Using Infection Markers as a Vaccine against Malware Attacks

Andre Wichmann

Elmar Gerhards-Padilla

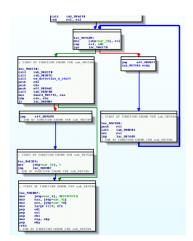
elmar.gerhards-padilla@fkie.fraunhofer.de

andre.wichmann@fkie.fraunhofer.de

cydef@fkie.fraunhofer.de

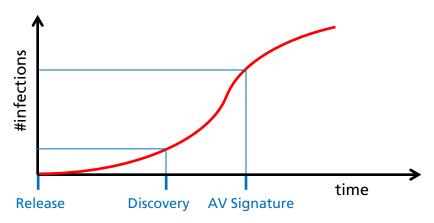
Outline

- Motivation and General Idea
- Infection Marker Taxonomy
- Automated Extraction Framework
- Evaluation
- Conclusion



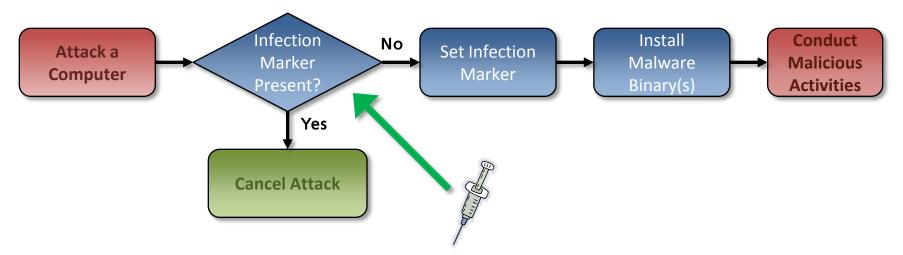
Malware

- Malware is a big problem for (networked) systems
 - Not only on desktop PCs
 - Also for mobile and embedded devices
- Malware has a high value for their developers
 - Financial: Online banking, data theft, ...
 - Political: Espionage and sabotage
- Modern malware gets more and more complex
 - Sophisticated evasion techniques (*Lexotan32*...)
 - Advanced anti reverse engineering tricks
 - Complex code (Stuxnet...)



Malware Analysis

- Typical timeline:
 - New malware gets released
 - Malware is discovered by AV researchers
 - Malware gets analyzed
 - Detection and mitigation techniques are released
- Short analysis time is critical!
 - The longer malware can spread unhindered, the more damage potential it has



Using Infection Markers as Vaccine

Typical stages of a malware attack (simplified):

- Idea: Set infection marker on clean systems to immunize them
- Automate the process of extracting infection markers
- During deeper analysis,
 - Propagation of malware is mitigated
 - Critical systems are protected

Infection Marker Taxonomy

Infection Marker Characteristics

- Developers of malware don't want to infect the same system twice
 - No additional advantage (system resources)
 - Could affect system stability
- Use Infection markers to detect installation of same malware family

- Infection markers must be *persistent/accessible* and *deterministic* Infection markers should be *unique* and *hidden*
- Examples

. . .

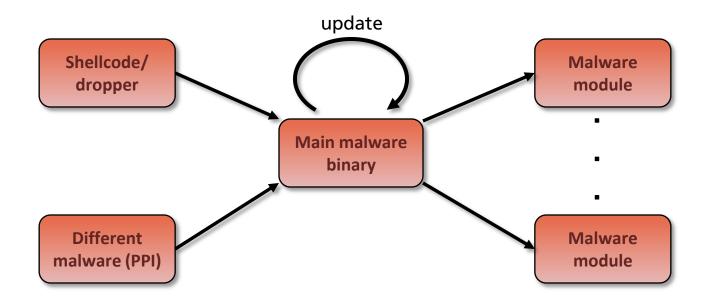
- Mutexes ("uterm12", "Microsoft Debugger", "kj65akjnlk264lk11")
- Registry keys ("NTVDM Trace" = "19790509" Stuxnet)
- Presence of a file

Fraunhofer

Infection Marker Taxonomy

Marker location and lifetime

- Permanent (registry key, BIOS, ...)
- Volatile (mutex, named pipe, ...)
- Volatile markers have to be set each system reboot


Marker type

- Static: Fixed for all malware instances (Stuxnet)
- Dynamic: Different for each infected system (Conficker)
- Dynamic markers harder to extract (algorithm!)
- Coupling with malicious functionality
 - Independent of malware functionality (mutex not used otherwise, ...)
 - Part of/dependent on malware functionality (autostart key, API hook, ...)
 - Take into account when using marker as a vaccine!

