding chords intersect. The class
of circle graphs contains the class of distance-heredgeaphs and in particular all the trees [10]. The
problem of computing pathwidth for distance heredetaryl (dus circle graphs) was proved to be NP-
hard [18].

Our results. We prove in this paper th@®aTHWIDTH remains NP-hard even when restricted to weighted
trees with polynomial weights. The weighted version of pattth is defined in the next section; roughly
speaking, in terms of search or vertex separation, when \aedgal vertexv of weightw(v), we need
w(v) guards instead of one. Equivalently, the pathwidth of a Weid tree can be seen as the pathwidth
of the unweighed graph obtained by replacing each vertex the tree with a cligue module of size
w(v). Since the latter graphs are distance-hereditary, thisiaiplies the NP-hardness of pathwidth for
distance-hereditary and circle graphs. We also showmbatiFIED CUTWIDTH is NP-hard to compute for
edge-weighted trees. Note that Monien and Sudborough @0 thatcuTwIDTH is NP-hard for edge-
weighted trees, and our reductions are inspired by thdinigoes. Eventually, we discuss some classes of
graphs for which theATHWIDTH problem remains polynomial.

2 Preliminaries

2.1 Basic definitions

We work with simple and undirected grapis= (V, E), with vertex sel/(G) = V and edge seb'(G) =
E,andwe let, = |V|, m = |E|. The set oheighborsf a vertexz is denoted byV (z) = {y | 2y € E}. A
vertex seC is acliqueif every two vertices irC are adjacent, andraaximal cliquef no superset o' is a
clique. We denote by (G) the maximum clique size of the graph. A set of verti¢éof G forms amodule

if, for any vertexz € V' \ M, eitherz is adjacent to all vertices ¥/ or to none of them. The subgraph
of G induced by a vertex set C V is denoted byG[A]. A pathis a sequence;, va, ..., v, Of distinct
vertices ofG, wherev;v;11 € FE for 1 < i < p, in which case we say that this is a péthtweens; and
vp. A pathovy,vg, ..., v, is called acycleif v,v, € E. A chordof a cycle (path) is an edge connecting two
non-consecutive vertices of the cycle (path). A vertexSset V is aseparatorif G[V'\ S] is disconnected.
Given two vertices: andv, S is au, v-separatorif « andwv belong to different connected components of
G[V '\ S], andS is then said tseparateu andv. A u, v-separatolS is minimalif no proper subset of
separates andv. In general S is aminimal separatoof G if there exist two vertices andv in G such
thatS is a minimalu, v-separator.

A graph ischordalif every cycle of length at least 4 has a chord. Given a fatfilgf sets, the intersec-
tion graph of the family is defined as follows. The verticestef graph are in one-to-one correspondence
with the sets ofF, and two vertices are adjacent if and only if the correspogdets intersect. Every graph
is the intersection graphs of some famify but by restricting these families we obtain interestingpdr
classes.

An interval graphis the intersection graph of a family of intervals of the ria. A graph iscircle
graphif it is the intersection graph of chords in a circle.

Definition 1. A path decompositionf an arbitrary graphG = (V, E) is a pathP? = (X, A), where the
nodesY are subsets of (also calledbag3, such that the following three conditions are satisfied.

1. Each vertex € V appears in some bag.
2. For every edgdv, w} € E there is a bag containing bothandw.



3. For every vertex € V, the bags containing induce a connected subpath/df

The width of the path decompositith= (X, A) ismax{|X| — 1 | X € X} (the size of the largest bag,
minus one). Theathwidthof G, denotecbwd(G), is the minimum width over all path decompositions of
the graphs.

We extend the definition of pathwidth to weighted graphs: (V, E,w : V — N), where the weights
are assigned to the vertices. The weight of a path deconpo#it= (X, A) ismax{w(X)—-1| X € X},
wherew(X) is the weight of the bag, i.e. the sum of the weights of its so@lbe (weighted) pathwidth is
again the minimum weight over all path decompositions ofgtaph.

Observation 1 The weighted pathwidth of a gragh = (V, E, w) equals the (unweighted) pathwidth of
the graphH, obtained fromG by replacing each vertex by a clique modulé\/,, of sizew(v). That is,
we replace each vertexby set of verticed/,, of sizew(v) and inducing a clique irf, and two vertices
v € M, andu’ € M, are adjacentinH if and only ifv andu are adjacent inG.

Path decompositions are strongly related to interval gr&wen a graph=, a clique pathof G is a
path decomposition whose set of bags is exactly the set ofradixliques ofG. It is well known that a
graphG is an interval graph if and only of it has a clique path. Siarilly, a clique treeof a graphG is
a tree whose nodes correspond to the maximal cliqués ahd such that for any vertex of the graph, the
nodes containing this vertex form a connected subtree dflifhee tree. Clique trees characterize chordal
graphs:

Lemma 1l (see, e.g., [9])A graphd is an interval graph if and only of it has a clique path. A gra@his
chordal if and only if it has a clique tree.

Clearly, clique paths are particular cases of clique tiegsarticular interval graphs are also chordal.

