
MASTER THESIS:

DEDUCTIVE VERIFICATION
OF

REACTIVE PROGRAMS

By Térence Clastres

supervised by Frédéric Dabrowski

LMV team, LIFO, Université d’Orléans

January - July 2024

ACKNOWLEDGMENTS

I thank F. Dabrowski for his guidance and availability throughout the internship,
and F. Loulergue for providing careful and detailed reviews that helped shape this
master thesis into its current form.
I am also grateful for the kindness of the two PhD students who shared their office
withme: F. Groult and J. Ischard. Their humility, advice and candid sharing of their
experiences solidified my determination to pursue a doctorate.

ii

CONTENTS

Contents iii

List of Figures v

Acronyms vi

1 Introduction 1

2 Preliminaries 4
2.1 Programs & Verification . 4
2.2 Reactive programming . 23

3 Hardy 34
3.1 Language . 39
3.2 Translation . 42
3.3 Correctness . 45
3.4 Implementation . 45

4 Discussion 47
4.1 Current shortcomings . 47
4.2 Alternative ideas . 49

5 Related Work 51
5.1 Verification of Parameterized Reactive Systems 51
5.2 Verification of Simulink models . 53
5.3 Verification of Lustre programs . 55
5.4 Verification of Ladder programs . 57
5.5 Summary of the approaches . 60

6 Conclusion and future work 62
6.1 Conclusion . 62
6.2 Future Work . 62

Appendices 65

iii

A Additional example 66

Bibliography 68

iv

LIST OF FIGURES

2.1 Why3 as a middle-end between languages and solvers 19
2.2 Schematic representation of a synchronous reactive program 24
2.3 2 examples of Büchi automata . 31

3.1 Hardy’s logo: a stylized two-state ω-automaton forming the ‘H’ of
Hardy in the middle . 34

3.2 Overview of Hardy’s translation mechanism 42
3.3 Construction of the synchronized product from the rely and guar-

antee automata . 43

5.1 A simulink model with ‘require’ blocks 54
5.2 A Ladder circuit diagram . 58

v

ACRONYMS

API Application Programming Interface 18, 46
AST Abstract Syntax Tree 46, 54, 55

CTL Computational Tree Logic 25, 30

DV Deductive Verification 2, 3, 10, 13, 18, 19, 60–62

FOL First Order Logic 11–13, 19, 27, 35, 40, 43, 46, 47, 52, 53, 56, 60

LGBA Labelled Generalized Büchi Automaton 32, 33
LTL Linear Temporal Logic 2, 3, 25–28, 30, 31, 35–37, 40, 43, 46, 60, 62, 63

PID Process Identifier 51–53
PLC Programmable Logic Controller 57, 58
pLTL past Linear Temporal Logic 56, 61

RP Reactive Programming 23

SMC Symbolic Model-Checking 47, 53, 61
SMT Satisfiability Modulo Theories 19, 23, 47, 53, 54, 57, 59, 60
SRP Synchronous Reactive Programming 23, 24

TL Temporal Logic 1, 2, 25, 26, 29

VC Verification Condition 2, 19, 21–23

WP Weakest Precondition 18

vi

1INTRODUCTION

Reactive programs [44] are software in close interaction with their environment.
They never stop executing as they must be ready to ‘react’ and process any change
happening. Pairedwith the hardware required to execute them, their environment
and possibly other reactive programs, they constitute a reactive system. Historically,
reactive programs modelled electronic circuits, where changes are propagated at
each tick of a clock. This led to synchronous reactive programming languages like
Esterel [8], Lustre [26] and Signal [22]. Nowadays, reactive programming finds
use in embedded systems (weather-station, smart-watch, video-game console, mi-
crowave oven…), some of which can be critical (plane autopilot, nuclear reactor
control, missile defence…)1. With critical systems, any anomaly can cause catas-
trophic human and environmental consequences. Thus, one must first specify as
precisely as possible what is the expected behaviour of the system (so for our case,
the program(s) involved). Then, it is checked whether the system behaves accord-
ingly.
To specify reactive programs, the formal framework of Temporal Logic (TL) [31]
is generally used. Indeed, as reactive programs execute indefinitely, one cannot
simply view the program as a ‘transformational machine’ [27] that, given an input,
produces an output in finite time. Instead, onemust be able to describe how the pro-
gram state evolves through time: Is it certain this event triggers that action? Does
the output stabilize at some point? Can the program deadlock? Rephrased as prop-
erties about the program, these questions (and any others onemight have in regard
to the program’s behaviour) all fall into two categories [32]: safety (e.g. “there
will never be a deadlock”) and liveness (e.g. “eventually, the output must stabi-
lize”,“after this event, this action must eventually happen”). Safety is therefore
about invariants that must always hold during execution while liveness is about
the certainty of a particular event occurring (albeit at an unknown time). The dif-

1While some of these systems are real-time, it is not a hard requirement.

1

Chapter 1. Introduction

ferent derivatives of TL, such as Linear Temporal Logic (LTL), allow for specifying
both types of property concisely [20].
To verify a program respects its specification, multiple approaches exist. Testing
might seem like a good solution at first glance: it’s a generic method that is rela-
tively easy and cheap to implement. In practice, one takes a program and repeat-
edly applies it to different inputs, checking if the corresponding outputs are what
is expected. More formally, for finite systems i.e. systems that terminate after a fi-
nite number of states, one can provide an initial state si and an expected final state
s f , make the system run until it stops and check if the last state reachedmatches s f .
Provided the system is deterministic, it is then guaranteed that any run beginning
in si ends in s f . However, nothing can be said for other untested initial states. To
totally characterize the system, one needs to repeat the process for all possible ini-
tial states. Thus, it is only achievable if the number of states is finite and relatively
small.
While not as straightforward, the same can be done for infinite systems by abstract-
ing them as finite ones using automata. Because those systems are infinite, there
is no ‘final state’ (rather, the notion of reaching a set of final states infinitely of-
ten), so all possible states reachable during execution must be checked. This is
what model-checking proposes to do in a somewhat efficient way, as long as the
domain is small, like with electronic circuits. In practice, the user provides a finite
state automaton representing the program and a specification written in TL. Then,
after converting the specification to an automaton as well, the model-checker will
make sure any path taken by the program’s automaton corresponds to a path ac-
cepted by the one of the specification. Hence, this technique can also be viewed as
a type of test over the different configurations the program can take while running.
However, while model-checking is vastly used and numerous optimizations at dif-
ferent stages have been proposed, when it comes to checking programs written in
an expressive and high-level language, the state space is simply too important for
this technique to produce results in a usable period of time. Moreover, because the
program is abstracted into a model, it must be refined to a concrete version where it
is shown the originalmodel behaviour is preserved. Hence, other techniques could
be more suitable.
Deductive Verification (DV) is a formal approach which directly links the pro-
gram’s code to its specification. Indeed, inference rules over the program syntax
‘propagate’ the specification across the code, producing proof obligations. These
proof obligations, also called Verification Condition (VC), must then be proven us-

2

Chapter 1. Introduction

ing any technique onewoulduse for regular theorems. The proofs can be computer-
checked and sometimes even automatically found.When all proofs are discharged,
the program functional correctness (the respect of its specification), holds. Because
we mathematically proved the program exhibits the right properties, there is no
need to do any tests (provided the specification is correct of course). Thus, strong
guarantees are provided about the program’s ‘good’ behaviour.
We introduceHardy, aDV tool for reactive (synchronous) programs. The language
accepted by Hardy consists of a setup procedure that will execute once at the start
and a main procedure looping indefinitely, akin to Arduino [35]. The main proce-
dure interacts with the environment through one or many inputs and outputs and
also has an internal state to keep information between each iteration. The specifica-
tion language uses LTL via one formula characterizing possible inputs and another
one for the possible outputs. So far, Hardy is able to prove safety properties. To ac-
complish this, it begins by building the synchronized product of 2 Büchi automata
generated from the aforementioned formulas. Then, it takes the resulting automa-
ton and the setup/loop procedures to make a set of Hoare triples. These triples are
finally sent toWhy3 [19], which can prove them semi-automatically. The principle
of this approach and its correctness have been formalized in the Coq proof assis-
tant [7]. As far as we know, transforming a reactive program into subprograms
whose correction using DV implies the correctness of the whole reactive program
has never been attempted.Hence, it constitutes the original content brought by this
research internship.

After the preliminaries about program verification and reactive programming are
set (chapter 2), the present document will carefully describe our tool (chapter 3).
Then, after discussing other attempted approaches and the current limitations of
Hardy (chapter 4), it will go on to talk about related work (chapter 5). Finally, it
will conclude by recalling the contributionsmade andwhat is planned in the future
(chapter 6). The appendix contains more details regarding the Coq formalization
(??).

3

2PRELIMINARIES

CONTENTS
2.1 PROGRAMS & VERIFICATION . 4

2.1.1 Formalization . 5
2.1.2 Deductive Verification . 10
2.1.3 Why3 : a tool for deductive verification 19

2.2 REACTIVE PROGRAMMING . 23
2.2.1 Synchronous Reactive Programming 23
2.2.2 A mathematical representation of infinity 24
2.2.3 Specification . 25
2.2.4 Verification with Model-Checking . 29
2.2.5 Construction . 32

2.1 PROGRAMS & VERIFICATION
Since the beginning of computer science and programming languages, there has
always been a mismatch between what the machine does and what the user (pro-
grammer) expects it to do. On the one hand, programming errors (syntax, seman-
tic…) can result in a non-executable program, an undefined behaviour (arithmetic
overflow, use of an uninitialized variable…) or a crash. On the other hand, even if
the program runs and has a determined behaviour, it can still shift from its specifi-
cation (expected output from a given input): this is a functional correctness issue.
Even though both aspects are fundamentally different, their consequences are in
all cases named ‘bug’.

4

Chapter 2. Preliminaries

While a rounding error, a non-working button or a slow execution speed might
not have a huge impact in everyday programs, they are a big concern for critical
systems where human life is at risk: avionics, nuclear plant, medical machines…
Unfortunately, at all levels, from what the user wants (specification) to its realiza-
tion (implementation) and then execution by a machine, bugs can happen. The
compiler, the operating system or even processors’ silicon executing the instruc-
tions are one of many examples of software and hardware entities that can have
bugs.
Assuming a correct specification, will we ever be capable of certifying from begin-
ning to end a program? Probably never in a general case. However, one can take
care of one link in the chain, assuming correctness before and after this link. This
is better than having no guarantee at all.

2.1.1 Formalization
To verify programs rigorously, their programming language associated must first
be formalized. In general, we give a definition of its syntax (how towrite programs
in it) and of its semantics (what is the meaning of these programs).
For illustrative purposes, we will work on a very simple imperative language that
only allows successive assignment of variables to values.

Syntax

At the most basic level, a language has an alphabet which contains letters (sym-
bols recognized by the language). A finite sequence of letters form a word and a
finite sequence of words form a sentence. The subset of all the sentences that can
be formed constitutes a language. The grammar is what decides if a sentence is part
of the language (well-formed).
In general, to give the grammar of a language, the Backus-Naur form [5] (BNF) or
one of its variants is used:

c: Command ::= x := e assignment
| c ; c sequence

e: Expression ::= x variable ∈ Vars
| v value ∈ Vals

5

Chapter 2. Preliminaries

This (context-free) grammar contains two major syntactic classes: commands and
expressions. We also add the singleton class of variables Vars and values Vals for
convenience. A command can be an assignment or a sequence of commands (no-
tice the recursion enabling the construction of arbitrarily long words). An expres-
sion is either a variable or a value (for our purposes, we do not have to precisely
define what a value is). The grammar generates a very simple language, but suffi-
cient for our example. A more involved one will be provided later.
Here is a sentence generated from the grammar:

x1 := v1 ; x2 := v2 ; x3 := x1

We can represent one way to construct it with a derivation tree:
sequence

assignment

variable

x1

:= expression

value

v1

; sequence

assignement

variable

x2

:= expression

value

v2

; assignment

variable

x3

:= expression

variable

x1

By reading the leaves from left to right, we get back the original sentence.
Note this grammar is ambiguous because there exists more than one possible
derivation tree for the same sentence. An easy way to realize that is by adding
parenthesis:

(x1 := v1 ; x2 := v2) ; x3 := x1

x1 := v1 ; (x2 := v2; x3 := x1)
The tree represents the second way of parsing the sentence.
This is not ideal because it means there are different valid ways to parse the
same sentence, which could produce different semantics. To solve this issue, one
can either add precedence and associativity rules (explicitly tell what derivation to

6

Chapter 2. Preliminaries

choose) or stratify the grammar [42]. We can for example make the sequence right-
associative so that its derivation tree is always the one presented here.
An alternative way of presenting the grammar is by using sets and inference rules:

x ∈ Vars e ∈ Expression
x := e ∈ Command

c1, c2 ∈ Command
c1 ; c2 ∈ Command

e ∈ Vars ∪ Vals
e ∈ Expression

An inference rule
A B

C can be read ‘from A and B we can infer C’. A, B and C
are judgements. Judgements can be premisses or conclusions based on whether they
are below or above the bar, respectively. An inference rule without any premise is
an axiom and is always applicable as it does not depend on anything. To illustrate,
consider the left rule. It states that if we have a variable x and an expression e, then,
the construct x := e is a command. We then define the language to be the smallest
set closed by the rules, i.e. all objects in the sets (here, the words of the language)
must have been constructed by repeatedly applying the rules a finite number of
time.

