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Polynomials

Monomial: Let α = (α1, . . . , αn) ∈ Nn

Xα = Xα1
1 Xα2

2 · · ·Xαn
n

Degree = deg(Xα) = α1 + · · ·+ αn

Polynomial: Let A be a finite set of Nn and X = (X1, . . . , Xn).

F =
∑
α∈A

cαXα with cα ∈ Q,R,C and cα 6= 0

Degree= deg(F ) = max(deg(Xα), α ∈ A)

Basic semi-algebraic set.

F1 = · · · = Fp = 0, G1 σ 0, . . . , Gs σ 0

with σ ∈ {>,≥}, Fi, Gj in Q[X1, . . . , Xn] of degree ≤ D.

Semi-algebraic sets are the class of sets stable by finite unions, intersections,

complements of basic semi-algebraic sets.



Examples and first observations

The very basic polynomials that everybody met

are linear polynomials.

BUT allowing inequalities/inequations make

things complicated

X2
1 +X2

2 +X2
3 − 1→

x1

x2

x3

X1X2 − 1→

More general situations

(x+ y + z − 1)(xy + yz + xz) = 2xyz



Another observation

Consider

F1 = · · · = Fn = 0

such that

• Fi ∈ Q[X1, . . . , Xn]

• Fi = L1,i · · ·LD,i with Lj,i ∈ Q[X1, . . . , Xn] and deg(Lj,i) = 1.

If all linear forms are linearly independent then the system has

Dn solutions and all of them are real.

Bézout bound = deg(F1) · · · deg(Fn)

→ sharp bound on the number of solutions in Cn.



Real algebraic geometry / Algebraic geometry

Real Algebraic Geometry: Study of real solutions of polynomial

systems of equations and inequalities with real coefficients and maps

between them.

Computational aspects: Start with Fourier (Linear programming),

Univariate cases (17-th – 19-th, Descartes/Vincent, Sturm).

Multivariate aspects → Tarski (30′s – Decidability) / Collins (1975) –

A decision method for elementary algebra and geometry

Algebraic Geometry: Study of complex solutions of polynomial sys-

tems of equations and inequalities with complex coefficients and maps

between them.

Computational aspects: 19-th century (Macaulay, Kronecker)

Buchberger (Gröbner bases, 60′s), revisit of Macaulay’s theory, etc.

Eliminate, eliminate, eliminate Eliminate the eliminators of the elimination

theory S. S. Abhyankar



Emptiness decision – Computing sample points in semi-algebraic sets

Fi, Gj in Q[X1, . . . , Xn]

Input: F1 = · · · = Fp = 0, G1 > 0, . . . , Gs > 0 that defines S ⊂ Rn

Output: true iff S 6= ∅ else false

This is a decision problem → Exact/Symbolic computation.

Input: F1 = · · · = Fp = 0, G1 > 0, . . . , Gs > 0 that defines S ⊂ Rn

Output: Some solutions whenever they exist.

• How to encode them? What to do when ]S =∞?

• Representative points in all the connected components of S.

• Quantitative results on the number of connected components of S?

• Algebraic nature of the problem → Exact/Symbolic computation.



One-block quantifier elimination

Fi, Gj in Q[X1, . . . , Xn, Y1, . . . , Yt]

Input: F1 = · · · = Fp = 0, G1 > 0, . . . , Gs > 0 that defines S ⊂ Rn × Rt

Output: A description of πY (S)

where πY : (x1, . . . , xn, y1, . . . , yt)→ (y1, . . . , yt)

∃ x ∈ Rn F(x,y) = 0,G(x,y) > 0⇐⇒ Ψ(y)

Examples:

� ∃x ∈ R x2 + bx+ c = 0⇔ b2 − 4c ≥ 0

� ∃x ∈ R ax2 + bx+ c = 0⇔
(a 6= 0 ∧ b2 − 4c ≥ 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a = 0 ∧ b = 0 ∧ c = 0)

Output is a formula → Symbolic computation



Connectivity queries



Outline of the course

• Part I: Motivations – basic objects – State of the art

• Part II: Some algebra and reductions – Polynomial optimization

• Part III: Computing sample points in semi-algebraic sets

• Part IV: Quantifier elimination over the reals

• Part V: Connectivity queries



Part I:

Motivations – basic objects

State of the art



Semi-algebraic sets and their properties

Recall that the class of semi-algebraic sets in Rn

� contains all sets that are described by F ≥ 0 for some F ∈ R[X1, . . . , Xn];

� is stable by taking finite intersections, finite unions and complements of

the above sets.