An interval completion of an arbitrary graggh = (V, E) is an interval supergrapi = (V, F) of G,
with the same vertex set arld C F. Moreover, if no strict subgrapH’ of H is an interval completion
of G, we say thatH is aminimal interval completiof GG. By the previous lemma, the pathwidth of an
(unweighted) interval graph is its clique size minus onel dre pathwidth of an arbitrary unweighted
graph is the maximum, over all interval completidd=f G, of w(H) — 1. Moreover, when searching for
interval completions realizing this minimum we can cleasdgtrict to minimal interval completions.

2.2 Foldings

Given a path decompositioh of G, let PathFill(G, P) be the graph obtained by adding edge&:tso
that each bag oP becomes a clique. It is straight forward to verify tiatthFill(G, P) is an interval
supergraph of7, for every path decompositio. MoreoverP is a path decomposition #fathFill(G, P),

and if we remove the bags which are not maximal by inclusiomtain a clique path.

Definition 2. Let X = {Xy,..., X} be a set of subsets &f such thatX;, 1 < ¢ < k, is a clique in
G = (V,E). If, for every edge;v; € E, there is someX,, such that{v;,v;} C X,,, thenX is called an
edge clique covenf G.

Definition 3 ([13,30]).Let X’ be an edge clique cover of an arbitrary graphand letQ = (Q1, ..., Q)
be a permutation of’. We say thatG, Q) is afolding of G by Q.

To any folding of G by an ordered edge clique covér we can naturally associate, by Algorithm
FillFolding of Figure 1, an interval supergragh = FillFolding(G, Q) of G. The algorithm also con-
structs a clique path decomposition/@f

Lemma 2 ([30]).Given a folding(G, Q) of G, the graphH = FillFolding(G, Q) is an interval comple-
tion of G.

We also say that the grapti = FillFolding(G, Q) is definedby the folding(G, Q). It is not hard to
prove (see [30]) that every minimal interval completior(dfs defined by some folding.



Algorithm FillFolding

Input: GraphG = (V, E) andQ = (Q1, ..., Q), a sequence of subsetsiof
forming an edge-clique cover;

Output: A supergraphH of G;

P=0Q;

for each vertexw of G do
s=min{i |z € Q:};
t=max{i |z € Q:};
forj=s+1tot—1do

Pj = Pj U {'U},
end-for
H = PathFill(G, P);

Fig. 1. TheFillFolding algorithm.

Theorem 1 ([30]).Let H be a minimal interval completion of a grapgh with an edge clique covek.
Then there exists a foldingr, O ), whereQy; is a permutation oft, such that? = FillFolding(G, Q).
In particular, there exists a foldin@ such that the pathwidth @illFolding(G, Q) is exactly the pathwidth
of G.

For any chordal grapty, the setkC of its maximal cliques form an edge-clique cover the grapbst
we will construct foldings of7 by choosing permutations &. The next two lemmas give a better under-
standing of such a folding.

Lemma 3 (see, e.g., [9])Let G be a chordal graph and fix a clique tree 6f A vertex subse$ of GG is
a minimal separator if and only if there exist two maximatjagesK and K’ of G, adjacent in the clique
tree, suchthat = K N K.

Lemma 4. Let G be a chordal graph/C be the set of its maximal cligues and @t be a permuta-
tion of . Let T be a clique tree ofy. Consider the path decompositi@h produced by the algorithm
FillFolding(G, Q) (see Figure 1). Each ba# of P is the union the cliqué) € Q which corresponds to
the bagB at the initialization step and of the minimal separatorsygdeg@Q’ N Q”, where@’, Q" are the

pairs of cliques adjacent in the clique tree, but separatgd)in Q. We say that the cliqu® and the

separators have beanergedoy the folding.

Proof. Clearly if @ separate®)’ and@” in the permutatior®, by construction oFillFolding(G, Q), we
add to bagB every vertex inQ’ N Q".

Conversely, letB be the bag corresponding € € Q in FillFolding(G, Q) and letz be a vertex of
B\ Q. We have to prove there exist two maximal cliquesiofdjacent in the clique tree, containingnd
separated by in the permutatior®. By definition of a clique tree, the nodesBfcontainingz induce a
connected subtreg,. Let @, Q.- be maximal cliques containing, situated to the left and to the right of
Q in Q (they exist by the fact that has been added to bdg). Thus@Q; and@, are nodes of,, and on
the unique path fromy); to Q. in T, there exists an edge’Q"” such that)’ is to the left and)” is to the
right of  in the permutatiorp. a

3 Octopus graphs

3.1 Octopus graphs and 0,1-linear equations

An octopus treds a tree formed by several disjoint paths, plus a node,ddlle head of the octopus,

adjacent to one endpoint of each path. An emphoctopus gsaphchordal graph having a clique-tree

which is an octopus tree, and such that any vertex of the grppbars in at most two maximal cliques. The

last condition implies, by Lemma 3, that the minimal separsbf an octopus graph are pairwise disjoint.
Consider the following problem, called the solvability pkem for linear integer equations:



— Input: A rectangular matrix4d and a column vectdr, both of nonnegative integers.
— Output: Does there exist a 0-1 column vectosatisfyingAx = b?