Infection Marker Taxonomy (cont.)

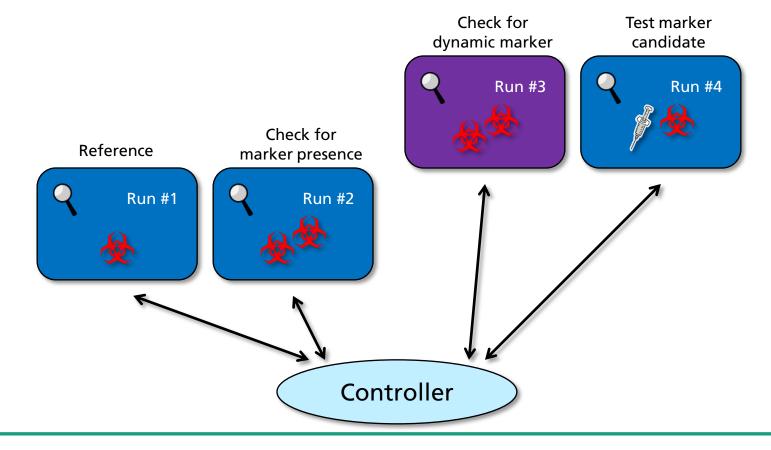
- Time/Location of marker check
 - Check for marker can be in any malware binary

Could make extraction of marker harder

Not always easy to get hold of dropper

Automated Extraction Framework

General Idea


In general, reverse engineering is very time consuming

- Typical RE questions are very open in nature ("What is the C&C protocol?", "What is the damage potential?", ...)
- Many intermediate steps can be automated...
- ...but for special details and the big picture, a human expert is needed
- Extracting infection markers can be automated
- Assumptions:
 - Markers are set/checked for via confined set of OS APIs
 - Markers are checked early in the malware binary
 - If a marker is present, malware terminates quickly

Framework architecture

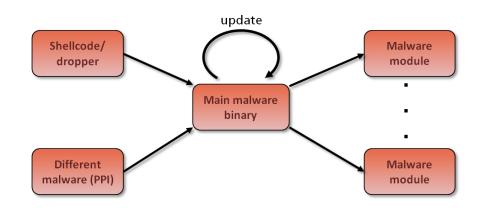
- Controller controls four virtual analysis environments
- Process Observer monitors relevant API calls of the malware

Evaluation

Evaluation Setup

Questions to be answered

- How many malware samples use infection markers?
- What types of markers are used?
- How many malware families are susceptible to vaccination?
- Corpus of 1496 malware samples
 - Randomly selected
 - From between 09/2009 and 09/2011
 - Sources: Honeypots, user submissions, spam traps
- Case studies
 - Sality
 - Conficker



Results: Corpus

889 out of 1496 samples (59.4%) use some kind of infection marker

No statement can be made about the other 40.6%

- Detected analysis environment?
- "unwanted software" like keygens?
- Only one component of a malware?

Results: Corpus (cont.)

Rest of the results about the samples that do use an infection marker

For **95.2%** of the samples, the marker could be determined

- Run #4 shows that they are susceptible to vaccination!
- Only for 4.8%, no conclusion could be drawn about marker type

98.4% use mutexes

- 1.0% use registry keys
- 0.3% use named pipes
- 0.1% use files
- 99.4% use static markers
 - Only 0.6% use dynamic markers (named pipe "AVIRA_<number>", mutexes)

Results: Case Studies

- Qualitative analysis: Look at two most widespread malware families (Symantec Intelligence Report 02/2012)
 - Conficker, Sality
- Sality: Highly polymorphic file infector
- Creates global static mutex as infection marker
- Framework successfully identifies and extracts the marker
- Vaccination program is automatically created
- **Conficker:** Highly sophisticated worm
- Creates global dynamic mutex based on host name as infection marker
- Framework successfully identifies marker and its type
- Provides information for human expert to easily extract algorithm

Conclusion and Outlook

- Framework can automatically provide a vaccination program for a majority of malware
 - Mitigates propagation of new malware and protects critical systems
- Limitation: Dynamic analysis
 - Extend PoC framework to VM introspection
- Limitation: Unusual markers
 - Monitor on instruction level instead of API level
 - Use dataflow analysis to extract infection marker code
 - Works for dynamic markers, too
- Malware will likely use infection markers in the future, too
 - Inherent properties make for a good counter-measure

Questions?