Semi-algebraic sets of R are finite unions of intervals and points.

Counter-example: The graph of x→ sin(x) is not semi-algebraic.

Another example: The set {(cos(t), sin(t)) ∈ R2 | t ∈ R} is semi-algebraic.

Real algebraic sets of Rn is the class of subsets of Rn that is defined as the

real solution set of F1 = · · · = Fp = 0 with Fi ∈ R[X1, . . . , Xn].

All real algebraic sets can be described by a single equation.

Real algebraic sets of R are finite unions of points.



Semi-algebraic sets and their properties

Let S ⊂ Rn × Rt be a semi-algebraic set and π : (x, y) ∈ Rn × Rt → y.

Tarski-Seidenberg’s theorem

π(S) is a semi-algebraic set.

Quantifier elimination (and many other problems) is decidable !

Finiteness of connected components

S has finitely many connected components and

all of them are semi-algebraic sets.

Let S ⊂ Rn be a real algebraic set defined by polynomials of degree ≤ D.

Quantitative aspects

The number of connected components of S is bounded by O(D)n.



Algebraic sets and their properties

Algebraic sets in Cn are the sets of complex solutions to polynomial

systems of equations with coefficients in C.

A real algebraic set is the real trace of an algebraic set defined by polynomials

with coefficients in R.

Zariski topology.

Algebraic sets are closed sets for the Zariski topology.

By definition, Zariski open sets are complements of Zariski closed sets. A

non-empty Zariski open set is dense in Cn.

Constructible sets are finite unions of sets which are the intersection of a

(Zariski) open set and a (Zariski) closed set.

Projections. The projection of a constructible set is constructible.

The projection of an algebraic set is a constructible set.



Some applications to our algorithmic problems (I)

Gene regulation → Dynamical Systems

Ẋ = M(X)

Information on the eigenvalues of M(X)

→ Emptiness decision on the real solution set of

polynomial systems.

10 variables – degree 8

Voronoi diagram of 3 lines in R3

Topological invariance determined by the existence

of real solutions to a polynomial inequality.

4 variables – degree 18



Some applications to our algorithmic problems (II)

Size optimization of sextic polynomials in the number field sieve,

S. Bai and P. Zimmermann, Math. of Comp., 2012.

Problem: global infimum of a rational fraction under some linear constraints.

This is a One-Block Quantifier Elimination Problem

Input size:

• 6 variables are involved;

• Degree of the polynomial is 12 (162 monomials);

• Coefficients of bit size ' 254 bits;

Output:

• 14 local minimizers very close and of large magnitude (' 1067);

• 200 digits are needed to distinguish these points;



Some applications to our algorithmic problems (III)

S is a configuration space (algebraic, semi-algebraic)

Problem: given two query points q0 and q1, find a continuous path

γ : [0, 1]→ S such that

γ(0) = q0, γ(1) = q1, ∀t ∈ [0, 1]

or determine that such a path does not exist.



Algorithmic Needs

� Reliability issues – crucial for decision problems/algebraic nature

� Efficiency issues – complexity may be exponential in n

� Main challenge: obtain fast implementations through algorithms with

asymptotically optimal complexities.

� Use of symbolic computation / computer algebra.

I Efficient tools for algebraic/exact computations

I Large algorithmic scope (differential algebra → arithmetics)

I BUT algebraic manipulations on polynomial expressions give

information on complex roots

� Millions of users.



State of the art

Collins ∼ 70’s Cylindrical algebraic decomposition – doubly exponential in n

Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning

Software: QEPCAD, Redlog, SyNRAC, Mathematica, Maple, ...

. Quest for algorithms singly exponential in n (∼ 90′s)

Grigoriev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno, Basu/Pollack/Roy

Existence DO(n) ∼ O
(
δ3
)

(regular systems) else ∼ O
(
δ4
)

with δ = Dp(D − 1)n−p
(
n−1
p−1

)
One-Block QE DO(nt) ∼ O

(
D4n dim

)
 hypersurfaces Bannwarth/S.