We will use a restricted version of this problem, that we tial BALANCED SYSTEM OF 0,1-LINEAR
EQUATIONS, satisfying the following conditions:

1. for all rows: of matrix A, the sum of the elements in the row is exactly,
2. for all rowsi, all values in row are larger than all values in roiv- 1 .

Note that when matrix4 has only one row we obtain the 2-partition problem. Monied Sudborough
prove in [21] that:

Theorem 2 ([21]).Solving balanced 0,1-linear equation systems is strondiyhidrd, i.e. the problem is
hard even when the integers in the matriceandb are polynomially bounded by the sizeAf

Monien and Sudborough use a version of this problem for aatemuto QUTWIDTH of edge-weighted
trees, which shows that the latter is NP-hard. Our redustéye also fronBALANCED SYSTEM OFO0,1-
LINEAR EQUATIONS, inspired by their reduction. Nevertheless, it is not clbat one could directly find
a reduction from ©TwIDTH of edge-weighted trees teaTHWIDTH of (node) weighted trees or circle
graphs or other problems we consider in this paper.

3.2 NP-hardness oPATHWIDTH for octopus graphs

This subsection is devoted to the proof of the following teeo:
Theorem 3. PATHWIDTH is NP-hard for octopus graphs.

More technically, we prove by the following Propositionthide BALANCED SYSTEM OF0,1-LINEAR
EQUATIONS problem is polynomially reducible teATHWIDTH of octopus graphs.

Proposition 1. Given an instanc€A, z) of BALANCED SYSTEM OF 0,1-LINEAR EQUATIONS, we con-
struct an octopus grapt¥( A, b) as follows:

— G(A,b) has a clique tree formed by a head andegs withm nodes each, where is the number of
columns andn is the number of rows od.

— Let K be the clique of7(A, b) corresponding to the head of the octopus, andjfdr< j < n and
eachi,1 < i < m let K, ; denote the clique corresponding to the node of itfeleg, situated at
distance; from the head.

e the head cliqud{y is of sizeb; + k, wherek is an arbitrary number larger thah; ;

o for eachi, j, K; ; is of sized; ; + b1 — b; + k;

e for eachi, j, the minimal separatof; ; = K;_1 ; N K; ; is of sizeA; ;; here K, ; denotes the
head cliqueK g .

o 12 15 15 30
A=10 10 10 10 B=1|20
S 5 O 10

Fig. 2. Matrices

We havewd(G(A,b)) < by + k — 1 if and only if the systema = b has a 0,1-solution.



Fig. 3. Octopus graph corresponding to the matrices from Figure 2

Proof. For simplicity, the grapltz(A, b) will be simply denoted by~. Recall that the minimal separators
of G are pairwise disjoint and each vertex of the graph appeasnmost two maximal cliques. We point
out that, by our choice df > b, and by the fact thdt; > b; for all ¢ > 1, the graphG is well constructed.

We first show that, if the systemz = b has a 0,1-solution thepwd(G) < b1 + k& — 1 (actually it
is easy to notice that the inequality can be replaced withcaralty, due the fact tha® has a clique of
sizeb, + k). Suppose the system has a solutign We provide a folding ofZ by putting all legs; of
the octopus such that; = 0 to the left, and all those with; = 1 to the right of the head cliqu&’y.
Moreover, the folding is such that, on each side of the thellsbque K 5, starting fromK g, we first put
the maximal cliques at distandefrom the head in the clique tree, then those at distance 2@nd dike
in a breadth-first search of the clique tree starting fronhidsed.

More formally, letL = {j,1 < j <n |z} = 0} andR = {j,1 < j < n |z} = 1}. We construct a
folding Q as follows. The head cliqu& y is in the middle position of the folding. We put to the right of
Ky the cliquesK|; j, forall j € R and alli, 1 < ¢ < m. The ordering is such that for any < i, and any
Ji, ja, K, j, appears befor&;, ;, in Q. We may assume that, for a fixedhe cliquesk; ;, j € R appear
by increasing. The cliques appearing befoféy in the permutation are ordered symmetrically wikty.
Let H = FillFolding(G, Q) andP the path decomposition corresponding to the folding, itaims to
prove thatP has no bag with more thdn + k vertices. Since each leg of the octopus is either completely
to the left or completely to the right of the cliqu€y, this clique does not separate, in the permuta@on
any couple of cliques adjacent in the clique tree. Theretnré emma 4, the bag correspondinghg; in
P has no other vertices thaki;. Consider now a bag o?, corresponding to a cliqu&’; ;. We assume
w.l.o.g. thatj € R, the casgj € L is similar by symmetry of the folding. This bag, denoted By;,
containskj; ; and the vertices of all the separators corresponding toseafgbe clique tree, such that; ;
separates the endpoints of the edge in the permut&i@@ee Lemma 4). These separators are of two types:
S;.; with 5/ € R, j' > j andS; ;1 j» with 7/ € R, j” < j. Their sizes are respectively; ;, andA; ;1 ;,
and by definition of balanced systems,; ;» < A; ;. Since|K; ;| = A, ; + b1 — b; + k, the size of
the bagB; ; is at mosthy — b; + k + 3, A; ; Note that, for any fixed the equality is attained by the
bagB; ;, which is closest td{y in the permutation. By definition of sét, the sum is exactly; and the
conclusion follows.