Semantics

To characterize a program’s semantics, we generally look at how its used memory
evolves after each instruction, which we call its environment. The environment can
be represented by a set of tuples 〈id, value〉 named binders associating variables
manipulated by the program to their respective values. A specification is then a
set of predicates over this environment.
There are 3 main ways of formalizing programming language semantics:

• Operational Semantics [41] focuses on the different states a program can be in
by associating a valid execution to a series of valid inference rule. This will
be the approach we take for this example.

• Axiomatic Semantics [28] ignores how the states of a valid program look but
rather describes what are the observable effects of its computations.

• Denotational Semantics [46] expresses the program as an abstract model using
mathematical objects, like functions.

Operational semantics is given either by big-step (also called natural) semantics
or small-step (also called structural) semantics. Big-step semantics evaluates a pro-
gram term to a valuewhile small-step semantics reduces it to another term. Big-step

7

Chapter 2. Preliminaries

semantics provides a concise and intuitive way to understand a programming lan-
guage, but it cannot be used to prove properties of diverging (non-terminating)
programs, or to prove a program doesn’t raise an exception. Indeed, a successfully
applied big-step semantics always reduces to a value. On the other hand, small-
step semantics is more precise with a greater number of rules. However, these
rules may not represent how a compiler for the target language behaves. It is also
harder to have an overview of the language semantics with this level of detail.
If one were to give both the big-step and small-step semantics of a programming
language, it would be reasonable to show their equivalence. This would come
down to proving that one ‘big’ step is a non-empty sequence of ‘small’ steps and,
conversely, if a non-empty sequence of ‘small’ steps produces a value, it must be
given by one ‘big’ step.
Let’s give a small-step semantics for this simple language by first introducing some
notations:

• ω ∈ Ω is an abstract memory environment. It can be read and written to
using set : Ω × Vars × Vals → Ω and get : Ω × Vars → Vals respectively.

• ⇒ ⊆ Ω × Expression × Val represents a relation between an environment, an
expression and a value. It describes how an expression evaluates to a value
given an environment.

• ⇝⊆ Ω×Command×Ω represents a relation between two environments and
a statement. It describes how a statement updates a given environment.

Both arrow notations are infix and a comma separates the first two elements, e.g.
Ω, v ⇒ v.
We give two different relations because expressions are distinguished from state-
ments, but we could have generalized statement as expressions that always return
the same value (its type has a single inhabitant). This value is generally called unit
and noted (). We could then have a unique relation of type Ω×Expression×Vals×
Ω.
The memory functions can be defined in terms of equations [4]:

get(set(ω, x, v), x) = v set (set(ω, x, v), x, v′) = set(ω, x, v′)

x2 6= x1

get (set (ω, x1, v) , x2) = get (ω, x2)

8

Chapter 2. Preliminaries

Intuitively:
• Getting the value of a variable whose value you just set is the same as directly

writing that value.
• Setting twice the same variable is the same as setting once the variable to the

last value.
• If the last variable set is different from the variable we want to get, we can

ignore it and look at ω before the set.
Let’s now proceed with the small-step semantics:

Expressions semantics

ω, v ⇒ v (2.1)

ω, x ⇒ get(ω, x) (2.2)

Statements semantics

ω, e ⇒ v
ω, x := e⇝ set(ω, x, v) (2.3)

ω, c1 ⇝ ω′ ω′, c2 ⇝ ω′′

ω, c1 ; c2 ⇝ ω′′ (2.4)
Intuitively:

• If an expression is a value, then it directly reduces to this value (2.1).
• If an expression is a variable, we get the corresponding value in the memory

(2.2).
• If a statement is an assignment of an expression to a variable, and the expres-

sion reduces to a value, we set the variable to this value (2.3).
• If a statement is a sequence, we can split it into two statements as long as

the first statement’s last environment is the first environment of the second
statement (2.4).

Let’s apply these rules to x1 := v ; x2 := x1:

ω, v ⇒ v
ω, x1 := v⇝ set(ω, x1, v)

set(ω, x1, v), x1 ⇒ get(set(ω, x1, v), x1)

set(ω, x1, v), x2 := x1 ⇝ set (set(ω, x1, v), x2; v)
ω, x1 := v; x2 := x1 ⇝ set (set(ω, x1, v), x2; v)

This is a proof tree, a notation created by Gentzen for his natural deduction proof
system [23]. A well-formed proof tree has the proposition we want to prove at its

9

Chapter 2. Preliminaries

root and the leaves must be axioms. Valid inference rules must separate the root
from the leaves.
This proof tree shows that beginning with an environment ω, executing the in-
structions results in an updated environment where x1 and x2 are both bound to
v.

2.1.2 Deductive Verification
DV is a formal method used to verify that a program behaves according to its spec-
ification. A set of inference rules applied deductively are used to produce math-
ematical statements from the code. These statements, also called lemmas or theo-
remsmust be proven. Proving all the lemmas implies the program is correct. Some-
times, this can be done automatically by a Theorem Prover or semi-automatically
with a proof assistant where the user ‘assists’ the computer towards finding a
proof.

Specification Language

The specification language is the language used to describe the behaviour of a pro-
gram. A good starting point is propositional logic.

Propositional Logic

p: Prop ::= v propositional variables
| > true
| p ∨ p disjunction
| ¬p negation

v: Pvar ::= e

Propositional logic, whose grammar is given above, is about sentences that can be
either true or false and ways to combine them. Here, a sentence is called a propo-
sition. The simplest proposition is the one that is always true, noted >. Then, we
have propositional variables: they can represent anything as long as we have a way
to tell if they are either true or false. For our program-checking use case, they are
the expressions of our program’s grammar. We also have 2 operators called logical
connectives: the unary operator ¬ is the negation. It makes a true proposition false
and a false one true. The binary operator ∨ is the disjunction. At least one of its
two operands must be true. These two operators are sufficient to be functionally

10

Chapter 2. Preliminaries

complete: any other operator with any number of operands can be described us-
ing them. For instance, the false proposition is ¬>, noted ⊥ and the conjunction,
requiring both of its operands to be true, is ¬(p1 ∨ p2).
Similarly to the programming language semantics, the ones of the specification lan-
guage must also be given. Ultimately, because this language is about propositions
being true or false, it will be easier to give its denotational semantics by a function
I called the interpretation that maps propositions to true or f alse.

I(P) =


true if P = >
V(v) if P = v
not p if P = ¬p
I(p1) or I(p2) if P = p1 ∨ p2

V(v) : Pvar → {true, false} is the valuation function that associates a propositional
variable to its truth value. We could for instance define V(v) = true ↔ ‘the last
value of v in the program is 3’. Sometimes (in most cases), the valuation function
is not given or is only partial: certain variables do not have a value. The goal is
then to find which truth value to assign to which variable in order to make the
proposition hold (have its interpretation be true). If such combination exists, the
proposition is satisfiable, otherwise it is unsatisfiable. If any combination make the
proposition hold, the proposition is valid. The satisfiability problem, abbreviated
SAT, is a fundamental decision problem. A nice property of propositional logic is
its decidability: there exists an algorithm that can decide in finite time whether a
proposition is satisfiable. While decidability is about being able to give a definitive
yes or no answer to a question, it can also be used here to get the variable truth
values in case of a positive answer. However, the algorithms found so far are not
efficient: they do not scalewell aswe increase the number of variables. It is believed
no efficient algorithm will ever be found (see the P = NP problem)
While propositional logic can be sufficient to specify simple programs, it lacks ex-
pressiveness for more complex ones. The next step is to add parameterized propo-
sitions we call predicates: this is predicate logic, also called First Order Logic (FOL).

First Order Logic

FOL is an extension of propositional logic wherewe can have 0,1, ormore ‘holes’ in
propositions. These holes can be filled with values of a certain non-empty domain

11

Chapter 2. Preliminaries

D. We call such propositions predicates. The arity of a predicate is the number of
arguments (holes) it takes. A predicate defines a relation between those arguments
and ismore expressive than a function: while a function can be viewed as a relation
between arguments labelled as inputs and those labelled as outputs, a function
requires the same inputs to produce the same outputs.
Syntactically, predicates (whose set is noted Π) are of the form P(a, b, c, . . .), a b c . . . ∈
D and are given an interpretation by the function I : D∗ 7→ {⊥,>}. So, propo-
sitions are a special case of predicate that is of 0-arity, so taking no argument.
Moreover, those arguments doesn’t need to be concrete elements of D, they can
be existentially (∃) and universally (∀) quantified upon, i.e., we can now say ‘all
variables of the program must not be null’ or ‘there exists n ≥ 2 such that it is the
divisor of v’. However, the increased expressiveness of FOL makes it undecidable
in general.
Once a logical framework for specification has been chosen, onemust enrich it with
theories, that is (carefully chosen) rules and axiom made to capture the different
mathematical objects used to talk about programs: numbers, lists, etc.
For example, we can add a1 notion of equality to FOL, called FOL with equality: We
give a (infix) binary operator ≡ which represents the equivalence relation eq ⊆
D ×D. It is described by the following axioms:

eq x x eq x y ↔ eq y x
eq x y ∧ eq y z

eq x z

∧n
i=0 eq xi yi

eq P(x0, . . . , xn) P(y0, . . . , yn)

∧n
i=0 eq xi yi

eq f (x0, . . . , xn) f (y0, . . . , yn)

The first three axioms (reflexivity, symmetry, transitivity in order) are required
for ≡ to be an equivalence relation. The last two gives use a notion of congruence
over predicates (functions): the valuations of two predicates (functions) are equal
if and only if they have the same symbols and their arguments taken in order are
equal.

1there exists many ways to define equality

12

Chapter 2. Preliminaries

Hoare’s Logic

The most famous and widely used DV framework is Hoare’s Logic [29], which was
first applied to imperative programs (instruction order is accounted for) with FOL
as the specification language. The program is denoted as a triple {P} C {Q}where:

• C is the program’s code
• P is a precondition, i.e., the specification the program must abide to before

executing C instructions
• Q is the postcondition, i.e., the specification the program must abide to after

executing C instructions.
Both the precondition and postcondition are parameterized by the program ab-
stract memory environment to be able to mention its variables, the main way to
describe its behaviour. For that, we can add to whatever underlying logic we use
the get memory function we defined earlier (note that this is made implicit in
practice as long as program variables can be differentiated from logic ones).
Note that the postcondition represents an over-approximation of the program’s
final state: every final state produced by the program must make Q hold, but not
all states that make Q hold have to be produced by the program.

Let’s understand the method by applying it to an example program written in the
imperative language defined earlier.
Consider a program that swaps the value of two variables a and b. Let va and vb be
the possible values a and b can take, respectively. An implementation can be the
following sequence of instructions:

c := a;
a := b;
b := c

Here, c is used to remember the value of a before it is assigned b. Then, b is assigned
the old value of a via c.
We want to make sure the program actually does what it is supposed to do: swap
the values of a and b. The first step is to write the specification of our program. Fig-
uring out what language to write the specification with is crucial as it determines

13

Chapter 2. Preliminaries

what properties about the program can be expressed and how. We choose to use
propositional logic in our example for simplicity.
Before the first instruction, we know a contains va and b contains vb. So, our pre-
condition P is a = va ∧ b = vb with a = va (b = vb) the proposition that is true
if and only if the variable a (b) is bound to the value va (vb) in the program mem-
ory. We can formally express this by defining the interpretation function schema
I(x = v) ↔ get(ω, x) = v.
After the last instruction, the values must be swapped, so our postcondition Q is
a = vb ∧ b = va.
Consequently, we need to verify the following triple:

{a = va ∧ b = vb}
c := a;
a := b;
b := c
{a = vb ∧ b = va}

Hoare’s logic then proposes a deductive system, so composed of axioms and rules
to be applied for each syntactic constructs of the language used in C.
Here are 2 that are enough to verify the previous example:

{P[e/x]} x := e {P}
assign

{P} c1 {Q} {Q} c2 {R}
{P} c1; c2 {R}

seq

The assign rule is a schema [13]: e and x are metavariables corresponding to the
grammar defined earlier (there are as many assign rules as the Cartesian product
of the sets containing the inhabitants of x and e).
This rule reflects the fact that if a predicate P holds after x is assigned e, substituting
(rewriting) every occurrence of e with x within P must also make it hold before
the assignment: {[3 + 2 = 5][3/a]} a := 3 {a + 2 = 5}.
The seq rule is also a schema. Intuitively, if c1 and c2 are put into a sequence, c1’s
postcondition is precisely c2’s precondition.
To make use of them in our example, we will apply the rules in succession starting
from the postcondition and ‘propagating’ it all the way to the precondition using

14

Chapter 2. Preliminaries

the seq rule and otherswhen applicable. The specification holds if the last predicate
we get is a consequence of the precondition.