Connectivity DO(n2)

Software: RAGlib

. Challenge: combine theoretical and practical efficiency

. Primary goal: obtain fast and reliable software → RAGlib

. Better understanding of the complexity → constant in the exponent?



Part II: Some algebra and reductions
Polynomial optimization



Encoding finite (real) algebraic sets

Easy (univariate) case: q(T ) = 0 + isolating intervals for real roots.

Let V ⊂ Cn be a finite algebraic set → parametrizations

Xn = qn(T )
...

X1 = q1(T )

q(T ) = 0

with q square-free

+ isolating boxes to encode V ∩ Rn

We may also use rational parametrizations

Xn = qn(T )/q0(T )
...

X1 = q1(T )/q0(T )

q(T ) = 0

with gcd(q, q0) = 1.

Note that deg(q) = ]V .



Algebraic operations – Ideals

Parametrizations may be obtained by algebraic operations.

Recall that V ⊂ Cn is given as the solution set of F1 = · · · = Fp = 0.

Nullstellensatz (Hilbert)

V = ∅ iff there exists Q1, . . . , Qp in Q[X1, . . . , Xn] s.t. 1 = Q1F1 + · · ·QpFp.

{Q1F1 + · · ·+QpFp} is the ideal 〈F1, . . . , Fp〉
Let Qd[X1, . . . , Xn] = {F ∈ Q[X1, . . . , Xn] | deg(F ) ≤ d}.

Note that 〈F1, . . . , Fp〉 ∩Qd[X1, . . . , Xn] is a finite-dimensional Q-vector space.

→ reductions to linear algebra are around.

Let πi : (x1, . . . , xn)→ (x1, . . . , xi).

Elimination theorem

〈F1, . . . , Fp〉 ∩Q[X1, . . . , Xi] defines the Zariski closure of πi(V ).



Gröbner bases (I)

F1 = · · · = Fp = 0 in Q[X1, . . . , Xn]

Assume that the number of monomials == the number of equations
X1X2 +X2

3 −X2X3 = 1

X1X2 + 2X2
3 +X2X3 = 3

5X1X2 −X2
3 +X2X3 = 7

� Substitute monomials by new variables


Y1 + Y2 − Y3 = 1

Y1 + 2Y2 + Y3 = 3

5Y1 − Y2 + Y3 = 7

 

F1 →
F2 →
F3 →


1 1 −1 1

1 2 1 3

5 −1 1 7


� Solve the linear system (gaussian elimination) and retrieve the initial

solutions

BUT, usually number of equations � number of monomials



Gröbner bases (II)

Need of more rewriting rules  monomial ordering  Macaulay’s matrix

Mac�(F, d) =

m1 · · · · · · m`(d),d

t1F1 →
...

tkFp →


· · · · · · · · · · · ·
. . .

...
...

...

· · · · · · · · · · · ·

 with d ≥ deg(tiFj)

Property For d large enough, a row echelon form of Mac�(F, d) provides a

basis of 〈F〉 ∩Qd[X]

Gröbner bases (FGb, Magma, ...) Buchberger, Faugère (F4 and F5)

Finite case When ]Sols <∞, q(T ) = 0, X1 = q1(T ), . . . , Xn = qn(T )

from a Gröbner basis + extra linear algebra operations



From semi-algebraic sets to real algebraic sets

Let S ⊂ Rn be defined by

F1 = · · · = Fp = 0, G1 > 0, . . . , Gs > 0

and C be a connected component of S.

Theorem There exists e > 0 s.t. for any 0 < e′ < e the following holds.

There exists {i1, . . . , i`} ⊂ {1, . . . , s} and a connected component C ′ of the

real algebraic set defined by

F1 = · · · = Fp = 0, Gi1 = · · · = Gis = e′

such that C ′ ⊂ C.



Sample points: first reduction

System of equations and inequalities in Q[X1, . . . , Xn]

⇓

Systems of equations in Q[X1, . . . , Xn]

⇓

Systems of equations in Q[X1, . . . , Xn]

with finitely many complex solutions

⇓

Rational parametrizations q(T ) = 0, Xi = qi(T )/q0(T )

We retrieve a univariate situation.