Now conversely, assume thawd(G) < b; + k — 1, we show that the systemz = b has a 0,1-solution.
Let Q be a permutation of the maximal cliques@fsuch thafillFolding(G, Q) is of pahwidth at most
b1 + k — 1; such a folding exists by Theorem 1.

Claim. For any legj of the octopus tree, all cliqués; ;, 1 < i < m of the leg are on the same side of the
head clique{y in the permutatior®.

Proof. (of the claim) Indeed ifKy separates in the permutati@h two cliques of a same leg, then
it necessarily separates two consecutive cligiigs and K, ;, for somei,1 < i < m. It follows
by Lemma 4 that, when constructifigliFolding(G, Q), the bag of the resulting path decomposition,
corresponding to the cliquE g, contains bothy and the minimal separatdt ; = K; ; N K1 5. Since
Ky and S, ; are disjoint by construction aff, this bag would have strictly more thaf | = b1 + k



vertices, contradicting the assumption that the pathwadfillFolding (G, Q) is at most; + k — 1. This
completes the proof of the claim. a

Let L be the set of indiceg, 1 < j < n such that the cliques of legappear beford(y in Q, and
symmetrically letR be the set of indices corresponding to legs appearing After

Claim.For alli, 1 <¢ < m, we have

D A=) Aij=b

JjeL JER

Proof. (of the claim) Take an arbitrary value 6fl < < m. We prove thagjeR A;; < b;. Among all
cligueskK; ;, j € R let j, be the index corresponding to the one which is closesffg in the ordering

Q. Therefore, forany € R\ {jo}, there are two cliquek; _; ; andK; ;, with i’ < i, separated by; j,

in the permutatior@ (here again we use the conventifly ; = K ). In FillFolding(G, Q), the separator
Sy .; is merged to the cliqu&; ;,, addingA; ; > A; ; new vertices in the corresponding bag. Thus this
bag will have at leastis; jo| + >_c gy () Ai.j Vertices, so its size is at ledst — b; + k + >- ;5 Aij-
Since the pathwidth dfillFolding (G, Q) is at mosb; + k£ — 1, each bag produced by the folding is of size
at mosth; + k, in particular we must haijGR A; ; < b;. By symmetry, we also haijeR A < b,
and since the sum of all elements in rows 2b; the conclusion follows. O

By the last claim, the 0,1-column vectet such that, foralli, 1 < j <n,zj =0if j € Landz} =1
if j € L is a solution of the systemiz = b, which completes the proof of this Proposition. a

Clearly the grapld7( A, b) can be constructed in polynomial time, thus 2@ ANCED SYSTEM OFO0, 1-
LINEAR EQUATIONS problem is polynomially reducible teaTHWIDTH of octopus graphs. By Theorem 2,
we conclude tha#ATHWIDTH is NP-hard even when restricted to octopus graphs, whiobfpidcheorem 3.

Fig. 4. Folding for the octopus graph from Figure 3

4 Weighted trees

We prove in this section th&ATHWIDTH is hard for weighted trees.
Let us consider now the case of weighted trees. We adapteiea iof Proposition 1 by transforming a
system of 0,1-linear equation into a pathwidth problem feighited trees.

Proposition 2. Given an instanc€A, z) of BALANCED SYSTEM OF 0,1-LINEAR EQUATIONS, we con-
struct an weighted octopus trd& A, b) as follows:

— T(A,b) is formed by a heads legs with2m nodes each, where is the number of columns and is
the number of rows odl, plus an node adjacent only to the head.

— LetN be the head node of the tree. The nodes of g denoted ;,C1 5,525, C25, ..., Sm,js Cm,j
and appear in this order$; ; is the one adjacent to the head. (THienodes play the same role as the
minimal separators for octopus graphs.)



the head\ is of weightk, wherek is an arbitrary number larger thafib, ;
the nodeN’ adjacent only taV is of weighth;

for eachi, j, the nodeC; ; is of weightb; — b; + k;

for eachi, j, the nodesS; ; is of weight4, ;.

We havewd(T(A, b)) < by + k — 1if and only if the systerdz = b has a 0,1-solution.