15

Chapter 2. Preliminaries

{a = va ∧ b = vb}
c := a;
a := b;
b := c
{a = vb ∧ b = va}

{a = va ∧ b = vb}
c := a;
a := b;
{a = vb ∧ c = va} (1)
b := c
{a = vb ∧ b = va}

{a = va ∧ b = vb}
c := a;
{b = vb ∧ c = va} (2)
a := b;
{a = vb ∧ c = va} (1)
b := c
{a = vb ∧ b = va}

{a = va ∧ b = vb}
{b = vb ∧ a = va} (3)
c := a;
{b = vb ∧ c = va} (2)
a := b;
{a = vb ∧ c = va} (1)
b := c
{a = vb ∧ b = va}

So, we end up with (3) which, after a simple permutation (allowed because ∧ is
a symmetric binary relation) gives us exactly our precondition: the program is
correct.
Of course, things get more complicated when the language is extended, for exam-
ple with conditionals (if…else…) and loops (while, for). In the case of loops, one
must find an invariant, that is, a property that holds at each iteration. Moreover,
finding an invariant is not enough, as it only guarantees partial correctness. In order
to get total correctness, the loop must also terminate. Typically, we show there ex-
ists a natural number that strictly decreases at each iteration, called a variant. As<
over N is a well-founded order (the more general notion behind the variant), i.e.,
∃n ∈ N, ∀n′ ∈ N,¬(n′ < n) holds for n = 0, it follows the loop terminates after
the last iteration for which n = 0. Hence, total correctness is, in the case of imper-
ative programs, about termination. Later, we will see how termination is part of
liveness properties.

16

Chapter 2. Preliminaries

Correctness and Completeness

One can wonder whether Hoare’s logic is sound and is indeed able to prove pro-
gram correctness.
To do so, we must relate the language operational semantics to Hoare’s axiomatic
semantics:

Definition 2.1.1 A triple {P} C {Q} is valid if applying the language operational seman-
tics to C with an initial state ω satisfying P produces a new state ω′ satisfying Q.

Definition 2.1.2 There is a proof of {P} C {Q} if we can deduce Q from P using Hoare’s
axiomatic semantics on C.

Theorem 2.1.3 (Correctness) If we have a proof of {P} C {Q}, then {P} C {Q} is a valid
triple

Proof. By induction on the proof of {P} C {Q}.
♢ Base Case: {P[e/x]} x := e {P} must be valid.

According to theorem 2.1.1, we must show

P(ω)[e/x] ∧ (ω, x := e⇝ set(ω, x, v)) → P(set(ω, x, v)).

Using the expression semantics, it is easy to see P(ω)[e/x] and
P(set(ω, x, v)) are equivalent.

♢ Induction Step: {P} c1; c2 {R} must be valid when {P} c1 {Q} ∧ {Q} c2 {R}
are valid triples. That is,

P(ω) ∧ (ω, c1 ⇝ ω′) ∧ (ω′, c2 ⇝ ω′′) → R(ω′′)

Applying our first induction hypothesis to P(ω) and ω, c1 ⇝ ω′, we get
Q(ω′). Finally, by applying our second induction hypothesis to Q(ω′) and
ω′, c2 ⇝ ω′′ we get R(ω′′).

Theorem 2.1.4 (Completeness) If {P} C {Q} is a valid triple, then we have a proof of {P}
C {Q}.

17

Chapter 2. Preliminaries

We cannot prove completeness without introducing a new Hoare rule:

∀ω.P(ω) → P′(ω) {P′} c {Q′} ∀ω.Q′(ω) → Q(ω)

{P} c {Q}
implication

This rule states that a precondition can be strengthened or a postcondition can be
weakened. Intuitively, it makes sense that if a statement holds assuming a property,
it must also hold if we assume a ‘stronger’, more general one. Similarly, If we show
a certain property holds, then any ‘weak’, particular derived property must hold
too. We of course need to update our correctness proof to take the new rule into
account, but we skip it here (the proof is trivial using the induction hypothesis).
This new rule is needed because proving completeness requires showing that a
valid triple {P} c {Q} implies the existence of a precondition P′ that is just strong
enough to be a proof of Q, and that is implied by P. This special precondition is
called the Weakest Precondition (WP). In other words, any valid triple {P} c {Q}
means P can’t be more precise (weaker) than P′ if it allows for a proof of Q. Then,
by using our new rule, we show that because P is stronger than P′ it is also a proof
of Q.
This gives a rough idea on how to prove the completeness of the system. However,
it must be noted it depends on the completeness of the specification language as
well: we assume we have a way to know if an assertion is valid. That is why we in
fact showed the relative completeness of Hoare’s logic.

Mechanization of verification

Formore elaborate programswith richer languages, applying DV by hand is as fas-
tidious as it is error-prone. Fortunately, tools have been developed to automate as
much as possible this verification: Dafny [33], Viper [40] andWhy3 [19] constitute
a few examples.
While our approach is general enough that it can make use of any such tool, we
chose to use the one we had experience with: Why3. One nice aspect of the tool
is that it provides an OCaml Application Programming Interface (API) to build
untyped programs, allowing us to delegate the type-checking to the tool directly.
This sped-up the development of our prototype.
We now proceed to explain the main aspects of Why3.

18

Chapter 2. Preliminaries

2.1.3 Why3 : a tool for deductive verification
Why3 is developed at Inria Saclay-Île-de-France and the Centre National de la
Recherche Scientifique. It provides both a command line and graphic interface.
Why3 enables DV of programs by providing a programming language extended to
support specification called ‘WhyML’. From a WhyML program containing some
specifications, Verification Conditions (VCs), which are proof obligations, are pro-
duced. These VCs are presented to the user as a set of assumptions and unique
goal to prove. They are sent to external theorem provers whose role is to come up
with a proof for each of them. In general, one first tries to use Satisfiability Modulo
Theories (SMT) solvers because they are mostly automatic. A theory here is a set
of FOL formulas supposed true, so considered as axioms of the system. Solvers
then check if given formula is satisfied under those axioms, so modulo the theory.
Why3 contains a base library of FOL theories (algebra, numbers, sets…) that can be
extended if needed. It is of course critical that the theory be consistent: it should not
be possible to deduce false from the theory. Otherwise, anything could be proven
by the famous ‘ex falso quodlibet’, i.e. the explosion principle. If SMT solvers can’t
immediately solve the VCs, one can guide Why3 for each VCs by applying a set
of predefined transformations that preserve soundness. If this is still not enough,
one can manually write a machine-checked proof with a proof assistant like Coq
or Isabelle, both of which Why3 supports. Finally, when all VCs are discharged, the
program is correct.

Figure 2.1 – Why3 as a middle-end between languages and solvers

Alt-Ergo

Why3 Logic

Rust

WhyML

Ada

Z3 Coq · · ·

C

Solvers

Internal Language

External Languages

Input Language + Specification

OCamlCode Extraction

· · ·

Why3 can be seen as a middle-end between languages and solvers: indeed, there
exists language frontends that make it possible to write programs in a subset of
well-known languages like Creusot [16] for Rust, SPARK [9] for Ada or Frama-C’s

19

Chapter 2. Preliminaries

WP plugin [6] for C (Figure 2.1). These frontends generally translate the original
code into WhyML such that the semantics are preserved. Then, when the Why3
program is correct, the program written in the original language will be too. An-
other approach is to directly write the program in WhyML and then use Why3’s
extraction mechanism to have a correct-by-construction runnable OCaml code.

Example

Consider the following WhyML declaration:

Listing 2.1 – swap in WhyML as instructions
declaration

use ref.Ref

let swap =
let v_a = any 't in
let v_b = any 't in
let ref a = v_a in
let ref b = v_b in

assert { a = v_a && b = v_b };
let ref c = any 't in
c := a;
a := b;
b := c;
assert { a = v_b && b = v_a };

Listing 2.1 shows what the variable swap example looks like when written in
WhyML. To make it the most similar to our pen-and-paper version, we declared
v_a and v_b to be any value of a certain type (denoted by 't) we know nothing
about (it is irrelevant for this program’s purpose). Due to the imperative nature of
our example, the ref.Ref module is used to simulate memory access. a and b are
then declared as references to v_a and v_b, respectively, with the ref keyword. We
also have to declare c similarly before using it. All the declarations and instructions
are contained within the top-level declaration swap.
Here, the first assert corresponds to the precondition and the last one is the post-
condition (a precondition is considered as the first assertion of a series of instruc-
tions and a postcondition as the last one).

20

Chapter 2. Preliminaries

From this program, the following VC is generated (Listing 2.2):

Listing 2.2 – VC generated
------------- Goal ----------------
goal swap'vc :

forall v_a:'t, v_b:'t, v_c:'t.
c = v_a → (forall a:'t.

a = v_b → (forall b:'t.
b = c →
a = v_b && b = v_a))

We can observe how program variables are quantified universally and instruction
sequencing becomes imbrication of implications.
This goal is then simplified by instantiating universals and bringing hypothesis
from implications from the goal to the context (Listing 2.3):

Listing 2.3 – Goal simplified
------------- Local Context --------------
type t
constant v_a : t Ensures : c = v_a
constant v_b : t Ensures1 : a = v_b
constant a : t Ensures2 : b = c
constant b : t
constant c : t

----------------- Goal -------------------

goal swap'vc : a = v_b && b = v_a

Instead of specifying the instructions for a hardcoded value of a and b, we can
abstract those values by putting the instructions inside a function, which is our
swap let-declaration enriched with our variables as parameters:

21

Chapter 2. Preliminaries

Listing 2.4 – swap in WhyML as a function
declaration

use ref.Ref

let swap (&a:ref 't) (&b:ref 't) =
ensures { a = old b && b = old a }
let ref c = any 't in
c := a;
a := b;
b := c

With this approach (Listing 2.4), there is now a proper notion of precondition
(requires keyword), which is what the function assumes to be correct, and a
proper notion of postcondition (ensures keyword), which is what must happen
after its execution. Together, they form the function contract.
Additionally, the old keyword used in the postcondition enables the retrieval of
variable values at the beginning of the function let declaration. This way, it is not
needed to explicitly mention the variable values and we do not require any partic-
ular precondition. Why3 also allows for a more general approach where we can
talk about any place in the code by adding a label right before it. We can now apply
this label to the variables to have their values at this point.
The generated VC is slightly different:

Listing 2.5 – VC generated
------------- Goal ----------------
goal swap'vc :

forall a:'t, b:'t, c:'t.
c = a → (forall a1:'t.
a1 = b → (forall b1:'t.

b1 = c →
a1 = b && b1 = a))

Here, when a variable is assigned a value, its logic equivalent creates a new vari-
able, concatenating its previous name with an integer. This allows us to keep the
history of values a variable had and so, the initial value is bound to the integer-less
name (e.g. old a is simply a and the last value of a is a1).

22

Chapter 2. Preliminaries

In both cases, it is then attempted to automatically prove these VCswith automatic
SMT solvers like Alt-Ergo CVC3, or Z3. Finally, the user is notified whether it was
successful or not. Here,we have a single VC associatedwith our program, but there
are generally many. When this is the case, Why3 makes them independent of each
other by assuming all prior specifications true and adding these assumptions to
the next VC. This provides modularity and facilitates local reasoning. Our simple
program is of course proven easily.
For complex programs, some additional information aboutwhat the programdoes
needs to be gathered. This is the role of ghost code: it is regular program code that
can only used by assertions. This code must be transparent to the program: it must
not change its behaviour. Thus, ghost code can only read program variables and
can’t change the program’s control-flow. Conversely, the program cannotmake use
of the ghost code in any way. During extraction, the ghost code is removed, having
no effect to the program’s semantics.

2.2 REACTIVE PROGRAMMING
At their heart, reactive systems are about constant reaction to their environment.
Those systems run permanently, as opposed to transformational systems that take
some inputs and stop executing after producing some outputs. Operating systems,
graphical user interfaces, embedded systems are all examples of reactive systems.
Reactive Programming (RP) tries to facilitate the development of programs for
reactive systems via adequate language abstractions. For example, signals are val-
ues that can be present (active) or not (inactive). The system can then perform ac-
tions conditionned by their presence while also having the ability to create (emit)
one. Concepts brought by RP have been implemented in different languages like
JavaScript, Scala, or even Java and Haskell.

2.2.1 Synchronous Reactive Programming
Synchronous Reactive Programming (SRP) is a particular case of RP. Programs
written under this paradigm can be seen as a black box M that repeatedly takes an
input I and produces an output O. To have a program that is interesting, M also
has an internal state X that persists between each new input (see Figure 2.2). A
program denotational semantics can be a function M : I × X 7→ O × X that gets
repeatedly called, where the state of the last calls feeds the state of the new one

23

Chapter 2. Preliminaries

together with the new input. To achieve this, the program takes the inputs from
the stream one by one and associate each with an output that is obtained after a
certain number of instructions. The time interval that goes from the reception of
an input to the production of an output is called an instant. An instant cannot last
indefinitely, so it must be proven the instructions executed terminate.

I O

X

M

Time
I0 O0 I1 O1

black box

I2 O2

Figure 2.2 – Schematic representation of a synchronous reactive program

SRP was initially used to model electronic circuits with languages like Esterel [8],
Lustre [26] and Signal [22].

2.2.2 A mathematical representation of infinity
Because of the infinite nature of reactive programs, wemust use specializedmathe-
matical tools to describe them.Notably, we saw that they are fed an infinite number
of inputs and produce an infinite number of outputs. While a finite number of con-
secutive elements are called a list, an infinite number of consecutive elements are
called a stream.
Let’s begin by formally defining a list. A list over a set A is the smallest set closed
forward by the following rules:

nil ∈ List
l ∈ List a ∈ A

a · l ∈ List

The set is closed forward because the rules are read from premises to conclusion,
which means we can construct the List set: we define the function F : List 7→ List
by F (∅) = nil and F (L) =

∪
l∈L{a · l|a ∈ A} then, List is given by the following:

List = F (∅) ∪ F (F (∅)) ∪ F (F (F (∅))) ∪ . . .