One-Block Quantifier Elimination: second reduction

∃X ∈ RnΦ(X,Y)⇐⇒ Ψ(Y)

This can be seen as a decision problem with parameters

→ running algorithms for computing sample points yield

q(Y1, . . . , Yr, T ) = 0, Xi = qi(Y1, . . . , Yr, T )/q0(Y1, . . . , Yr, T )

⇓
Sturm-like algorithm on q(Y1, . . . , Yr, T ) = 0

⇓

Conditions on Y1, . . . , Yr .



Connectivity queries: third reduction

Connectivity queries in semi-algebraic sets

⇓

Connectivity queries in real algebraic sets

⇓

Reduction to the curve case.

q(U, T ) = 0, Xi = qi(U, T )/q0(U, T )

We retrieve a bivariate situation.



Polynomial optimization – Critical points (I)

Reduction of the dimension

through Global Optimization

Properties of Critical Points

Vorobjov, Renegar, Gournay/Risler,

Heintz/Roy/Solerno, Basu/Pollack/Roy 96



Polynomial optimization – Critical points and polar variety (II)

For 1 ≤ i ≤ n, let πi : (x1, . . . ,xn)→ (x1, . . . ,xi) and F = (F1, . . . , Fp)

V = V (F) ⊂ Cn, jac(F, i) =


∂F1

∂Xi+1
· · · · · · ∂F1

∂Xn

∂F2
∂Xi+1

· · · · · · ∂F2
∂Xn

...
...

∂Fp

∂Xi+1
· · · · · · ∂Fp

∂Xn

, jac(F) = jac(F, 0).

Polar variety crit(πi, V ) associated to πi and V = V (F1, . . . , Fp) ⊂ Cn

F1 = · · · = Fp = 0 and rank (jac(F, i)) ≤ p− 1

Regularity hyp.: reg(V ) = {x ∈ V | rank (jacx(F)) = p} is Zariski dense in V .

Critical points crit(πi, V ) ∩ reg(V ).

Critical values image by πi of the critical locus.



Polynomial optimization – Critical points (III)

Example: F1 = X2
1 +X2

2 +X2
3 − 1

x1

x2

x3

� i = 2, F = ∂F
∂X3

= 0

� i = 1, F = ∂F
∂X3

= ∂F
∂X2

= 0

Modelings

. Minors of the truncated jacobian matrix  Determinantal modeling

. Linearly independant vectors in the kernel  Lagrange system

F = 0, Λ · jac(F, 1) = 0, u · Λ = 1

Can we compute efficiently finitely many critical points?



Polar varieties and Gröbner bases Faugère/S./Spaenlehauer

(Arithmetic) Complexity results

(determinantal modeling, deg(Fi) = D for 1 ≤ i ≤ p)
. Dreg ≤ D(p− 1) + (D − 2)n+ 2, ]Sols ≤ Dp(D − 1)n−p

(
n−1
p−1

)
. When D = 2, O(n2pω)

. O
(

1√
n

((D − 1)e)nω
)

if D > 2 and p is fixed.



Polar varieties and Gröbner bases Faugère/S./Spaenlehauer

(Arithmetic) Complexity results

(determinantal modeling, deg(Fi) = D for 1 ≤ i ≤ p)
. Dreg ≤ D(p− 1) + (D − 2)n+ 2, ]Sols ≤ Dp(D − 1)n−p

(
n−1
p−1

)
. When D = 2, O(n2pω)

. O
(

1√
n

((D − 1)e)nω
)

if D > 2 and p is fixed.

�

(I)

= =

(I)
⇡

> ⇡ � .

. . .

=

(I)
⇡

= , = ⇡ · � .



Part III:

Computing sample points in
semi-algebraic sets



















Geometry of polar varieties (I)

Let V = {x ∈ Cn | F1(x) = · · · = Fp(x) = 0}
Regularity assumption: V − reg(V ) is finite.

Transfer of properties of V to polar varieties in generic coordinates.

We need first to control the dimension of polar varieties

x1

x2

x3

Dimension is well controlled

crit(π1, V ) ⊂ crit(π2, V ) ⊂ · · · ⊂ crit(πi, V )

dim(crit(π1, V )) = 0,dim(crit(π2, V )) = 1, . . . ,dim(crit(πi, V )) = i− 1



Geometry of polar varieties (II)

x

y

x

y

Closedness of projections. Let C be a connected comp. of V ∩ Rn.

crit(π1, V ) ∩ C = ∅ and V ∩ Rn 6= ∅ =⇒ π1(V ∩ Rn) = R

Transfer of Noether position properties to polar varieties.