Proof. Let H(A,b) the graph obtained by replacing, (A, b), each node by a clique module such that
the number of vertices of the clique is exactly the weighthaf hode like in Observation 1. We have
pwd(T'(A,b)) = pwd(H(A,b)). Note thatH (A, b) is chordal. The maximal cliques di (4, b) corre-
spond now to edges df(A,b), i.e. the maximal cliques are exactly the unions of two aigmodules
corresponding to adjacent nodesTaf Let us use the same notations for the clique module§ @4, b)

as for the corresponding verticesBf A, b). Although H (A, b) is not exactly an octopus graph, because
the vertices ofN appear in several maximal cliques, its structure is quitglar. In particular it has a
clique tree such that the corresponding tree, dendted an octopus. The head of the octopus tree is the
clique N U N'. Each leg ofl" corresponds to one of thelong paths ofl'(A, b). The cliques of leg are,
starting from the head, the cliques corresponding t@theedges of thgth path from/V to the leafS,, ;:
NU SlJ’ SlJ U Cl,j, Cl,j U 527]‘, 527]‘ U Cg,j, ey Sﬂ,j U Cn,j.

Assume thapwd(H (A, b)) < by +k — 1, we prove that the systeriz = b has a 0,1-solution. For this
purpose we use the octopus chordal gréigii, b) constructed in Proposition 1, and it is sufficient to show
thatpwd(G(A, b)) < pwd(H(A,b)).

Recall that a grapld7; is aminor of a graphG, if G; can be obtained frond/, by a series of edge
deletions, vertex deletions and edge contractions (cctiiggan edge:v consists in replacing this edge by
a single vertex, whose neighborhood is the union of the fmigioods ofu and ofwv). It is well-known
that, if G; is a minor ofG,, then the pathwidth of/; is at most the pathwidth af; [28].

Claim.G(A,b) isaminorH(A,b).

Proof. (of the claim) InH (A, b), for eachj, 1 < j < m, IetSlLlyj be a subset af;_; ;, of sizeA; ;. Here
Cy,; denotesV, and we ensure that the séig:, So 2, . . ., So,; are pairwise disjoint, which is possible by
our choice ofk > 2b; = Z?:l Ay, Choose a matching betweéh; andsS;_, ;, for each pair, j, and
contract each edge of the matching ; the set of verticesrudrdiy these contractions is denotéd;. We
claim that the new graph is exactli( A, b). Note that the edges of all these matchings are pairwiseidisj
In the octopus clique treB of H (A, b), let us consider thgth legCy ;US, j, S1 ;UC) j, C1jUSa 4, Sa ;U
Caj,...,5.;UC, ;. The cliques of typ€';_; ;US; ; are smaller than the cliqués ;US; ;. In particular,
after applying our contractions, in the new graph the legheesn transformed into the following sequence
of maximal cliquesV,U; ; U Cy ;,Us ; U Cy j,..., U, ; UC, ; (N is not a maximal clique of the new
graph but only of its restriction to the leg). It is sufficigntnotice that the size of the cliqdg ; U C; ; is
A; ; + b1 — b; + k, and intersection of two consecutive cliques correspondetsl; ;, of size 4, ;. The
new graph is indeed (A4, b). O

Conversely, assume that the systelm = b has a 0,1-solution*, we give a folding of H(A4,b)
producing a path decomposition of width+ & — 1. Like in the proof of Proposition 1, le® (resp.L) be
the set of indice$, 1 < j < n such that} = 1 (resp.z} = 0). We only discuss the folding to the right of
the cliqueN UN’, the left-hand side being symmetrical. To the righfod N’ we put the cliquesVu .S, ;
for eachj € R. Then,

for eachi, 1 < i < m inincreasing order,
foreachj € R
we append at the end the cliqugs; U C; ; andC; ; U S;11 5

It remains to prove that the width of the corresponding fodds at mosb, + k£ — 1. The bags corresponding
to cliques of typeV U S; ; wil be merged with all other separatd¥s -, ;' € R\ {j}, so they become of
sizeb; + k. Among the other bags, those that give the width of the fgjdire the bags corresponding to
cliques of typeS; ; U C; ;. Indeed the bags correspondingp; U S;41,; are merged in the folding with
the same separators as the bagof U C; ;, and|C; ; U S, 11 ;| < |S:; U C; |, thus after the folding the
former bags remain smaller than the latter. To each bag séthags3; ; corresponding ts; ; UC; ; , we



add all other separato, ;- with j/ € R\ {j} andi’ being eitheri ori + 1. Thus, after the folding, the
size of each of these bags is at m@st; | + >,/ 5 |5i,;|, which is precisely; + b;. O

Fig. 5. Weighted tree corresponding to the matrices from Figure 2

The construction of the octopus tréé A, b) of Proposition 2 is clearly polynomial in the size of matrix
A. By Theorem 2 we deduce:

Theorem 4. The PATHWIDTH of weighted trees is NP-hard, even when the weights are poiiaily
bounded by the size of the tree.