The fact List is the smallest closed set means it is the least fixed point of F , that is,
the smallest x for which F (x) = x Because we can define a partial order relation

24

Chapter 2. Preliminaries

≼ for List, forming a complete lattice, and because F is monotonic function, the
Knaster–Tarski theorem tells us this fixed-point indeed exists.
To define a stream, we can take the same rules we used to define a list but define it
as the largest set closed backward. We say closed backward because we read the rules
from conclusion to premises instead of the other way around. Thus, instead of
constructing values of that set, we start with a set already made up of potentially
infinite objects. We then apply to its elements the given rules backward. Hence,
when we take an element (stream) of the set, it must either be nil or it can be
decomposed into one element and another stream.

2.2.3 Specification
Because reactive programs have time-varying behaviours, it makes sense to specify
themusing TL, that is, any logic that allows reasoning about time. It is a refinement
of modal logic: while in modal logic, there exists only unary time operators which
express possibility (noted �P, P may or may not happen in the future) and neces-
sity (noted □P, P must happen in the future), TL is richer. Indeed, one is able to
reason more precisely about time as we’ll soon see.
There are two ways to view time, which represents two distinct logics:

• Time is linear, i.e. there was a past, there is a present and there will be one
future. The passing of time is deterministic.

• Time is branching, i.e. there was a past, there is a present but there can be
multiple possible futures. The passing of time is non-deterministic, unpre-
dictable.

In linear-time logic, there generally is the next unary operator, noted X ϕ, and the
until binary operator noted ϕ U ψ. X ϕ means the formula must hold at the next
instant (time is discretized in finite atomic moments) and ϕ U ψ means every next
state must satisfy ϕ until a state satisfying ψ comes up (and it must come up at
some point).
The branching-time logic re-uses these operators, but they must be preceded by
an existential or universal quantification other the possible futures. An example of
branching-time logic is the Computational Tree Logic (CTL).
Of course, it is possible to combine the two views in one and have properties use
both at the same time. CTL* is one such system which is a strict superset of both
CTL and LTL.

25

Chapter 2. Preliminaries

For our purposes, we focus on LTL.

Linear Temporal Logic

LTL is the linear-time TL that is the most commonly used for specification of sys-
tems requiring both safety and liveness properties. An LTL formula describes in-
finite words in a finite manner. Applied to program specification, it describes the
trace of execution of a program. Indeed, a reactive program’s trace can be seen as
an infinitewordwhere each letter represents a particular state and two consecutive
letters mark a transition from one state to the other.

Syntax

ϕ: LTL ::= P atomic proposition
| ¬ϕ negation
| ϕ ∨ ϕ disjunction
| X ϕ next
| ϕ Uϕ until

LTL is sometimes also called Propositional Temporal Logic because when applied to
program specification, its base element is a proposition.
For convenience, additional temporal operators are introduced:

ϕRψ = ¬(¬ϕ U ¬ψ) (release)
G ϕ = f alse R ϕ (globally)
F ϕ = true U ϕ (eventually)

26

Chapter 2. Preliminaries

Semantics

As time is considered linear and discrete, LTL describes infinite words. More pre-
cisely, it is a subset of ω − regular expressions. They are an extension regular-
expressions to infinite words. For example, a∗ is a word only made up of a finite
number of a while aω is a word composed of an infinite number of a. Similarly
to their finite counterparts, ω − regular expressions are decidable, so LTL is also
decidable.
LTL is a future-oriented logic: it can talk either about the present or the future, but
not the past2. Given an alphabet Σ and an infinite word σ over this alphabet (each
letter is a subset of Σ, so can be viewed as a unary predicate), an interpretation of
LTL using FOL is provided:

σ |= P ⇐⇒ P ∈ σ[0]
σ |= ¬ϕ ⇐⇒ σ 6|= ϕ
σ |= ϕ1 ∨ ϕ2 ⇐⇒ σ |= ϕ1 ∨ σ |= ϕ2
σ |= X ϕ ⇐⇒ σ[1..] |= ϕ
σ |= ϕ1Uϕ2 ⇐⇒ ∃j : j ≥ 0. σ[j..] |= ϕ2 ∧ ∀i : 0 ≤ i < j. σ[..i] |= ϕ1

Intuitively:
• if a formula consists in just a proposition, this proposition must hold for the

first letter σ.
• if a formula is the negation of a subformula, it is the negation of its truth

value
• if a formula is a disjunction of two formulas, it is the disjunction of their truth

value.
• if a formula is the neX t of a subformula, it must hold starting at the word

second letter.
• if a formula is the Until of two subformulas, the first subformula is required

to hold until the second one holds. Note that the second subformula must be
true at some point.

2there exists a past-oriented version called PLTL that can be exponentiallymore succinct towrite,
but is equivalent to LTL [38]

27

Chapter 2. Preliminaries

Verification

Expressivity

There is an equivalence between LTL, star-free omega regular languages and the
First-Order Theory of Linear Orders, a result known as Kamp’s theorem [30]. Hence,
LTLdoes not capture the full expressivity of omega regular languages. For instance,
a property such as ‘P holds for every even instants’ cannot be stated.
Many extensions have been attempted to increase LTL’s expressiveness ([2, 15,
34]), however, it remains to be seen how those attempts can be made to work
within our framework.

Safety & Liveness

Program Temporal properties are generally classified as either safety or liveness
properties. However, [37] proposes to categorize them hierarchically and study
them under different views (linguistic, topological, automata theory, logical). For
example, if we consider all the possible states a program can be in as an alpha-
bet, a run of a program consists in a succession of states, so a word. When we
give a program property, we give an expectation of the program’s behaviour. If
the program’s entire behaviour can be captured using its execution trace, a prop-
erty distinguishes between valid and invalid traces. So, a property can be seen as a
language: it is the language of traces that make the property hold. If the program
eventually halts, its execution trace is a finite word. Properties on such traces, so a
language over finite words, is called a finitary property. If the program never halts,
it produces an infinite trace, making up an infinite word. Properties characterizing
such words are called infinitary properties. By introducing a set of operators, we
can create infinitary properties from finitary ones. These operators rely on describ-
ing infinitary words in terms of their (finite) prefixes. 4 operators are provided,
each corresponding to a class of infinitary properties:

• Safety properties have all their prefixes recognized by a certain finite prop-
erty

• Guarantees properties have at least one prefix recognized by a certain finite
property

• Recurrence properties must have infinitely many prefixes recognized by a
certain finite property

28

Chapter 2. Preliminaries

• Persistence properties have a fixed number of prefixes not belonging to a
finite property

Intuitively, safety properties hold at each step of the execution, guarantees prop-
erties hold at least once in the execution, recurrence properties don’t hold all the
time, but infinitely often and persistence properties hold all the time, except in a
finite number of states.
To justify they are indeed classes, they are proved to be closed by union and in-
tersection. They additionally form a hierarchy because Recurrence and Persistence
classes properly contain the Safety and Guarantee ones, the formers remaining
strictly more expressive.

2.2.4 Verification with Model-Checking
The standard for verification of temporal properties is model-checking.
The basic idea is to have a ‘model’ of the program: a finite transition system de-
scribing the ways the system state can evolve, called a Kripke Structure. Then, this
structure is converted into a finite-state automaton Aprogram. The language LApgrm
recognized by this automaton is all the possible execution traces the program can
have. Additionally, another automaton Aspec is constructed from the TL specifica-
tion of the program. Because the formula’s atoms describe the program states, the
languageLAspec recognized by this automaton represents all the execution traces of
the program that are accepted by its specification. At this point, we want to make
sure all possible executions of the program are allowed by its temporal specifica-
tion, so wewant a decision procedure for LApgrm ⊆ LAspec . This can be converted to
a language-emptiness check: LApgrm ∩ LAspec = ∅, Indeed, taking the complement
of the specification represents the language of all forbidden execution traces. If its
intersection with LApgrm is non-empty, it means at least one trace of the program
violates the specification. From the automata’s point of view, one must construct
the complement ofLAspec , combine it withLApgrm by doing a synchronized product
and finally check if the resulting automaton contains at least one accepting path.
However, complementation of such automata is expensive (current algorithms are
of exponential complexity). Instead, the temporal formula is negated before con-
structing its automaton. While it suffices to find only one accepting path to prove
the program violates its specification (and this path can be used to show how to
reproduce the incorrect behaviour), a well-behaving program requires systematic
verification of all possible paths. It has been shown that model-checking with ω-

29

Chapter 2. Preliminaries

automata results in a PSPACE upper-bound complexity: the decision procedure
can be represented by a deterministic Turing machine using polynomial space.
More precisely, model-checking LTL and CTL* formulas is PSPACE-complete and
CTL is P-complete.
This verification method as been successfully applied many times, but it still has
two main issues:

• The model might not be representative of the actual program
• Complex programs generate very large automata where counterexample

search becomes highly impractical due to the massive memory amounts re-
quired (it could also happen because of large specification formula but in
practice, the model state-space is at least an order of magnitude greater).

Büchi automaton

When LTL is used as a specification language, a Büchi automaton can be computed:
it is an ω-automaton (other such automata exists, but only differ by their word-
acceptance condition). Since it is a (finite) automaton accepting infinite words, it
follows each state as at least one successor.
Intuitively, because words are not finite, the notion of final states we would have
to be in when a finite word ends does not make sense. Rather, we define a set of
acceptant states, and impose that for a path to be valid (a word to be accepted),
there must be an infinite amount of states in the path belonging to the set.
More formally, a Büchi automaton BA is a tuple 〈Q, Σ, q0, δ, T〉 where

• Q is a finite set of states
• Σ is a finite alphabet
• q0 ⊆ Q is the initial state
• δ ⊆ Q × Σ × Q is the transition relation
• T ⊆ Q is the set of acceptant states

We then define In f (σ) as the set of states infinitely present in σ and say a word is
recognized by BA ⇐⇒ In f (σ) ⊆ T. This is called the Büchi automaton accep-
tance condition.

30

Chapter 2. Preliminaries

Examples

(a) Gp (b) G(p → Fq)

Figure 2.3 – 2 examples of Büchi automata

Figure 2.3 shows two Büchi automata representing each an LTL formula.
We can see how the G p formula is simply a single accepting state and a single
transition to that state labelled p. An accepted word is σ = pppppp · · · Which
indeed corresponds to the formula.
The second automaton is more interesting: it has two states and only one is accept-
ing. We get to the non-accepting state when p holds and the only way to get out of
it back to the accepting state is to have q. This indeed correctly models the fact that
p must imply that q will hold later. An accepted word is σ = ppppqpppqppppq · · ·.

Generalized Büchi automaton

In general, one does not directly obtain a Büchi automaton fromanLTL formula. In-
stead, it is first translated into a generalized Büchi automaton, where the accepting
condition is relaxed: there is now a family of accepting states : {T1, . . . , T2} where
Ti ⊆ Q. A word is accepted if a path passes through infinitely often at least one
state of each accepting state family.

31

Chapter 2. Preliminaries

2.2.5 Construction
On-The-Fly-construction

The algorithm proposed in [24] provides a set of nodes used to build a Labelled
Generalized Büchi Automaton (LGBA). The principle is the same as in [47].
The algorithm takes a node Node, a set of nodes NodeSet and returns a new set of
Nodes.
‘Node’ is a data structure containing:

• the name of the node
• A set ‘Incoming’ of all the arcs incoming to the node
• A set ‘New’ of non-treated formulas that must hold for n
• A set ‘Old’ of already-treated formulas that must hold for n
• A set ‘Next’ of formulas to be treated by every direct successor for which the

Old formulas hold
Initially, the algorithm is given a node n where New only contains Φ and NodeSet
is empty. Then, it is checked whether its New set is empty:

• If NewSet is empty, it is checked whether n already exists inside NodeSet.
– If it is the case, its incoming arcs are updated and NodeSet is returned.
– Otherwise, a new node n′ whose New formulas are the untreated Next

formulas of n is created. Then, the algorithm is recursively called on
(n′, {n} ∪ NodeSet)

• Else, one formula η is removed from New and filtered according to its shape:
– If it’s an atom, it is checked whether adding it to theOld formulas intro-

duces a contradiction.
∗ If there is one (the atom is ⊥ or its negation is present), NodeSet is

returned.
∗ Else, it is added to Old and recursed again over the current node n

and NodeSet

32

Chapter 2. Preliminaries

– If it’s a conjunction ϕ ∧ ψ, the current node is updated by splitting the
formula in half and adding its two components ϕ and ψ to the New for-
mulas. The node is then recursed upon.

– For the other binary cases (disjunction, until and release …), two new
nodes are created and recursed on one after the other. The formula
added to the New set of each node depends on the actual operator of
the formula

The authors then proceed to explain how to take the set of nodes returned and
produce a LGBA from it. They finally give the accepting conditions.
Surprisingly, while a proof of correction of the algorithm is given, nothing is said
about the termination of the algorithm. It turns out not to be trivial [45].