Can be checked algebraically

Algorithmic consequence. In generic coordinates

� If V is finite, compute a parametrization of V else

� Compute crit(π1, V )

� Recursive call to V ∩ π−11 (0)



Summary

Before Now

Existence DO(n) ' O(D3n) (regular)

' O(D4n) (singular)

1-Block QE DO(r(n−r)) ' O(D3r(n−r)) (boundary of projection)

Software RAGlib (Real Algebraic Geometry Library)

Scales to ' 8–10 variables (D = 4, n = 8, dense equation → 2 hours)

Applications in biology, comput. geometry, numerical analysis, robotics, etc.

• Non-validity of models in bio-informatics

• Discovery fo the stability region of MacCormack’s scheme for PDEs

• Computational geometry: Voronoi diagram, Perspective problems, etc.

Used for an engineering application

Systems of inequalities with ' 6 → 8 variables

Unreachable by current CAD implementations



Part IV:
Quantifier elimination over the reals



One-block quantifier elimination and its variants

∃X ∈ RnΦ(X,Y)⇐⇒ Ψ(Y)

Recall our observations on the length of formula.

� ∃x ∈ R x2 + bx+ c = 0⇔ b2 − 4c ≥ 0

� ∃x ∈ R ax2 + bx+ c = 0⇔
(a 6= 0 ∧ b2 − 4c ≥ 0) ∨ (a = 0 ∧ b 6= 0) ∨ (a = 0 ∧ b = 0 ∧ c = 0)

Variant Quantifier Elimination

� Input: ∃X ∈ RnΦ(X,Y)

� Output: Ψ′(Y) such that

I Sols(Ψ′(Y)) ⊂ Sols(Ψ(Y))

I Sols(Ψ(Y))− Sols(Ψ′(Y)) has dimension less than ]Y.



















From Ehresmann’s theorem to Quantifier Elimination

Topology

Polar varieties ↔ Critical points ↔ Morse theory

Ehresmann’s fibration theorem

� Under some properness assump-

tions, the boundary of πi(V ∩ Rn)

is contained in the image by πi of

crit(πi, V ).

� Describing the components of the

complement of πi(crit(πi, V )) allows

to solve our VQE problem.

� Projection of critical points com-

puted with evaluation/interpolation

techniques

Asymptotically optimal complexity.





Singular situations

We want to compute πY({(x, y) ∈ Rn × Rt | F(x, y) = 0,G(x, y) > 0}).
F = G = 0 with ]{x ∈ V (F,G) | jacx(F,G) rank defective} =∞

Intuitive ideas underlying the algorithm

Su�cient to find polynomials “capturing” the boundary B of the solution set.

Fact: for all y 2 B, there exists x 2 Rn s.t. G(x) = f(x,y) = 0.

lim
"!0

crit(⇡, V (G, f � "))

V (hG,�1i : hG,�i1 + hfi)

Regularization techniques:  F = 0, G = ε ideal theoretic operations

































Some practical results

IBVP LW LV MC Stab1 Stab2

[n, t,D] [6,2,2] [4,2,6] [4,2,7] [4,2,14] [4,2,2] [4,2,2]

QEPCAD ∞ ∞ ∞ ∞ ∞ ∞
Mathematica ∞ ∞ ∞ ∞ ∞ ∞
VQE 13.5 sec. 18.5 sec. 63 sec. ≈ 12h ≈ 1.6h ≈ 2.3h

VQE Proj 6 sec. 4 sec. 7 sec. ≈ 3h 35 sec. 12.5 min.

Dec+Lift 8 sec. 16 sec. 55 sec. 9 h. 1.5h 2h.

≈8000 ≈7000 ≈9000



Part V:
Connectivity queries



Connectivity queries



Roadmaps

Consider an algebraic set V .

An algebraic set R ⊂ Cn is a roadmap of V if:

� Each connected component of V ∩ Rn has a non-empty and connected

intersection with R ∩ Rn.

� R is contained in V .

� R is a curve.

Adding a finite set of control points P to our input, R is a roadmap of (V,P)

if we also have:

� R contains P.



