Covert Channels and their Prevention in Building Automation Protocols – A Prototype Exemplified Using BACnet

Steffen Wendzel^{1,2}, Benjamin Kahler², Thomas Rist²
¹University of Hagen / ²Augsburg University of Applied Sciences

2nd Workshop on Security of Systems & Software Resiliency November 20, 2012, Besançon

Outline

- Covert/Side Channels and Active Wardens
- Building Automation Systems and BACnet
- Covert/Side Channels in BAS
- Building-aware Active Warden
- Covert Channels in BACnet
- Prevention of BACnet-based Covert Channels
- Conclusion & Future Work

Covert Channels

- A communication channel not designed to be used for a communication
 - Presented by Lampson in 1973
- CCs break mandatory security policies
 - Multi-Level Security (MLS) → Bell-La Padula
- Timing and Storage Channels
- Can be used to exfiltrate confidential data from networks

Active Wardens

- Passive wardens try to detect steganographic elements within information transfers
- Active wardens try to remove such steganographic elements
 - Like OpenBSD pf scrubbing or Snort normalizer

Building Automation Systems

- Early systems: HVAC
 - Heating/Ventilation/Air-Conditioning
- Today used for nearly everything
 - Ambient Assisted Living (AAL)
- Various low-level protocols
 - e.g., EIB/KNX, BACnet, proprietary protocols

HomeMatic Central Control Unit (CCU)

Building Automation Systems

BACnet

- Selected BACnet (Building Automation and Control Network) due to its popularity
- Developed by ASHRAE¹
- BACnet comprises its own protocol stack (OSI layers 1-3 and 7)
- Open OSI standard since 2003
- One of the most important BAS protocol suites (e.g., used in German Parliament building)

Covert/Side Channels

Side Channel:

Unintentional sender (information leak), intentional receiver

Covert Channel:

- Intentional sender, intentional receiver
- Monitoring of inhabitants, employees, ...
- Bypassing enterprise network security means by leaking confidential information through the BAS

Read-Up/Write-Down in BAS (\$\square\) 174SE

Example: Side Channel in BAS

- Passive monitoring of all events within the BAS network
- Active information request of unintentional leaked information via middleware
 - Is my boss currently in his office? If not, I could try to steal a secret document.
 - Idea: Request BAS information such as
 - lighting on/off, room temperature, ...

Example: Covert Channel in BAS

- Collaborative information transfer violating a mandatory access policy
- Example: Papal Conclave

Example: Covert Channel in BAS

- Collaborative information transfer violating a mandatory access policy
- Example: Papal Conclave

High/Low Covert Channels

- High-level Covert Channels are
 - based on the interaction with the BAS
 - → Building-aware active warden
- Low-level Covert Channels
 - embed hidden data in BAS network protocols
 - → introduction of MLS into BAS network environment

Building-Aware Active Warden

- Based on a previous development
 - "HASI" (Home Analytical System Interface)
 - Middleware (initially developed by student project group)
 - Supported HomeMatic by eq-3 and CurrentCost
 - No mentionable security features
 - Web-based Interface (the only "App")

Nabaztag Rabbit ™ and CurrentCost

Active Warden Concept

- employee should not have read access to BAS data of the manager's office
- member of papal conclave should not have write access to actuators in other rooms but the election room

Building-aware Active Warden

- Solution: MLS in a building-aware Act.Warden
 - Employee will get no read-up access to the manager office BAS devices
 - Member of papal conclave will be unable to control devices in the the covert channel receiver's room
- Our active warden must have a database containing all person's and device's security levels

Active Warden Concept

Application:

Active-Warden Concept

Location of the Building-aware Active Warden:

Nov. 20, 2012

Local User (e.g., an inhabitant or an employee)

Active-Warden Concept

- Extend existing middleware with MLS
- RBAC was already implemented → we only added MLS levels and NRU/NWD rules

Application 1	pplication 1 Applic		ation 2		Application n
Energy Monitoring Home		Control			Awareness App.
Unified Application Programming Interface (network I/O abstraction and multiplexing)					
Network Communication Layer (application layer based transfer over SSL)					
Building-aware Active Warden (hardware abstraction; contains database for RBAC, device states, users,)					
Building A		Building	В	Bu	ilding C
HomeMatic	ZigBee	EIB		HomeMatic	

Active-Warden Concept

MLS levels based on the organizational chart

MLS-Level **CEO** Head of Head of Head of IT D&R Sales Research Develop. Person X Person Y Person Z 3 Team Lead. Team Lead. Developer1 Some Body 5 Developer2

Examples for Covert Channels in BACnet

- Covert Storage Channel
 - Use n BACnet message types to transfer ld n bit/pkt
- Covert Timing Channel
 - Modify inter-arrival times of a selected message

BACnet CC Prevention

- Idea: Introduce topological changes in the BACnet environment
 - Separate networks into different MLS areas, e.g. one network for (Top Secret, {management}).
 - Use the BACnet Firewall Router (BFR) to prevent traffic that violates the security policy
 - BBMD → Internet connectivity
 - NAT

MLS-BACnet Topology

MLS-BACnet Topology

Results

- Configuration complex due to over-engineered BFR design
- BFR currently not able to filter all potential covert channel messages
- No new BFR releases since 2004
- Management level not taken into account (BFRs must be configured to allow bi-directional communication with the management layer)

Primary level BFR is a single point of failure

Results

 Read-ups and Write-downs are easy to block for high-level covert channels (a) but hard to block for low-level covert channels (b):

Nov. 20, 2012

26

Future Work

- Present/detect/limit/prevent low-level covert/side channels in other building automation protocols
 - e.g. in EIB/KNX or in LON
- Are protocol hopping covert channels (PHCC) useful in BAS?

Are there any Questions?

post-conference comments

- This research was supported by the IT4SE research cooperation (NZL 10/803 IT4SE) under the APRA initiative funded by the German Federal Ministry of Education and Research.
 - http://www.it4se.net
- Own related work for additional information:
 - Steffen Wendzel: Covert and Side Channels in Buildings and the Prototype of a Building-aware Active Warden, First IEEE International Workshop on Security and Forensics in Communication Systems (SFCS 2012), pp. 8339-8344, Ottawa, Canada, 2012.
 - Thomas Rist, Steffen Wendzel, Masood Masoodian, Elisabeth André: Next-Generation Home Automation Systems, In: Kempter G. & Weidmann K.H. (Hrsg.) Techniken fü Menschen im nächsten Jahrzehnt --Beiträge zum Usability Day X, Pabst Science Publishers, pp. 80-87, 2012.
 - Steffen Wendzel, Thomas Rist, Elisabeth André, Masood Masoodian: A Secure Interoperable Architecture for Building-Automation Applications, in Proc. 4th Int. Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), pp. B:1-B:5, Barcelona, Spain, 2011.
 - Thomas Rist, Steffen Wendzel, Masood Masoodian, Paul Monigatti, Elisabeth André: Creating Awareness for Efficient Energy Use in Smart Homes, In Proc. Intelligent Wohnen. Zusammenfassung der Beiträge zum Usability Day IX, Dornbirn, Austria, Feuerstein Gerhild, Ritter Walter (Hrsg.), pp. 162-168, 2011.

More of our publications regarding network covert channels: http://www.wendzel.de/publications/