33

3HARDY

CONTENTS
3.1 LANGUAGE . 39
3.2 TRANSLATION . 42
3.3 CORRECTNESS . 45
3.4 IMPLEMENTATION . 45

Figure 3.1 – Hardy’s logo: a
stylized two-state

ω-automaton forming the ‘H’
of Hardy in the middle

Hardy is a tool capable of proving functional correctness for synchronous reactive
programs. Hardy takes a program written in an imperative language and two for-
mulas providing its specification. The important aspect of this language is how it
allows for outside interaction thanks to special input and output variables. Hardy
programs are synchronous reactive because they repeat indefinitely the same in-
structions, and do so in the following manner: Before executing the instructions,
input variables are updated with fresh values from the outside. This marks the
beginning of the instant. After executing the instructions, the last value of the out-
put variables is forwarded to the outside. This marks the end of the instant. The
‘outside’ is abstracted to anything that can provide and receive data streams. Ad-
ditionally, programs can have global variables that persist their values between
instants. Thus, an internal state can be maintained, enabling more expressive pro-
grams with complex behaviours. Hardy programs are translated into WhyML so
that they can be verified deductively in Why3.

34

Chapter 3. Hardy

A program specification is given by two types of LTL formulas:
• relies on formulas are similar to preconditions and constrain the inputs the

program receives over time.
• guarantees formulas are similar to postconditions over both inputs and out-

puts, describing how the program outputs evolve over time.
The atoms of the LTL formulas are FOL formulas whose own atoms are program
expressions.
Themain idea behindHardy is to reduce the reactive program and its specification
to a set of Hoare triples which, when proved correct, guarantee the correctness of
the original program. For this purpose, an external tool called LTL2BA [21] trans-
lates both specification formulas to Büchi automata labelled by the formulas atoms.
These 2 automata are then processed to get the set of Hoare triples. Hardy is not
a model checking tool (symbolic or not) simply because it works with actual code
extracts of the program and not a model. This eliminates the need to provide a
model of the program that might contain too many states, so taking toomuch time
to model check or not enough, and being too imprecise to actually prove anything.

Usage

The following example represents a simple reactive program for a switch control-
ling a light.

35

Chapter 3. Hardy

input on o f f : bool ;
output l i g h t : bool ;

relies on { G (not on | not o f f) }
guarantees { on R (not l i g h t | on) }
guarantees { G (on −> o f f R (l i g h t | o f f)) }
guarantees { G (o f f −> on R (not l i g h t | on)) }

setup :
ensures { l i g h t = f a l s e }
l i g h t := f a l s e ;

loop :
if on then l i g h t := true ;
else if o f f then l i g h t := f a l s e ;
end

It has two boolean inputs on and off that correspond to the presence or absence
of an on and off signal the switch can send. Its unique output is the boolean light
which commands the light to switch on or off. There is
Initially, the light is off. This is the role of the setup routine. Thus, its trivial postcon-
dition is light = false as indicated by ensures (note that because the setup instruc-
tions are a one-off, there is no point in using an LTL formula here). The instructions
to be executed repeatedly are inside the loop routine: they state that if we have the
on signal present, we turn on the light. Otherwise, if the off signal is present, we
turn it off.
With regard to the specification, we obviously don’t want any input to be at the
same time on and off : G (not on | not off). Then, there are 3 things we expect our
output stream to respect:

• Initially, the light must not be turned on until we get the on signal:
on R (not light |on).

• If at any instant we get the on signal, the light will be on from now on until
we get the off signal (if we ever get it): G (on −> off R (light | off))

• Conversely, if at any instant we get the off signal, the light will
be off from now on until we get the on signal (if we ever get it):
G (off −> on R (not light | on))

36

Chapter 3. Hardy

After writing the program and its specification, we use Hardy’s command line
interface, passing it the name of the text file containing the program and a path to
LTL2BA: hardy light -ltl2ba etc/ltl2ba

A directory is then created, containing:
• the output of LTL2BA for both specification formulas
• a visual representation using the DOT format of the automata
• a .mlw file that must be verified using Why3. Its content is shown in List-

ing 3.1.
We see the generated WhyML program contains our inputs as read only variables
(indicated by the val keyword) and our single output as a writable reference. The
setup routine is transparently translated, but we find the loop routine instructions
have been translated to declarations which only differ by their respective precon-
dition(s) and postcondition(s). Apart from an existential declaration, the specifi-
cations directly use the content of the LTL formulas atoms.
We will now proceed to formally define the language and explain in details the
translation process.

37

Chapter 3. Hardy

Listing 3.1 – mlw file content
module Program

use ref.Ref
use int.Int

let light = ref (any bool)
val on : bool
val off : bool

let setup = begin ensures { (! light) = false }
light := false end

let pre_init_post_S2 = begin
requires { exists on : bool, off : bool. (¬ off ∧ !light)

∨ (on ∧ (¬ off)) ∧ (! light)
}
requires { (¬ on) ∨ (¬ off) }
ensures { ((¬ off) ∧ (! light)) ∨ ((¬ on) ∧ off)

∧
(¬ (! light)) }

if on then (light := true)
else if off then (light := false) else ()

end

let pre_init_post_init = begin
requires { (!light = false) ∨

(exists on : bool, off : bool.
(¬ on ∧ off ∧ ¬ !light) ∨ ¬ on ∧ ¬ (! light))

}
requires { ¬ on ∨ ¬ off }
ensures { (on ∧ ¬ off ∧ !light) ∨ ¬ on ∧ ¬ (! light) }
if on then (light := true)
else if off then (light := false) else ()

end
end

38

Chapter 3. Hardy

3.1 LANGUAGE
Here is a simplified formal grammar of our language.

δ : Declaration ::= κ x:τ; κ ∈ {var input output}
Program ::= δ∗

rely ϕ
guarantee ϕ
setup :

ensures π
c

loop : c

π : FOL ::= true | false boolean
| e program predicate
| ¬ e negation
| π ◦ π ◦ ∈ {⊕ ⇔ ⇒ ∧ ∨}
| forall x:τ, π universal quantifier
| exists x:τ, π existential quantifier

ϕ : LTL ::= true | false boolean
| [π] predicate
| ▷ ϕ unary ▷ ∈ {F G X ¬}
| ϕ □ ϕ binary □ ∈ {U R} ∪ ◦

c : Command ::= skip
| x := e assignment
| c ; c sequence
| if e then

c else c
end

conditional

| while e do
invariant π
variant e
c

done

loop

e : Expression ::= x variable with x ∈ ID
| v values
| e � e binary � ∈ {+ − × ÷ ≤ ≥ < > =}

v : Value ::= n machine integer
| tt | ff boolean

τ : Type ::= bool | int

39

Chapter 3. Hardy

Hence, a program first consists of some variable declarations that can be of 3 types:
• var are global read-write variables representing the program internal state.

Their content is preserved between instants.
• input are read-only variables that provide outside values to the program. At

each instant, the old value is cleared and a new one takes its place.
• output are read-write variables that allows the program to provide results

of a computation at each instant.
Then, one must declare a rely and guarantee formula. Specified both using LTL,
the former describes how the inputs received will be shaped (e.g. globally, no neg-
ative values), while the latter is about how the outputs will evolve at each instant.
Together, they specify the main routine. To talk about the program, FOL formulas’
atoms are program expressions while LTL formulas’ atoms are FOL formulas.
Next, the setup routine is defined. It is the program part that will be executed
once, before any input is provided. After its execution, the postcondition denoted
ensures must hold. Note how the formula is defined using FOL and not LTL, as
there is no need to have the notion of time.
Finally, the loop routine is the main code of the program and the one that will be
executed at each instant.
Accepted instructions inside setup and loop are very basic: assignment, sequence,
conditional, andwhile loop. Values can be of type int or bool and can be combined
within expressions using the standard unary and binary operations. The while
instruction requires both variant and invariant as we’ve seen in subsection 2.1.2.
The variant is a program expression while the invariant is a FOL formula (there is
no notion of time inside instructions).

Semantics

Let XI , XO, X ⊆ ID be the set of program inputs, output and global variables, re-
spectively.
Let p be a program receiving a streamof inputs of type τi andproducing a streamof
outputs of type τo (if inputs/outputs of different types τa, τb . . . are declared, one
can simply take their product τa × τb × . . .). The program internal state is main-
tained through the use of global variables X.

40

Chapter 3. Hardy

Then, csetup and cloop represent the instructions contained in the setup and loop
routines, respectively. (c with no subscript means statement from any routine).
Finally, Ω is the set of all possible program memory environment, i.e, the set of
mappings from I ∪ O ∪ X to values.
We first assume a deterministic big-step semantics for all program statements, rep-
resented by a relation of type Command × Ω × Ω noted ↓. We write c, ω ↓ ω′ for
a command c coupled with a memory state ω producing a new memory state ω′.
The semantics is deterministic: given the same initial environment ω, two (syntac-
tically) equal statements will produce the same updated environment ω′.
Then, we define a relation of type Command × Ω × stream τ1 × stream τ2 noted ⇓
as the greatest relation closed backward by the rule:

c, ω[I 7→ i] ↓ ω′ c, ω′, s ⇓ s′

c, ω, i · s ⇓ ω′
|O · s′

• e · s′ decomposes a stream s into its first entry e and the rest of the stream s′.
• ω[a 7→ b] is the mappings of ω with an extra mapping of a to b

• ω|O is ω with its domain restricted to O

So, if an instruction c, a memory state w and an input stream i · s are in relation
with (produce) an output stream ω′

|O · s′, it means ω′ was created using c and ω

with its input values being the head of the input stream. Then, we re-execute c, but
with the new memory state ω′, taking the tail of the input and output stream and
so on.
The semantics of p noted JpK is then:

JpK = {(s, s′) | (csetup, ω0 ↓ ω) ∧ (cloop, ω, s ⇓ s′)}

That is, JpK can be defined as a set containing all possible infinite traces of its execu-
tion, where a trace is a pair of input stream s and output stream s′. To get the input
and output streams, we start by executing the setup instructions csetup on an initial
state ω0, producing a new state ω. Then, ω together with the instructions of the
loop cloop and an input stream s are used to feed our previously defined relation ⇓,
allowing us to get s′.

41

Chapter 3. Hardy

3.2 TRANSLATION

Figure 3.2 – Overview of Hardy’s translation mechanism

LTL Specification

Hoare Triple Generation

Why3

Rely Automaton Guarantee Automaton

Synchronised Product

Program

Input Language

Hardy’s translation mechanism has 4 stages (Figure 3.2):
1. Take the relies on and guarantees specifications and turn them into two

Büchi automata
2. Compute the synchronized product of the automata
3. Use the newly created automaton together with the program’s code to gen-

erate Hoare triples
4. Send them to Why3 for verification

Synchronized product

The rely automaton recognizes every valid stream of inputs the program assumes
to receive and the product automaton recognizes every output the program is ex-
pected to produce. By taking the synchronized product of both automata, we get
(unsurprisingly) an intersection of their respective languages, which means we

42

Chapter 3. Hardy

Figure 3.3 – Construction of the synchronized product from the rely and guarantee automata

(! (on)) || (! (off))init

(a) rely automaton

(! (off)) && (light)

((! (on)) && (off)) && (! (light))
((on) && (! (off))) && (light)

(! (on)) && (! (light))

S2

init

(b) guarantee automaton

requires: (! (on)) || (! (off))
ensures : (! (on)) && (! (light))

requires: (! (on)) || (! (off))
ensures : ((on) && (! (off))) && (light)

requires: (! (on)) || (! (off))
ensures : ((! (on)) && (off)) && (! (light))

requires: (! (on)) || (! (off))
ensures : (! (off)) && (light)

{pre_init
post_init}

{pre_init
post_S2}

(c) product automaton

have an automaton that models all the possible valid outputs produced over time
from the valid inputs received.
Looking back at the above example, we get Figure 3.3a from the relies on formula,
and, from the conjunction of all guarantees formulas, we get Figure 3.3b. From
these automata, the temporal operators disappear, and only atoms remains as the
transition labels. In our case, the atoms of an LTL formula are FOL formulas over
program expressions.
Then, we build the product automaton: for Arely = 〈Q, Σ, δ, q0〉 and
Aguarantee = 〈Q′, Σ′, δ′, q′0〉, Arely ×Aguarantee = 〈Q×Q, Σ×Σ′, δ×δ′, (q0, q′0)〉 (Fig-
ure 3.3c).
However, contrary to what is generally done for model-checking, we do not join
the formulas of each automaton. This is because the triple generation requires us
to distinguish between the relies on and guarantees formulas, as we will now see.

43

Chapter 3. Hardy

Product Automaton

Consider a node n somewhere in the product automaton. This node has at least one
successor m. The transition n

(f3,g3)−−−→ m means that the program received inputs
satisfying f 3 and must produce outputs satisfying g3.

Additionally, n must also have a predecessor written · (f−1,g−1)−−−−−→ n. In that case, g−1

represents the output produced and input received at the previous instant.

n m

(f1 , g
1)

(f 2,
g 2)

(f 3,
g
′

3
)

(f3, g3)

(f4 , g
4)

Generation of triples

For every node n within the automaton A and for each f where a transition n
(f ,·)−−→ ·

exists, we construct the triple

{ pre ∧ f } cloop {post}

where
pre =

∨
g | · (·,g)−−→ n post =

∨
g | n

(f ,g)−−→ ·

Here, g represents the formula g where input variables are existentially quanti-
fied. This enables the preservation of information that relies on preceding input.

A special treatment is reserved for the initial node: pre =
∨

g | · (·,g)−−→ n ∨ gsetup
where gsetup is the postcondition for the setup code.
To take into account the setup routine, we also build a triple {true} csetup {gsetup}.

44

Chapter 3. Hardy

3.3 CORRECTNESS
The following theorems were proven using the Coq proof assistant [7]. We addi-
tionally showed that mentioning previous states of the program inside an atomic
formula is sound (see section 6.2).