As a byproduct, this also implies a result already prove®jnfamely thatrATHWIDTH remains NP-
hard for distance-hereditary graphs and circle graphsafilgis distance-hereditary if and only if it can be
obtained starting from a unique vertex and repeatedelyngdalnew pendant vertices (with only one new
neighbour), or vertices which are true twins or false twihalceady existing vertices?]. Recall that two
verticesr andy are false twins (true twins) iV (z) = N(y) (N(z) U {z} = N(y) U {y}. In particular all
trees are distance-hereditary, and by adding true twinshterothat the graphs obtained from weighted
trees by replacing each vertex with a clique module are altartte-hereditary. Therefore Theorem 4
implies the NP-hardness @ATHWIDTH when restricted to distance hereditary graphs. Eventuadiie
that circle graphs contain all distance-hereditary grdphs

We can also prove that theoDIFIED cuTwIDTH problem is NP-hard on edge-weighted trees. The
MODIFIED CUTWIDTH is a layout problem related ®xTHWIDTH andcuTwIDTH. The proof of this result,
although similar to the proofs of Theorems 3 and 4, is quitg land tedious, therefore the discussion about
MODIFIED CUTWIDTH has been postponed to the Appendix.

5 PATHWIDTH of octopus graphs: polynomial cases

Pathwidth can be computed in polynomial time for chordapbsahaving all minimal separators of size
one, which are exactly the block graphs [6]. Already for d@bgraphs with all minimal separators of size
two it becomes NP-hard to compute pathwidth [11]. We proved is NP-hard to compute pathwidth for
octopus graphs, which also have a very simple structure giach vertex appears in at most two maximal



cligues. We will show how to compute pathwidth in polynomntiate for a subclass of octopus graphs,
namely octopus graphs with all separators of each leg ofahesize.

Let G be an octopus graph with, for each lgall separators of the same size

Let G; be the graph obtained frotd by removing from each leg all cliques except the maximum one.
The clique tree o7, is a star and all separators are disjoint, the gri@plis a so-called primitive starlike
graph. We can compute the pathwidth@f using the algorithm for primitive starlike graphs of Gusgted
[11].

Lemma 5. There exists an orderin@ where the cliques of each leg appear consecutively suchthieat
pathwidth ofFillFolding (G, Q) is exactly the pathwidth af.

Proof. Let @ be an ordering fo7 such that the pathwidth dfillFolding(G, Q) is exactly the pathwidth

of G. Ler K ; be a clique of maximum size of the lggLet Q' be the folding obtained by (1) removing all
other cliques of leg and then (2) replacing them contigouslyAg ;, in the order of the legK; ; being

the closest to the head). We claim that the new folding is afstamal. All cliques of leg;j are merged
with exactly the same separatorsids;, thus the size of their bags is upper bounded by the size of the
bag corresponding té; ;. Let K be a clique which is not on the leg If K was merged before with
one or more minimal separators of lggin the new folding it will be merged with at most one of these
separators, so the corresponding bag does not increasewts not merged with a minimal separator of
leg 7, then in the new folding the bag é&f remains unchanged. Therefore we do not modify the pathwidth
of FillFolding(G, Q).

Theorem 5. The pathwidth of an octopus graph with, for each leg, all safmas of the same size can be
computed in polynomial time.

Proof. Let G such an octopus graph. First we construct the gt@phy deleting from each leg a¥ all the
cligues which are not maximum cliques. Lighe the maximum difference between the size of the head and
the peripheral cliques. It follows that the gra@h is a primitive starlike graph [11]. Using the polynomial
time algorithm of Gustedt we compute the pathwidtlif In order to construct an orderiggfor G such

that the pathwidth oFillFolding(G, Q) is exactly the pathwidth off, we place next to each peripheral
cligue K; ; of G; all the cliques from leg, respecting the ordering of the leg.

Clearly, when we have octopus graphs with a constant nunflstigoes the problem becomes poly-
nomial, because the number of possible foldings is constaot It would be interesting to know if the
PATHWIDTH problem on octopus graphs becomes polynomial when we gesiroctopuses with legs of
constant size, or to octopuses with constant number of legfse latter case, using dynamic programming
techniques, one can decide if the pathwidth is at most tleeddithe head of the octopus, minus one. More
generally, if we know that there exists an optimal foldinglsthat each leg is either completely to the left
or completely to the right of the octopus, then we can alsevalising some results of [30] that the bags
of a same leg should appear in the order of the leg. Then oneaapute an optimal folding by dynamic
programming, and the running time is of ty{¥ Poly(n)-n'), wherel is the number of legs of the octopus.

6 Conclusion

We have proved that theaTHWIDTH problem is NP-hard for weighted trees, even when restritted
polynomial weights, and also for the class of octopus graghgch is a very restricted subset of chordal
graphs. We have also shown that theMFIED CuTwIDTH problem is NP-hard for weighted trees.

