
© Cyber Defense Research Group, Fraunhofer FKIE

Andre Wichmann andre.wichmann@fkie.fraunhofer.de

Elmar Gerhards-Padilla elmar.gerhards-padilla@fkie.fraunhofer.de

Using Infection Markers as a Vaccine
against Malware Attacks

cydef@fkie.fraunhofer.de

Cyber Defense

© Cyber Defense Research Group, Fraunhofer FKIE

Outline

 Motivation and General Idea

 Infection Marker Taxonomy

 Automated Extraction Framework

 Evaluation

 Conclusion

© Cyber Defense Research Group, Fraunhofer FKIE

Malware

 Malware is a big problem for (networked) systems

 Not only on desktop PCs

 Also for mobile and embedded devices

 Malware has a high value for their developers

 Financial: Online banking, data theft, ...

 Political: Espionage and sabotage

 Modern malware gets more and more complex

 Sophisticated evasion techniques (Lexotan32...)

 Advanced anti reverse engineering tricks

 Complex code (Stuxnet...)

© Cyber Defense Research Group, Fraunhofer FKIE

Malware Analysis

 Typical timeline:

 New malware gets released

 Malware is discovered by AV researchers

 Malware gets analyzed

 Detection and mitigation techniques are released

 Short analysis time is critical!

 The longer malware can spread unhindered, the more
damage potential it has

Release
time

#
in

fe
ct

io
n

s

Discovery AV Signature

© Cyber Defense Research Group, Fraunhofer FKIE

Using Infection Markers as Vaccine

Attack a
Computer

Infection
Marker

Present?

Cancel Attack

Set Infection
Marker

Install
Malware
Binary(s)

Conduct
Malicious
Activities

No

Yes

 Typical stages of a malware attack (simplified):

 Idea: Set infection marker on clean systems to immunize them

 Automate the process of extracting infection markers

 During deeper analysis,

 Propagation of malware is mitigated

 Critical systems are protected

© Cyber Defense Research Group, Fraunhofer FKIE

Infection Marker Taxonomy

© Cyber Defense Research Group, Fraunhofer FKIE

Infection Marker Characteristics

 Developers of malware don’t want to infect the same system twice

 No additional advantage (system resources)

 Could affect system stability

 Use Infection markers to detect installation of same malware family

 Infection markers must be persistent/accessible and deterministic

 Infection markers should be unique and hidden

 Examples

 Mutexes (“uterm12”, “Microsoft Debugger”, “kj65akjnlk264lk11”)

 Registry keys (“NTVDM Trace” = “19790509” - Stuxnet)

 Presence of a file

 ...

© Cyber Defense Research Group, Fraunhofer FKIE

Infection Marker Taxonomy

 Marker location and lifetime

 Permanent (registry key, BIOS, ...)

 Volatile (mutex, named pipe, ...)

 Volatile markers have to be set each system reboot

 Marker type

 Static: Fixed for all malware instances (Stuxnet)

 Dynamic: Different for each infected system (Conficker)

 Dynamic markers harder to extract (algorithm!)

 Coupling with malicious functionality

 Independent of malware functionality (mutex not used otherwise, ...)

 Part of/dependent on malware functionality (autostart key, API hook, ...)

 Take into account when using marker as a vaccine!

© Cyber Defense Research Group, Fraunhofer FKIE

Infection Marker Taxonomy (cont.)

 Time/Location of marker check

 Check for marker can be in any malware binary

Shellcode/
dropper

Different
malware (PPI)

Main malware
binary

Malware
module

Malware
module

.

.

.

update

 Could make extraction of marker harder

 Not always easy to get hold of dropper

© Cyber Defense Research Group, Fraunhofer FKIE

Automated Extraction Framework

© Cyber Defense Research Group, Fraunhofer FKIE

General Idea

 In general, reverse engineering is very time consuming

 Typical RE questions are very open in nature (“What is the C&C protocol?”,
“What is the damage potential?”, ...)

 Many intermediate steps can be automated...

 ...but for special details and the big picture, a human expert is needed

 Extracting infection markers can be automated

 Assumptions:

 Markers are set/checked for via confined set of OS APIs

 Markers are checked early in the malware binary

 If a marker is present, malware terminates quickly

© Cyber Defense Research Group, Fraunhofer FKIE

Framework architecture

 Controller controls four virtual analysis environments

 Process Observer monitors relevant API calls of the malware

Controller

Run #1 Run #2

Run #3 Run #4

Reference

Check for
dynamic marker

Check for
marker presence

Test marker
candidate

© Cyber Defense Research Group, Fraunhofer FKIE

Evaluation

© Cyber Defense Research Group, Fraunhofer FKIE

Evaluation Setup

 Questions to be answered

 How many malware samples use infection markers?

 What types of markers are used?

 How many malware families are susceptible to vaccination?

 Corpus of 1496 malware samples

 Randomly selected

 From between 09/2009 and 09/2011

 Sources: Honeypots, user submissions, spam traps

 Case studies

 Sality

 Conficker

© Cyber Defense Research Group, Fraunhofer FKIE

Results: Corpus

 889 out of 1496 samples (59.4%) use some kind of infection marker

 No statement can be made about the other 40.6%

 Detected analysis environment?

 “unwanted software” like keygens?

 Only one component of a malware?

© Cyber Defense Research Group, Fraunhofer FKIE

Results: Corpus (cont.)

 Rest of the results about the samples that do use an infection marker

 98.4% use mutexes

 1.0% use registry keys

 0.3% use named pipes

 0.1% use files

 For 95.2% of the samples, the marker could be determined

 Run #4 shows that they are susceptible to vaccination!

 Only for 4.8%, no conclusion could be drawn about marker type

 99.4% use static markers

 Only 0.6% use dynamic markers (named pipe “AVIRA_<number>”, mutexes)

© Cyber Defense Research Group, Fraunhofer FKIE

Results: Case Studies

 Qualitative analysis: Look at two most widespread malware families
(Symantec Intelligence Report 02/2012)

 Conficker, Sality

 Sality : Highly polymorphic file infector

 Creates global static mutex as infection marker

 Framework successfully identifies and extracts the marker

 Vaccination program is automatically created

 Conficker: Highly sophisticated worm

 Creates global dynamic mutex based on host name as infection marker

 Framework successfully identifies marker and its type

 Provides information for human expert to easily extract algorithm

© Cyber Defense Research Group, Fraunhofer FKIE

Conclusion and Outlook

 Malware will likely use infection markers in the future, too

 Inherent properties make for a good counter-measure

 Limitation: Dynamic analysis

 Extend PoC framework to VM introspection

 Limitation: Unusual markers

 Monitor on instruction level instead of API level

 Use dataflow analysis to extract infection marker code

 Works for dynamic markers, too

 Framework can automatically provide a vaccination program for a
majority of malware

 Mitigates propagation of new malware and protects critical systems

© Cyber Defense Research Group, Fraunhofer FKIE

Questions?