Roadmaps

Consider an algebraic set V .

An algebraic set R ⊂ Cn is a roadmap of V if:

� Each connected component of V ∩ Rn has a non-empty and connected

intersection with R ∩ Rn.

� R is contained in V .

� R is a curve.

Adding a finite set of control points P to our input, R is a roadmap of (V,P)

if we also have:

� R contains P.

Upshot: once we have the roadmap, we have to decide connectivity on a space

curve; relatively easy.

Roadmaps have become “standard” tools to high-level algorithms in real

algebraic geometry



Other applications of roadmaps

Basic and fundamental routine in
effective real algebraic geometry

� Semi-algebraic description of connected components

� Classification problems for polynomial systems with parameters

� Quantifier elimination over the reals

� Useful for computing the real dimension of semi-algebraic sets



Encoding roadmaps

Roadmaps are (semi)-algebraic curves

q(U, V ) = 0,


X1 = q1(U, V )/q0(U, V )

...

Xn = qn(U, V )/q0(U, V )

with q unitary in U and V , δ = deg(q) ≥ deg(qi).

Remarks:

� The size of the output is quadratic in δ = deg(q) ;

� Any algorithm that runs in time ' O(δ3) is subquadratic in the output

size.



New results

S./Schost (2011):

• V = V (f); f ∈ Q[X1, . . . , Xn] of degree d.

• V ∩ Rn is compact

• V has finitely many singular points

There exists a probabilistic algorithm computing a roadmap of V in time

(nd)O(n1.5).



New results

S./Schost (2011):

• V = V (f); f ∈ Q[X1, . . . , Xn] of degree d.

• V ∩ Rn is compact

• V has finitely many singular points

There exists a probabilistic algorithm computing a roadmap of V in time

(nd)O(n1.5).

Further improvements generalizations by Basu - Roy - S. - Schost (2014),

Basu - Roy (2014) and S. - Schost (2014)  ' O((nD)12n log(n))



Polar varieties

Studied by Bank et al. in computational real geometry.

V is a smooth, r-equidimensional algebraic set; we consider projections

πi : (x1, . . . , xn) 7→ (x1, . . . , xi)

and

Wi = crit(πi, V ) = {x ∈ V | πi(TxV ) 6= Ci}.

Wi is an algebraic set (defined by minors of a Jacobian matrix). Expectedly

(in generic coordinates), it has dimension i− 1:

• W2 is a curve,

• W1 is a finite of points.

For i ≤ (r + 3)/2, in generic coordinates, Wi is smooth.



Example: torus



Example: torus



A general form of Canny’s algorithm S./Schost 2011

Input / output

• input: a “nice” system F = (f1, . . . , fp)

– V (F) ∩ Rn compact, smooth; regular sequence

– generic coordinates

• output: a roadmap of V (F)

Main idea: for a suitable i

• recursive call on Wi

• recursive call on finitely many fibers of πi−1 (about Dn)

• merge the results

Expectedly, running time about DO(ρn), where ρ is the depth of the recursion.

Remark

• for V hypersurface, Wi is complete intersection

• but the next Wk(Wj(Wi)) are usually not



Example: torus



Example: torus



Example: torus



Previous designs: Canny (1988)

Canny

• i = 2, so we look at W2 (curve), and fibers of π1 (dimension drops by 1)

• recursion of depth n, so dO(n2)

r

1r − 1

1r − 2

1r − 3

Handles not only hypersurfaces; complete intersections are OK (W2 is easy

and fibers too)



Previous designs: Baby steps - giant steps S./Schost 2011

V hypersurface

• take i ' √n

• dimension of Wi =
√
n− 1 (dealt with using Canny’s algorithm); fibers

are still hypersurfaces

• recursion of depth
√
n, so DO(n1.5)

n− 1

n−√n

n−2
√
n

generalized to arbitrary algebraic sets Basu/Roy/S./Schost



Conclusions/Perspectives

� Obtaining theoretically and practically fast algorithms is achievable in

RAG.

� Develop algorithms for computing certificates (back to Hilbert)

� Develop algorithms for describing the topology of semi-algebraic sets

� Exploit the structure of systems arising comonly in applications

� Last but not least, popularize by investigating new application domains

see Béatrice Bérard’s talk.