Theorem 3.3.1 If all the triples generated for a program p with specification (P, ϕ, ψ) are
valid, then

s ∈ L(Aϕ) → ∃s′. JpK(s) = s′ ∧ s′ ∈ L(Aψ)

Corollary 3.3.1.1 If all the triples generated for a program p with specification (P, ϕ, ψ)
are valid, then

ϕ(s) → ∃s′. JpK(s) = s′ ∧ ψ(s′)

3.4 IMPLEMENTATION
Hardy is implemented in OCaml, a multi-paradigm language, but functional at its
core. Hardy’s language parser is generated using Menhir [43]. The ocamlgraph
library [12] is used to construct the product automaton.
As previously mentioned, Hardy relies on the automata generated by LTL2BA.
LTL2BA outputs a description of the generated automaton to a text-file using never
claims, a subset of the Promela specification language leveraged by Spin, a model-
checking tool.
An example output is shown below (Listing 3.2).

Listing 3.2 – Example LTL2BA output
never { /∗ ([] ((! (f_711727821)) | | (! (f_575586166)))) && [. . .] ∗/
a c c ep t _ i n i t :

if
: : (! f_711727821 && ! f_862012867) −> goto a c c ep t _ i n i t
: : (f_711727821 && ! f_575586166 && f_862012867) −> goto accept_S2
fi ;

accept_S2 :
if
: : (! f_711727821 && f_575586166 && ! f_862012867) −> goto a c c ep t _ i n i t
: : (! f_575586166 && f_862012867) −> goto accept_S2
fi ;

}

45

Chapter 3. Hardy

To possibly simplify the guarantee automaton, we pass to LTL2BA a conjunction
of the relies on and guarantees formulas. This is correct because our inputs are
read-only. Thus, at the end of an instant, the rely formula still holds as inputs are
unchanged.
While FOL formulas make up the atoms of our LTL formulas, LTL2BA only allows
atoms to be strings. So, before sending the formulas to LTL2BA, we use an integer
hashing of our FOL formulas based on their type (this is what the hash function of
theHashtblmodule proposes). Thisway, two syntactically equal formulaswill have
the same atomic variable name. After getting back the automata, we substitute the
hashes with their associated formula.
To build the synchronized product automaton, we start bymerging the initial node
of each automaton into a pair and use it to initialize a queue. Then, we repeatedly
pop a pair out of the queue until it is empty, and we get the successors of each of
the nodemaking the pair. We iterate on the product of the successors and add new
pairs to the queue, as long as we did not come across them already.
Then, to build the triples, we iterate over each node of the product automaton.
The precondition is a disjunction of in-transitions’s guaranteewith an out-transition
relies and the postcondition is the guarantee of the same out-transition. A triple is
generated for each different out-transition guarantee because wemust ensure every
transition is possible (we must never get stuck, otherwise we breach the safety
condition).
Once the triples are constructed, we use the Why3 API to translate our simple im-
perative code to WhyML, where each triple gets its own copy of the loop code
(similarly for the setup code, but there is only one instant of the code). Only pre-
conditions and postconditions generated changes.
At the moment, no type verification is made within Hardy because it is enough
to use Why3’s untyped API, as explained briefly in Theorem 2.1.2. The program
terms constructed can then be checked and typed with Why3’s own type checker.
Finally, we use the pretty printing facilities of Why3’s Abstract Syntax Tree (AST)
to output a .mlw file for easy debugging. Note that verification could occur directly
with the Why3 API, but it is easier to work on the generated file for now.

46

4DISCUSSION

CONTENTS
4.1 CURRENT SHORTCOMINGS . 47

4.1.1 Counter-examples . 47
4.1.2 Trusted code base . 48
4.1.3 Verifying Liveness . 48
4.1.4 Referring to past values . 48
4.1.5 Completeness . 49

4.2 ALTERNATIVE IDEAS . 49
4.2.1 Instrumentation . 49
4.2.2 LTL extended with binders . 50

4.1 CURRENT SHORTCOMINGS

4.1.1 Counter-examples
One appeal of model-checking tools is their capacity at providing a counter-
example as a trace of states leading to an incorrect behaviour. This feedback is
important as it helps developers understand where the error comes from. While
Symbolic Model-Checking (SMC) tools are also able to produce counter examples
(as seen in section 5.4), they use a weak form of FOL which is decidable. For our
case, failure to prove a triple doesn’t necessarily mean a counter-example exists
but simply that the SMT provers were not able to automatically find a proof. Thus,
while the generation of a counter-example is not incompatible with our work, it
remains to be seen whether it can be made systematic.

47

Chapter 4. Discussion

4.1.2 Trusted code base
Although we gave a proof our approach is correct, we haven’t verified Hardy itself.
In addition to trusting the automata generated by LTL2BA indeed represent the
specification, we depend on the correctness of the translation and triple generation.
Finally, we assume the external tool used to verify triples is also correct, so Why3
and its solvers in our case. Later on, Hardy will be formally verified in Coq.

4.1.3 Verifying Liveness
As previously mentioned, we restrict ourselves to only verify safety properties. To
ensure it in practice, only release, globally and next operators are allowed. With this
restriction, every path of the automaton must go through at least one accepting
state. It then suffices to show there exists a finite run for every prefix of a word.
However, if we want to support liveness, we must show a path eventually goes
through an accepting state and does not indefinitely loop over non-accepting states.
This will be explored in future work.

4.1.4 Referring to past values
Consider the following 2 examples:

Listing 4.1 – delay with booleans
input i : bool ;
output o : bool ;
variable x : bool ;
setup :

ensures { x = f a l s e }
x := f a l s e ;

loop :
o := x ;
x := i ;

Listing 4.2 – delay with integers
input i : int ;
output o : int ;
variable x : int ;
setup :

ensures { x = 0 }
x := 0

loop :
o := x ;
x := i

Both programs output the previous input received, but one uses booleans while
the other uses integers.
Only the boolean version can be specified with our current tool. Its specification is
given below:

48

Chapter 4. Discussion

(∗ the f i r s t output i s always f a l s e ∗)
guarantees { not o }
(∗ the new s t a t e i s always the l a s t input ∗)
guarantees { G (x = i) }
(∗ if the current s t a t e i s true ,

the output wi l l be t rue a t the next i n s t an t ∗)
guarantees { G (x −> X o) }
(∗ if the current s t a t e i s f a l s e ,

the output wi l l be f a l s e a t the next i n s t an t ∗)
guarantees { G (not x −> X (not o)) }

Hence, for the boolean version, we enumerate the 2 possible values the input can
take. Then, for each case, we tell what the output at the next instant will be. This
obviously cannot be done for integers. What we would like to do is to universally
quantify over the input: guarantees{ G (forall a. i = a −> X(o = a))}. However, we
would need to find how to modify the automaton generation to account for it.

4.1.5 Completeness
We proved the (relative) correctness of our approach in section 3.3, that is, if all
triples generated by Hardy from a program and its safety specification can be
proven, the program is indeed correct. However, we haven’t proven its complete-
ness, that is, given any program and its safety specification, can we always prove
its correctness this way?

4.2 ALTERNATIVE IDEAS

4.2.1 Instrumentation
At first, the program was written directly within a loop. Ghost code was included
around and inside the loop to gather a trace of the program that could be used to
refer to previous values:
A program was composed of global variables contained within an instance of the
var_t type and i/o vars with the env_t type. Then, at the end of the loop, a snap-
shot of the current i/o and global variables was created. This snapshot was then
appended to a list representing the history. Next, we defined predicates to be able
to mention the history:

49

Chapter 4. Discussion

• at_time i x h: the element at index i of history h is x

• forall_i prop h: prop must hold for every element of the history h

• exists_i prop h: there must exist an element of h for which prop holds
• imm prop h i: prop must hold at the i-th entry of the history h

To ‘help’ Why3 prove the different properties, we had some helping lemmas, for
example:

• at_time_hd: if we have at_time i x h and i = length(h), then x = hd h

• at_time_tl: if we have at_time i x (x::h) then we must also have
at_time i x h

We eventually gave up on this solution because it was hard figuring out what help-
ing lemmas Why3 needed. Also, we could only talk about the past.

4.2.2 LTL extended with binders
After experimenting with the automaton approach, there was still expressivity is-
sues due to the lack of quantification within formula atoms. We tried to decorate
some operators with binders, which can then be used across operators’ imbrica-
tion: Ga(a = · · ·) would universally quantify a and G(Xa(a = · · ·)) would make
getting the previous value at each instant possible. Hence, when we wanted to
write G(∀a.(i = a → X(o = a))), we would now write Ga(i = a → X(o = a)).
The idea was abandoned as it was not obvious how to derive a Büchi automaton
from this syntax.

50

5RELATED WORK

CONTENTS
5.1 VERIFICATION OF PARAMETERIZED REACTIVE SYSTEMS 51
5.2 VERIFICATION OF SIMULINK MODELS . 53
5.3 VERIFICATION OF LUSTRE PROGRAMS . 55
5.4 VERIFICATION OF LADDER PROGRAMS . 57
5.5 SUMMARY OF THE APPROACHES . 60

The following sections summarize different reactive system verification tools that
relates to Hardy. Each tool is described in terms of input language, specification
language, verification procedure and what needs to be trusted.

5.1 VERIFICATION OF PARAMETERIZED REACTIVE SYSTEMS
Cubicle [18] is a model-checking tool for proving safety of reactive systems which
also generates a ‘certificate of correctness’ in Why3. Here, a reactive system is a
single array-based transition system parameterized by the number processes that
will execute it.

Language
Cubicle has its own specific input language: it describes an array-based system
composed of multiple processes executing the same piece of code, but with no
more than 1 process active at a time. This code is parameterized by a Process
Identifier (PID) which uniquely identifies the current process running the code.
This enables each process to have disjoint memory storage. As illustrated in List-
ing 5.1, the system first consists of a declaration of ground types (int, bool, reals),

51

Chapter 5. Related Work

user types (abstract and sum types) and arrays. Arrays are used to store process-
dependent values. That is why they must always be indexed by variables of type
proc, representing a PID. Instructions are restricted to sequences of global variable
assignments. A group of such instructions is called an action. The state of the sys-
tem evolves through transitions that describe how the process-dependent values
of some PID change. A transition is composed of a guard and an action. A guard
is a restricted form of FOL formula over the global variables that gives the condi-
tions for the action to happen. Both the guard and the action are parameterized by
a certain number of distinct PIDs. This language describes a non-deterministic sys-
tem that chooses a transition instance whose guard holds true for the current state,
update the state according the transition’s action and repeat. Hence, it is more of
a modelling language that cannot be executed as-is.

Listing 5.1 – Example of a Cubicle program
type s t a t e = Id l e | Want | Cr i t
type data

var Timer : r e a l
array S t a t e [proc] : s t a t e
array Chan[proc] : data
array Flag [proc] : bool

i n i t (z) { Flag [z] = Fa lse && Sta t e [z] = Id l e && Timer = 0 . 0 }

unsafe (x y) { S t a t e [x] = Cr i t && S ta t e [y] = Cr i t }

t r a n s i t i o n t (i j)
r equ i re s { i < j && S ta t e [i] = Id l e && Flag [i] = Fa lse &&

fo r a l l _ o t h e r k . (Flag [k] = Flag [j] | | S t a t e [k] <> Want) }

{
Timer := Timer + 1 . 0 ;
Flag [i] := True ;
S t a t e [k] := case

| k = i : Want
| S t a t e [k] = Cr i t && k < i : Id l e
| _ : S t a t e [k] ;

}

Specification
Cubicle focuses only on safety propertieswith no notion of time. A global invariant
named unsafe is represented by a standalone guard. This invariant differentiates
between good and bad states: any good state must not make the invariant hold

52

Chapter 5. Related Work

and all bad states must do. As for the transitions, the invariant is parameterized by
a certain number of PIDs to be able to talk about PID-dependent values.

Verification
The system is deemed safe if no bad state can be reached starting from an initial
state. A backward-reachability algorithm is used for this purpose: it assumes such
bad state exists and see if it can be reached by successive transitions from the initial
state. This is expressed in FOL and checked with a specialized version of an SMT
solver. Thus, Cubicle does SMC. If a bad state is indeed accessible from an initial
state, the system is unsafe and a form of counter-example is represented as a series
of transition that led to the bad state. When the system is safe, a Why3 certificate
can be generated. It consists of a state-transition representation of the system using
FOL, a synthesized global invariant and a set of goals showing its preservation.

Trust
As far as we know, Cubicle itself has not been certified. However, one can verify
its output: when the system is unsafe, the counter-example trace can be used to
reconstitute an erroneous run.When it is safe, the certificate can be used, assuming
that it indeed represents the system and that Why3 and the solvers it calls can be
trusted.

5.2 VERIFICATION OF SIMULINK MODELS
Language
Simulink is a MATLAB-based graphical programming software that does mod-
elling, simulation and analysis of dynamic systems. Systems studied here are con-
trol systems, which are a type of reactive systems. Such system consists of blocks
taking as input signals of other blocks andproducing signals as output (Figure 5.1).
Blocks are of different types: they can do calculations, signal routing, display val-
ues, input delay etc.
A Simulink model can be simulated, but it does not constitute an executable pro-
gram. It can however be translated into a Lustre program, that can then be inde-
pendently verified using another tool (see section 5.3).