Thus, despite the recent polynomial algorithms computiatipwidth for block graphs [6], biconvex
bipartite graphs [26] or circular-arc graphs [30], the t@ges for pathwidth computation do not seem
extendable to large classes of graphs. A natural questtorssarch for good approximation algorithms for
pathwidth. For chordal graphs and more generally graphswitiong induced cycles, Nisse [22] proposed
approximation algorithms whose approximation ratios dodepend of the size of the graph, but only on
the pathwidth and the size of the longest induced cycle.ntaias an open problem whether pathwidth
can be approximated within a constant factor, even for tagsobf chordal graphs or the class of weighted
trees.
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Another interesting question is theORNECTED SEARCH NUMBERoON weighted trees. In the graph
searching game, we say that a search strategy is connectgdeifich step of the game, the clear area
induces a connected subgraph [1]. Tdenected search numbér the minimum number of searchers
required to clean a graph using a connected strategy. Thibaucan be computed in polynomial time for
trees [1]. In the weighted version, we nee()) searchers to guard a vertenf weightw(v). The algorithm
computing the connected search for unweighted trees caersttaightforwardly extended to the weighted
case. We should also point out that our NP-hardness proeificiwIDTH (and thus node search number)
of weighted trees is strongly based on the fact that, in agscbf octopus trees, the optimal search strategy
is not connected, thus the proof cannot be immediately adaptthe connected search number problem.
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A Modified cut-width for edge-weighted trees

As mentioned in the IntroductioATHWIDTH can also be seen as a graph layout problem, and in this
context pathwidth has been introduced under the name oéwedparation. There is a wide range of
layout problems with various applications, see e.g. [14hfeurvey. We are interested here in two of them,
CUTWIDTH andMODIFIED CUTWIDTH.

Recall thatayout £ of a graphG = (V, E) is a total orderinduvy, va, . . ., vy,) Of its vertices. Assume
thatG is an edge-weighted graph, i.e. we have a weight functioocéting to each edgey a positive
weightw, (zy). We denote by - (z) the index of vertex: in the layout. Theutwidthof the layoutl is

cwd(L) = max Z we (2Y)
T 7 azy€FE,or(x)<i<or(y)

In full words, the cutwidth of the layout is the maximum weighiossing some point, where we
say that an edge crosseff one of the endpoints has an index at mgsand the other endpoint has an
index strictly greater thah Thecutwidthof the edge-weighted grapgh is the minimum cutwidth over all
possible layouts ofy:

cutwd(G) = min{cutwd(L) | £ layout of G}

Themodified cutwidths defined in a very similar way except that this time, for aseix of a layout,
we say that an edge crosses it starts strictly before; and ends strictly after — in other terms edges
incident to: are not counted. So the modified cutwidth of a laySus

mewd(L) = ,max Z we (TY)
T wyeB,or(r)<i<or(y)

and the modified cutwidth of the edge-weighted grépis
cutwd(G) = min{cutwd(L) | £ layout of G}.

Both problems are NP-hard, even for unweighted graphs, iolwdase each edge counts 1 in the sums.
Monien and Sudborough prove tt@tTwIDTH is NP-hard for edge-weighted trees, even when weights are
polynomial in the size of the tree. Based again on similaasjeve show thatODIFIED CUTWIDTH is also
NP-hard for weighted trees with polynomial weights. We point that, despite the fact that tr@ TwIDTH
andMODIFIED CUTWIDTH are sintaxically very similar, there are not straightfordveeductions between
them. Somehow surprisingly, there are easy reductionses#twoDIFIED CUTWIDTH andPATHWIDTH,
see e.g. [12], unfortunately these reductions do not stéyarmlass of trees. We prove:

Theorem 6. TheMODIFIED CUTWIDTH problem is NP-hard on edge-weighted trees, even when vgeight
are polynomially bounded in the size of the tree.

The proof is very similar to the one of Theorem 3, based on aatioh fromBALANCED SYSTEM OF
0,1-LINEAR EQUATIONS:

Proposition 3. Given a n instanc€A, b) of BALANCED SYSTEM OF 0,1 INEAR EQUATIONS, we con-
struct the following edge-weighted trég( A, b).
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— First construct an octopus tree with a head noealso considered as the root of the tree, and
n legs withm nodes each, wherer x n is the size of matrixd. The nodes of leg are denoted
ni,,M2,5,- - -, Mm, 5, Starting from the head.

— Fix a numberk > 2b; and, for eachi, j, 1 <i < m, 1 < j < n give the edge betweern ; and its
parent the weigh#; ;.

— For eachi, j, create three Ieavesj, i) ” adjacent ton; ;. The weight of the three edges between
lq jandn; jisk +by —b; + A j — Aiy1; (hereA,, 41 ; = 0 forall ).

- create four leaves; , 17, 13,1} adjacent to the head node The corresponding incident edges are all
of weightk.

We havenodcutwd(T.(A,b)) < by + k if and only if the systemxz = b has a 0,1-solution.

Proof. Assume that the systemiz = b has a0, 1-solution, we construct a layout of T (A, b) such that
modcutwd(L) < k+b1. As usual, let-* be a 0,1-solution of the system andlet= {j,1 < j < n | =}
0} andR = {j,1 < j <n |z} = 1}. Firstly we fix the ordering of the internal nodes of the tr,eﬁer
the head node we put nodes corresponding to jegs R, in breadth-first search order starting frgm
TG0 M gas oo Mg, T2,515 M2 505 o« s M2 5,5+« o5 Mgy Mom gy« + 5 Tom iy whereR = {jl,jQ, . 7.jp}'
The nodes of legs L are put beforé and ordered symmetrically w.rk. We eventually insert the leaf
nodes in the layout as follows. We insert two leaves incitiehtright afterh (and symmetrically two right
beforer). For each internal node; ; with j € R we insert one of its pendant leaves, $}:\y right before
the node, and the two other Iea\.{é§ and’} ; right after the node. (Thus for nodes ; with j € L we
insert one of its leaves right after the node and two of thigitt before the node).