53

Chapter 5. Related Work

Figure 5.1 – A simulink model with ‘require’ blocks

Specification
To specify a Simulink model, [3] introduces a new type of block called a Require
block. They permit a form of local specification through precondition and postcon-
dition. So, there is again no notion of time here. The block is an ‘enabled subsystem’,
which is a system only active when a positive signal is present. Here, the positive
signal is generated when the precondition provided holds. When it is the case, an-
other custom block called an ‘assert’ block and contained within the Require block
checks if the postcondition holds as well.

Verification
The verification process is based on Why3. The main idea is to have a library of
Why3 theory for each type of block. A block theory consists of functions parame-
terized by an integer and providing numerical values (integers, booleans, or reals).
They represent the value an input or output signal takes at a certain instant. An
axiomatic description of these functions is provided, corresponding towhat the ac-
tual blocks do. Then, a Why3 represention of the model is generated based on the
AST obtained from the block connexions and making use of the associated block
theories. However, the ‘Require’ block is not translated this way, but rather as a
Why3 goal with an implication between the precondition and the postcondition.
Finally, Why3 attempts solving all the goals using its external SMT solvers.

54

Chapter 5. Related Work

Trust
The translation of the Simulink model’s AST into Why3 has most likely not been
verified. In addition, it must be assumed the blocks’ semantics is faithfully axiom-
atized. As usual, Why3 and its solvers must also be trusted.

5.3 VERIFICATION OF LUSTRE PROGRAMS

Language
Lustre is a declarative synchronous dataflow language generally used for reactive
embedded systems. A Lustre program is made up of function declarations called
nodes that transform streams of data. A node is a set of equations over the streams,
where outgoing streams are expressed in terms of ingoing streams, possibly using
intermediate streams for calculations. A node memory is the history of previous
values of the streams up to a finite defined depth.

Listing 5.2 – Example of a Lustre program
−− true a f t e r x has been true once
node a f t e r (x : bool) re turns (a f t e r : bool) ;
l e t

a f t e r = x or (f a l s e fby a f t e r) ;
t e l

node use_fby (x : bool) re turns (res : bool) ;
l e t

res = a f t e r (x) ;
t e l

We now review two verifiers for Lustre program: Kind [25] and one of its recent
successor Kind 2 [11].

Specification
Both tools only focus on safety properties as it is argued liveness isn’t needed. This
is because most Lustre programs are time-critical, so the number of instants before
the appearance of an event is known. Thereby, this is a safety property that can be
expressed as ‘it must not take more than n instants for this event to appear‘.

55

Chapter 5. Related Work

With Kind, properties are not expressed directly in Lustre. Rather, the program
is expressed in FOL which is only then specified using quantifier-free formulas
parameterized by instants. While such specification can be considered low-level, it
at least enables a temporal description of the system.
Contrary to Kind, Kind 2 extends Lustre to be able to annotate nodes with local
invariants or assume-guarantee contracts. Both are written using Lustre boolean-
expression and can describe time-varying behaviour through a shallow embed-
ding of past Linear Temporal Logic (pLTL) as Lustre nodes. An assumption in a
Lustre contract is a predicate over the node’s inputs and a guarantee is a predicate
over both the node’s inputs and outputs. Contracts are written in CoCoSpec [10], a
mode-aware specification language, whose principles aren’t just restricted to Kind
2. Amode influences the treatment of inputs according to past events and is largely
used in specification documents. In general, they are encoded as implications be-
tween situations and expected behaviours, resulting in a contract that can poten-
tially lose mode-specific information. A CocoSpec contract, however, contains a
set of mode declaration in addition to the assume and guarantee predicate of stan-
dard contracts. A mode declaration is a set of require and ensures statements that
are well-typed boolean Lustre expressions. Intuitively, the require statements de-
fine the conditions for the mode to be active and the ensures statements describe
what the node does when in that mode. When all mode’s require expressions hold,
it must follow that all mode’s ensures expressions hold as well. Additionally, if the
contract holds, at least one of the modes must hold. Otherwise, it means there is
an underspecification, as the system can be in an unspecified mode.

Verification
Both Kind and Kind 2 make use of an idealized version of Lustre’s denotational
semantics as quantifier-free FOL formulas forming a state-transition system. It is
called an idealized version because data-types like integer and reels are mapped
to their mathematical, infinite precision counterpart. While this mean underflow,
overflow or rounding errors can’t be taken into account, it makes the system decid-
able, and efficiently so. For this purpose, k-induction, a generalization of induction;
is utilized. It consists of proving the property holds up to the first k consecutive
instants (base case) and that if it holds for any k consecutive instants, it must also
hold for the k+1 one (inductive step). Then, k is increased until a counterexample
is found, or an upper limit deduced from the property is reached. The technique
is sound but incomplete as some properties may require an infinitely large k. To
increase the number of properties provable with this system, 3 other techniques

56

Chapter 5. Related Work

are used: path-compression, structural abstraction and refinement. The reasoning
over the semantics of Lustre is delegated to external SMT provers such as CVC3
and Yices. Without the different optimizations proposed over k-induction, both
tools behaves like a bounded symbolic model-checker: it checks only traces up to
a certain length. In case a property does not hold, Kind and Kind 2 produce a
counter-example as a trace of execution leading to an incorrect state.
Although its principle is the same, Kind 2 brings a number of improvements, in
addition to better specification support: because it is an improved and rewritten-
from-scratch version of PKind, which already improved uponKind, it first benefits
from the performance increase of PKind’s parallel k-induction. Additionally, Kind2
enables compositional reasoning by proving the properties of each node separately,
assuming every not-yet-proved contract holds for called nodes and reusing results
otherwise.

Trust
Kind is not formally verified, so its translation mechanism must be trusted as well
as how it uses the external SMT solvers to verify the system. Additionally, because
it uses approximative semantics to model a Lustre program, a program can be con-
sidered safe even though it exhibits an unsafe behaviour due to an overflow, an
underflow or a rounding error.
While Kind 2 has the same issues, it can generate a proof certificate [39]: it is a
k-inductive invariant formula and a fixed k-value that implies all proven proper-
ties of the system. Then, an external SMT solver can be used to verify it is indeed
k-inductive and does imply the system’s properties. This shifts the trust fromKind
2 to the potentially less-complex external solver. However, this still relies on the
semantic preservation of the translation. A partial formal solution is proposed by
showing Kind 2 representation is observationally equivalent to the one of an indepen-
dent tool used on the same input.

5.4 VERIFICATION OF LADDER PROGRAMS
Language
Ladder is the first programming language tailored towards Programmable Logic
Controllers (PLCs): industrial computers used to automate the control ofmanufac-
turing processes. A Ladder program computes outputs from inputs synchronously

57

Chapter 5. Related Work

and has an internal memory, similarly to Hardy. Because its initial purpose is to
replace the use of hardwired relay circuits, but to keep the same fundamentals, as
not to require technician training, a Ladder program is a circuit diagram. Multi-
ple circuits are represented in parallel each by a line. In its most basic form, a line
connects a contact (input) to an actuator (output). The contact acts as a push but-
tons that opens or closes the circuit, firing the actuator. In place of the actuator, an
instruction can be called, modifying the internal state of another connected PLC.

Figure 5.2 – A Ladder circuit diagram

Specification
In [14], no specification is provided by the user. Indeed, contrary to Hardy, the
focus is not on the functional correctness of the program but rather the absence of
certain programming errors. Hence, the user doesn’t provide any kind of program
specification. Moreover, the cyclic aspect of the program is not accounted for, as
only a single instant ismodelled, potentially producing false-positives. These short-
comings are addressed by [36], where a form of temporal specification, called a
timing chart, is used to verify the program’s behaviour over multiple instants.

Timing charts

Timing charts as used in [36] consist of a sequence of consecutive instants. An in-
stant is represented by inputs and outputs values, capturing the expected instanta-
neous state of the program for this particular instant. When an instant has at least
one value that differs from the previous one, it is called an event. Consecutive in-
stants for which no value changes are called a stable state. While an event happens
at a certain instant, a stable state ismaintained over an arbitrary number of instants.
Hence, a timing chart is a succession of events separated by stable states. It is im-
portant to note that while the timing chart approach enables a form of temporal
specification, only safety properties can be expressed. Indeed, they enforce knowl-

58

Chapter 5. Related Work

edge of events’ duration and, even though stable states duration is unknown, they
are not required to end at some point.

Verification
Runtime errors

To verify ladder programs, [14] leverages Why3. For this purpose, a library of for-
malized ladder instructions was developed: each instruction is implemented as a
verifiedWhyML function with preconditions and postconditions. The program in-
ternal state is modelled using references that are passed as additional arguments
to the functions. The program is then translated into a Why3 module made up
of boolean variables declarations. These variables are defined in terms of boolean
formulas combining other variables and calls to the instruction library. It is then
checked whether any instruction’s precondition is violated using a SMT solver ca-
pable of generating counter-examples. If a violation occurs, the provided counter-
example is used to feed the model’s initial values, enabling the simulation of an
erroneous execution. The collected execution information is used to produce a user-
friendly error report, presented graphically over the circuit-diagram.

Timing charts

Due to the cyclic nature of the program, [36] reuses multiple times the single-
instant declaration generation done in [14], called the body of the program. Instead
of a single body, the model is now a sequence alternating between the body and a
while-loop containing the body. The while-loop models a stable state whose exit
condition is a variable which is assigned a random boolean at each iteration. This
models the fact the end of a stable state is unknown. The precondition of a body is
the input values that triggers a new event. As a stable state follows the event, which
is modelled as the while loop, the postcondition takes the form of a loop invariant.
This loop invariant must show the body always produces the correct outputs from
the inputs that triggered the new event, as indicated by the chart.
One difficulty brought by this updated verification is that the loop invariants gath-
ered from the timing chart are generally not sufficient. Indeed, additional internal
memory devices are used in a ladder implementation to respect the chart, but the
behaviour of those devices are of course not present in the chart. While the invari-
ants can be manually strengthened, it is a difficult and here repetitive task that
would hinder the adoption of the tool for Ladder developers. Instead, additional

59

Chapter 5. Related Work

loop-invariants are inferred from the body itself, using a modified version of a
Why3 plugin that uses abstract interpretation over boolean and integers.

Trust
Both tools provide a user-friendly counter-example to be checked upon verification
failure. However, a program considered safe requires trusting the translation to a
WhyMLprogram, ensuring the formalized instructions are correctlymodelled and
have confidence in Why3 and its external solvers.

5.5 SUMMARY OF THE APPROACHES
As summarized below, the reviewed approaches attempt to verify either non-
executablemodels ([18] [3]) or actual code ([25] [11] [14] [36]). Only safety prop-
erties are considered.While some of them ([36] [11]) have a notion of time, they do
not directly make use of a time-friendly and program-independent logic language
like LTL. Most of the tools express the system in FOL formulas that are sent to
SMT solvers. Only [14] and [14] employ DV. Finally, none of the tools presented
here have been formally verified. However, they can generally provide counter-
examples on failure or proof certificates on success.

60

Chapter 5. Related Work

Article Input Specification Verification

S a L b T c Description

[18] M d yes no no function contract + invariants SMC

[3] M yes no no local assertions SMC

[25] P e yes no yes parameterized
quantifier-free formulas SMC

[11] P yes no yes shallow embedding of pLTL
+ mode-aware function contracts SMC

[14] P no no no _ DV
[36] P yes no yes timing chart DV

aSafety
bLiveness
cTemporal Specification
dModel
eProgram

61

6CONCLUSION AND FUTURE WORK

CONTENTS
6.1 CONCLUSION . 62
6.2 FUTURE WORK . 62

6.1 CONCLUSION
We presented Hardy, a tool that leverages DV to ensure the safety of synchronous
reactive programs. Programs are specified using LTL and verified by an approach
that draws inspiration from model checking by manipulating the automaton rep-
resentation of the specification. Yet, it differs from regular model checking by pro-
ducing Hoare-style proof obligations that are then checked using an external DV
tool. We showed the correctness of our approach in the Coq proof assistant and
have a working proof-of-concept that has successfully been applied to a few exam-
ples.

6.2 FUTURE WORK

Past predicates

So far, we can see our predicates as parameterized by the program variables for
a certain instant. However, as demonstrated in 4.1.4, this is limiting. Lifting this
restriction involves generalizing predicates: their parameters are not just variables
denoting their last value, but history of values associated to those variables. Each
parameter can be seen as a vector of values indexed from the first instant of the
program up to the currently reached state. We extended our proof of correctness
to show this new form of predicate is compatible with our approach. However,

62

Chapter 6. Conclusion and future work

we must be careful with this new level of expressivity: if used as-is, LTL could
be encoded inside the predicates, which would defeat the purpose of using it in
the first place. By restricting each variable to at most one instant quantification,
we ensure LTL cannot be encoded as it requires quantification of at least 2 instants.
This way, one can talk about all the previous values of a variable, a certain previous
value or the existence of a previous value.

Public and private specification

In our current work, temporal formulas are about the program’s inputs, outputs
and state. However, even though talking about the state is a necessity to correctly
specify the program, we want to see the program as a black-box: we shouldn’t
have the specification tell us information about its internal variables. We want a
specification describing the program in terms of its inputs and outputs.
For that purpose, what we plan to do is to have two kinds of specification: a private
one ϕpriv that includes the state and a public one ϕpub that does not mention it. We
first prove the correctness of a program using ϕpriv. Then, we check if ϕpriv ⇒ ϕpub.
From a language perspective, we must check if Lϕpub ⊆ Lϕpriv . As for regular lan-
guages, ω-regular languages are closed under union, intersection and complemen-
tation. So, Lϕpub ⊆ Lϕpriv ⇔ Lϕpub ∩ Lϕpriv = ∅. Thus, we build the synchronized
product of Aϕpub and Aϕpriv and check for emptiness.