It remains to show thahodcutwd (L) < k + b;. We say that an edge fsavyif its weight is at least
k. Intuitively, "heavy edges” are much heavier than the "tigbnes. Recall that an edge crosses a node
u if one of its endpoints appears striclty before, and the rostréctly afterw in the layout. The weight
crossingu is the sum of the weights of the edges crossing.et n; ; be a node situated aftérin the
layout. Amongn; ; and the three adjacent leaves, clearly the position withimamx crossing weight is
the Ieaflij appearing right aftem; ; (in particular the others are not crossed by heavy edges)le'Efﬁlij
is crossed by:

— a heavy edge incident to; ;, of weightk + b1 — b; + A; ; — Ai11 53

— for eachj’ € R s.t.n; ;; appears strictly before; ;, the edger; jn, 1 j of weightA; 1 j» < A, ;;

— for eachj” € R s.t.n; ; appears strictly aften; ;, the edgen;_, jn, ;» of weight 4; ;» (here
no,j» = h);

— the edgmiyjniﬂyj, of WeightAiHJ-, if i <m.

SincezjeR A; ; = b; it follows that the weight crossinﬁjj is at mostk + b;. Amongh and the incident
leaves appearing after it in the layout, the maximum cra@gssgiaight corresponds to the leaf right after
This weight isk (from the heavy edge) plus the s@jeR A1, ; = by (from the light edges incident th).
Again the crossing weight is at mast- b, . By symmetry, the same holds for nodes appearing béfane
the layout, hencemodcutwd (L) < k + b;.

Conversely, assume thaiodcutwd (T, (A, b)) < k + b;.

Claim. There is an optimal layouf such that, for each internal node, all corresponding adjdeaves
appear next to the node in the layout. (Some of these leavesipear before, and others after the internal
node, but the node and its pendant leaves appear conségirtitiee layout.)

Proof. (of the claim) First notice that, in a layout of modified cutithi at most: + b1, it is not possible
that a heavy edgecrosses an internal node Indeed in this situation, there would be three heavy edges —
e and two edges incident®w— such that the intersection of the intervals of the layoutexponding to the
three edges is of length at least one. Only two of these tlitgeseshare an endpoint, thus in the layout we
would have a position crossed by two heavy edges — a contii@uic

Let vl be a heavy edge, wheteis the internal node. It is still possible that this edge sessa leaf
I incident to some other node Then the only possibility is that, !, I, appear contiguously in this
order, or the reverse one, otherwise two heavy edges crassa position. Now we transform the layout
replacing the sequeneel’, I, v by v, 1,1’ u without increasing the cutwidth. a
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Claim. In the optimal layout_ satisfying the previous claim no edge crosses the head node.

Proof. (of the claim) By the previous claim, we may assume that the feaves incident t& are next
to it in the optimal layoutZ. Clearly, two of them should be to its left and the two othergg right. Let
L = {j | n1; appears befork} and letR = {j | ny ; appears aftek} in the layoutL. Observe that
all edges of typen; ;h, with j € R (resp.j € L) cross the leaf right after (resp. right before) This
leaf is also crossed by a heavy edge of WeilghThusteL A1y < by, alsozjeL A1; < by, so both

inequalities must by equalities. If some light edge crogsesalso crosses the leaf right after and right
beforeh, so the weight crossing these vertices excéedls; — a contradiction. a

We can no defind (resp.R) the set of indiceg, 1 < j < n, such that the nodes of typg ; appear
before (resp. after) in the optimal layout. We prove that, for ainyl <i < m, we havezjeR Ai; < by,
and by symmetry the same holds for For a fixed, let jo € R be such that; j, is the leftmost element
of the layout among alk; ;, 7 € R. Consider the leaf attached 4g ; which is crossed by a heavy edge
incident ton; ;,; this leaf appears right before or right afier;,. The leaf is also crossed by edges of type
ny_1,5,ny ; forall j € R\ jo (againng ; = h) and someé’ < i depending ory. Each of these edges is of
weight at leas#4; ;. Finally, the same leaf crossed either by the edgs ;,, n; j,, of weightA; ;, (if this
leaf is beforen; ;,) or by edgen; j,, nit+1,j,, Of weightA4, 1 4, (if the leaf is aftem; ;, andi < m). Using
the facts that4; ;, > A;1j,, the weight of the heavy edgefis+ by — b; + A, j, — Ai+1,0 and the total
weight crossing the leaf should not excéed b; we deduce thanGR A; ; < b;. Altogether, the system
Az = bhas a 0,1-solution™ by takingz} = 0 forall j € L, andz} = 1forall j € R. a

The treeT.(A,b) can be constructed in polynomial time w.r.t. the size of matt, which proves
Theorem 6.
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