Validator for Büchi Automata

As mentioned in subsection 4.1.2, Hardy depends on the validity of the provided
automata. That is, a word is accepted by an automaton if and only if it is accepted
by its correspond LTL formula. There are two approaches to this dependency:

• Verify the tool that generates the automaton
• Create a validator that checks if a formula’s language is the same as the au-

tomaton’s
The first approach is very time-consuming and proofs must be adapted each time
a new algorithm is developed. It has nevertheless been achieved (e.g. [17]) for the
basic algorithm.
With the second approach only the validator must be verified, which is assumed to
be a much simpler task. Then, any tool can be used as long as its output is checked
with the validator.

63

Chapter 6. Conclusion and future work

The latter approach is hence what we intend to tackle.

Other ideas

We want to explore the possibility of directly using WhyML as Hardy’s input lan-
guage and how to have multiple processes that can be composed. Ultimately, we
want to support richer constructs that will allow us to verify programs written in
SaIL, our rust-inspired reactive language [1].

64

Appendices

65

AADDITIONAL EXAMPLE

Listing A.1 – a metronome that ticks every 3 beats
output

beat : int
accent : bool

;

guarantees { G ([beat = 1] <−> [accent]) }

guarantees { G (
[beat = 1] −> X [beat = 2]

& X X [beat = 3]
& X X X [beat = 1]) }

setup :
ensures { [beat = 1 & accent] }

beat := 1 ;
accent := true ;

loop :
if beat = 3 then

beat := 1 ;
accent := true ;

else
beat := beat + 1 ;
accent := f a l s e ;

end

This Hardy program (Listing A.1) represents a metronome. It counts 3 beats per

66

Appendix A. Additional example

measure, which it outputs using the beat integer. At the start of a newmeasure, the
number of beats is reset, and a signal is emitted with the accent output.
What we want to ensure is that the accent is signalled if and only if we are at the
measure’s first beat. Furthermore,wewant to show that it starts at beat 1, counts up
to 3 included and then starts back at 1 and so on. To translate this last requirement,
we say that each time we are on the first beat at an instant n, then it must follow
we are on the second beat at n + 1, third beat at n + 2, and finally back to the first
beat at n + 3.
The product automaton generated by Hardy contains 8 states and 12 transitions,
producing 9 Hoare triples that Why3 manages to solve automatically.

67

BIBLIOGRAPHY

[1] The sail programming language. https://github.com/sail-pl/SAIL. (page
64)

[2] Rajeev Alur, Kousha Etessami, Salvatore La Torre, andDoron Peled. Paramet-
ric temporal logic for “modelmeasuring”. ACMTransactions on Computational
Logic, 2(3):388–407, 2001. doi: 10.1145/377978.377990. (page 28)

[3] Dejanira Araiza-Illan, Kerstin Eder, and Arthur Richards. Formal verification
of control systems’ properties with theorem proving. In 2014 UKACC Inter-
national Conference on Control (CONTROL), pages 244–249. IEEE, 2014. doi:
10.48550/arXiv.1405.7615. (page 54, 60, 61)

[4] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
university press, 1998. doi: 10.1017/CBO9781139172752. (page 8)

[5] JohnWarner Backus. The syntax and semantics of the proposed international
algebraic language of the zurich acm-gamm conference. In IFIP Congress,
1959. (page 5)

[6] Patrick Baudin, François Bobot, Loïc Correnson, Zaynah Dargaye, and Allan
Blanchard. WP Plug-in Manual, 2010. URL http://frama-c.com/download/
frama-c-wp-manual.pdf. (page 20)

[7] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program De-
velopment. Springer Berlin, Heidelberg, 2004. doi: 10.1093/comjnl/bxh141.
(page 3, 45)

[8] F. Boussinot and R. de Simone. The esterel language. Proceedings of the IEEE,
79(9):1293–1304, 1991. doi: 10.1109/5.97299. (page 1, 24)

[9] Bernard Carré and Jonathan Garnsworthy. Spark—an annotated ada sub-
set for safety-critical programming. In Proceedings of the Conference on TRI-
ADA’90, pages 392–402, 1990. doi: 10.1145/255471.255563. (page 19)

[10] Adrien Champion, Arie Gurfinkel, Temesghen Kahsai, and Cesare Tinelli.
Cocospec: A mode-aware contract language for reactive systems. In Inter-
national Conference on Software Engineering and Formal Methods, pages 347–366.
Springer, 2016. doi: 10.1007/978-3-319-41591-8_24. (page 56)

68

https://github.com/sail-pl/SAIL
http://frama-c.com/download/frama-c-wp-manual.pdf
http://frama-c.com/download/frama-c-wp-manual.pdf

Bibliography

[11] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli.
The kind 2 model checker. In International Conference on Computer Aided Ver-
ification, pages 510–517. Springer, 2016. doi: 10.1007/978-3-319-41540-6_29.
(page 55, 60, 61)

[12] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. Designing a
generic graph library using ml functors. Trends in functional programming, 8:
124–140, 2007. (page 45)

[13] John Corcoran. Schemata: The concept of schema in the history of logic. Bul-
letin of Symbolic Logic, 12:219–240, 2006. doi: 10.2178/bsl/1146620060. (page
14)

[14] Denis Cousineau, David Mentré, and Hiroaki Inoue. Automated deductive
verification for ladder programming. arXiv preprint arXiv:1912.10629, 2019.
doi: 10.48550/arXiv.1912.10629. (page 58, 59, 60, 61)

[15] S. Demri and R. Lazic. Ltl with the freeze quantifier and register automata.
In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages
17–26, 2006. doi: 10.1109/LICS.2006.31. (page 28)

[16] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot: a
foundry for the deductive verification of Rust programs. In International
Conference on Formal Engineering Methods, pages 90–105. Springer, 2022. doi:
10.1007/978-3-031-17244-1_6. (page 19)

[17] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander
Schimpf, and Jan-Georg Smaus. A Fully Verified Executable LTL Model
Checker. In Computer Aided Verification, volume 8044 of LNCS, pages 463–
478. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi: 10.1007/
978-3-642-39799-8_31. (page 63)

[18] Nicolas Féral and Alain Giorgetti. A gentle introduction to verification of
parameterized reactive systems. In Formal Methods Teaching Workshop, pages
34–50. Springer, 2023. doi: 10.1007/978-3-031-27534-0_3. (page 51, 60, 61)

[19] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where pro-
grams meet provers. In Programming Languages and Systems, pages 125–
128, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi: 10.1007/
978-3-642-37036-6_8. (page 3, 18)

69

Bibliography

[20] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the tem-
poral analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 163–173, 1980. doi:
10.1145/567446.567462. (page 2)

[21] Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In
Computer Aided Verification, pages 53–65, Berlin, Heidelberg, 2001. Springer
Berlin Heidelberg. doi: 10.1007/3-540-44585-4_6. (page 35)

[22] Thierry Gautier, Paul Le Guernic, and Loic Besnard. Signal: A declarative lan-
guage for synchronous programming of real-time systems. Springer, 1987. doi:
10.1007/3-540-18317-5_15. (page 1, 24)

[23] Gerhard Gentzen. Untersuchungen über das logische schliessen in math.
Zeitschrift39, pages 176–210, 1935. doi: 10.1007/BF01201353. (page 9)

[24] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Protocol Specification, Testing and Veri-
fication XV, pages 3–18. Springer US, 1996. doi: 10.1007/978-0-387-34892-6_1.
Series Title: IFIP Advances in Information and Communication Technology.
(page 32)

[25] George Hagen and Cesare Tinelli. Scaling up the formal verification of lustre
programs with smt-based techniques. In 2008 Formal Methods in Computer-
Aided Design, pages 1–9. IEEE, 2008. doi: 10.1109/FMCAD.2008.ECP.19.
(page 55, 60, 61)

[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language lustre. Proceedings of the IEEE, 79(9):1305–1320,
1991. doi: 10.1109/5.97300. (page 1, 24)

[27] David Harel and Amir Pnueli. On the development of reactive systems. In
Logics andModels of Concurrent Systems, 1989. doi: 10.1007/978-3-642-82453-1_
17. (page 1)

[28] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, oct 1969. doi: 10.1145/363235.363259. (page 7)

[29] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969. doi: 10.1145/363235.
363259. (page 13)

70

Bibliography

[30] Johan Anthony Wilem Kamp. Tense logic and the theory of linear order. Univer-
sity of California, Los Angeles, 1968. (page 28)

[31] F. Kröger and S. Merz. Temporal Logic and State Systems. Texts in Theoretical
Computer Science. An EATCS Series. Springer Berlin Heidelberg, 2008. doi:
10.1007/978-3-540-68635-4. (page 1)

[32] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
transactions on software engineering, pages 125–143, 1977. doi: 10.1109/TSE.
1977.229904. (page 1)

[33] K Rustan M Leino. Dafny: An automatic program verifier for functional cor-
rectness. In International conference on logic for programming artificial intelligence
and reasoning, pages 348–370. Springer, 2010. doi: 10.1007/978-3-642-17511-4_
20. (page 18)

[34] Martin Leucker and César Sánchez. Regular linear temporal logic. In Theo-
retical Aspects of Computing – ICTAC 2007, pages 291–305, Berlin, Heidelberg,
2007. Springer Berlin Heidelberg. doi: 10.1007/978-3-540-75292-9_20. (page
28)

[35] Leo Louis. Working principle of arduino and using it as a tool for study and
research. International Journal of Control, Automation, Communication and Sys-
tems (IJCACS), 1(2):21–29, 2016. doi: 10.5121/ijcacs.2016.1203. (page 3)

[36] Cláudio Belo Lourenço, Denis Cousineau, Florian Faissole, Claude Marché,
David Mentré, and Hiroaki Inoue. Automated verification of temporal
properties of ladder programs. In International Conference on Formal Meth-
ods for Industrial Critical Systems, pages 21–38. Springer, 2021. doi: 10.1007/
978-3-030-85248-1_2. (page 58, 59, 60, 61)

[37] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings of
the sixth annual ACM Symposium on Principles of distributed computing - PODC
’87, pages 205–205. ACM Press, 1987. doi: 10.1145/41840.41857. (page 28)

[38] Nicolas Markey. Temporal logic with past is exponentially more succinct.
Bulletin-European Association for Theoretical Computer Science, 79:122–128, 2003.
(page 27)

[39] Alain Mebsout and Cesare Tinelli. Proof certificates for smt-based model
checkers for infinite-state systems. In 2016 Formal Methods in Computer-Aided

71

Bibliography

Design (FMCAD), pages 117–124. IEEE, 2016. doi: 10.1109/FMCAD.2016.
7886669. (page 57)

[40] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A veri-
fication infrastructure for permission-based reasoning. In Verification, Model
Checking, andAbstract Interpretation: 17th International Conference, VMCAI 2016,
St. Petersburg, FL, USA, January 17-19, 2016. Proceedings 17, pages 41–62.
Springer, 2016. doi: 10.1007/978-3-662-49122-5_2. (page 18)

[41] Gordon D Plotkin. A structural approach to operational semantics. The Jour-
nal of Logic and Algebraic Programming, 1981. doi: 10.1016/j.jlap.2004.05.001.
(page 7)

[42] François Pottier. Correct, fast LR(1) unparsing. In 35es Journées Francophones
des Langages Applicatifs (JFLA 2024), 2024. (page 7)

[43] François Pottier Yann Régis-Gianas. Menhir reference manual, 2016. https:
//gallium.inria.fr/~fpottier/menhir/manual.pdf. (page 45)

[44] Guido Salvaneschi, Alessandro Margara, and Giordano Tamburrelli. Reac-
tive programming: A walkthrough. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, pages 953–954, 2015. doi: 10.1109/
ICSE.2015.303. (page 1)

[45] Alexander Schimpf, Stephan Merz, and Jan-Georg Smaus. Construction
of Büchi automata for LTL model-checking verified in Isabelle/HOL. In
22nd Intl. Conf. Theorem Proving in Higher-Order Logics (TPHOLs 2009),
LNCS, pages 424–439, Munich, Germany, 2009. Springer. doi: 10.1007/
978-3-642-03359-9_29. (page 33)

[46] Robert D. Tennent. The denotational semantics of programming languages.
Communications of the ACM, 19(8):437–453, 1976. doi: 10.1145/360303.360308.
(page 7)

[47] Pierre Wolper. The tableau method for temporal logic: an overview. Logique
et Analyse, 28(110):119–136, 1985. (page 32)

72

https://gallium.inria.fr/~fpottier/menhir/manual.pdf
https://gallium.inria.fr/~fpottier/menhir/manual.pdf

	Contents
	List of Figures
	Acronyms
	Introduction
	Preliminaries
	Programs & Verification
	Reactive programming

	Hardy
	Language
	Translation
	Correctness
	Implementation

	Discussion
	Current shortcomings
	Alternative ideas

	Related Work
	Verification of Parameterized Reactive Systems
	Verification of Simulink models
	Verification of Lustre programs
	Verification of Ladder programs
	Summary of the approaches

	Conclusion and future work
	Conclusion
	Future Work

	Appendices
	Additional example
	Bibliography

