Efficient algorithms in real algebraic geometry

Mohab Safey El Din

Univ. Pierre et Marie Curie, Paris INRIA, POLSYS Team CNRS Institut Universitaire de France

Polynomials

Monomial: Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$

$$\mathbf{X}^{\alpha} = X_1^{\alpha_1} X_2^{\alpha_2} \cdots X_n^{\alpha_n}$$

Degree = deg(\mathbf{X}^{α}) = $\alpha_1 + \dots + \alpha_n$

Polynomial: Let A be a finite set of \mathbb{N}^n and $\mathbf{X} = (X_1, \ldots, X_n)$.

$$F = \sum_{\alpha \in A} c_{\alpha} \mathbf{X}^{\alpha} \quad \text{with} \quad c_{\alpha} \in \mathbb{Q}, \mathbb{R}, \mathbb{C} \text{ and } c_{\alpha} \neq 0$$

Degree= deg(F) = max(deg(\mathbf{X}^{α}), $\alpha \in A$)

Basic semi-algebraic set.

$$F_1 = \cdots = F_p = 0, \quad G_1 \sigma \ 0, \dots, G_s \sigma \ 0$$

with $\sigma \in \{>, \geq\}$, F_i, G_j in $\mathbb{Q}[X_1, \ldots, X_n]$ of degree $\leq D$.

Semi-algebraic sets are the class of sets stable by finite unions, intersections, complements of basic semi-algebraic sets.

Examples and first observations

The very basic polynomials that everybody met are linear polynomials. BUT allowing inequalities/inequations make things complicated

$$X_1^2 + X_2^2 + X_3^2 - 1 \to$$

More general situations (x + y + z - 1)(xy + yz + xz) = 2xyz

Another observation

Consider

$$F_1 = \dots = F_n = 0$$

such that

- $F_i \in \mathbb{Q}[X_1, \dots, X_n]$
- $F_i = L_{1,i} \cdots L_{D,i}$ with $L_{j,i} \in \mathbb{Q}[X_1, \dots, X_n]$ and $\deg(L_{j,i}) = 1$.

If all linear forms are linearly independent then the system has

 D^n solutions and all of them are real.

Bézout bound = $\deg(F_1) \cdots \deg(F_n)$

 \rightarrow sharp bound on the number of solutions in \mathbb{C}^n .

Real algebraic geometry / Algebraic geometry

Real Algebraic Geometry: Study of real solutions of polynomial systems of equations and inequalities with real coefficients and maps between them.

Computational aspects: Start with Fourier (Linear programming), Univariate cases (17-th – 19-th, Descartes/Vincent, Sturm).

Multivariate aspects \rightarrow Tarski (30's – Decidability) / Collins (1975) –

A decision method for elementary algebra and geometry

Algebraic Geometry: Study of complex solutions of polynomial systems of equations and inequalities with complex coefficients and maps between them.

Computational aspects: 19-th century (Macaulay, Kronecker) Buchberger (Gröbner bases, 60's), revisit of Macaulay's theory, etc.

Eliminate, eliminate, eliminate Eliminate the eliminators of the elimination theory S. S. Abhyankar

Emptiness decision – Computing sample points in semi-algebraic sets F_i, G_j in $\mathbb{Q}[X_1, \dots, X_n]$

Input: $F_1 = \cdots = F_p = 0, G_1 > 0, \ldots, G_s > 0$ that defines $S \subset \mathbb{R}^n$

Output: true iff $S \neq \emptyset$ else false

This is a decision problem

 \rightarrow Exact/Symbolic computation.

Input: $F_1 = \cdots = F_p = 0, G_1 > 0, \ldots, G_s > 0$ that defines $S \subset \mathbb{R}^n$

Output: *Some* solutions whenever they exist.

- How to encode them? What to do when $\sharp S = \infty$?
- Representative points in all the *connected* components of S.
- Quantitative results on the number of connected components of S?
- Algebraic nature of the problem $\rightarrow \text{Exact/Symbolic computation.}$

One-block quantifier elimination

 F_i, G_j in $\mathbb{Q}[X_1, \ldots, X_n, Y_1, \ldots, Y_t]$

Input: $F_1 = \cdots = F_p = 0, G_1 > 0, \dots, G_s > 0$ that defines $S \subset \mathbb{R}^n \times \mathbb{R}^t$ **Output:** A description of $\pi_Y(S)$

where $\pi_Y : (x_1, ..., x_n, y_1, ..., y_t) \to (y_1, ..., y_t)$

$$\exists \mathbf{x} \in \mathbb{R}^n \qquad \mathbf{F}(\mathbf{x}, \mathbf{y}) = 0, \mathbf{G}(\mathbf{x}, \mathbf{y}) > 0 \Longleftrightarrow \Psi(\mathbf{y})$$

Examples:

- $\exists x \in \mathbb{R} \quad x^2 + bx + c = 0 \Leftrightarrow b^2 4c \ge 0$
- $\exists x \in \mathbb{R} \quad ax^2 + bx + c = 0 \Leftrightarrow$ $(a \neq 0 \land b^2 4c \ge 0) \lor (a = 0 \land b \neq 0) \lor (a = 0 \land b = 0 \land c = 0)$

Output is a formula \rightarrow Symbolic computation

Connectivity queries

Outline of the course

- **Part I:** Motivations basic objects State of the art
- **Part II:** Some algebra and reductions Polynomial optimization
- Part III: Computing sample points in semi-algebraic sets
- **Part IV:** Quantifier elimination over the reals
- **Part V:** Connectivity queries

Part I: Motivations – basic objects State of the art

Semi-algebraic sets and their properties

Recall that the class of semi-algebraic sets in \mathbb{R}^n

- contains all sets that are described by $F \ge 0$ for some $F \in \mathbb{R}[X_1, \ldots, X_n];$
- is stable by taking finite intersections, finite unions and complements of the above sets.

Semi-algebraic sets of \mathbb{R} are finite unions of intervals and points.

Counter-example: The graph of $x \to \sin(x)$ is not semi-algebraic.

Another example: The set $\{(\cos(t), \sin(t)) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}$ is semi-algebraic.

Real algebraic sets of \mathbb{R}^n is the class of subsets of \mathbb{R}^n that is defined as the real solution set of $F_1 = \cdots = F_p = 0$ with $F_i \in \mathbb{R}[X_1, \ldots, X_n]$.

All real algebraic sets can be described by a single equation.

Real algebraic sets of \mathbb{R} are finite unions of points.

Semi-algebraic sets and their properties

Let $S \subset \mathbb{R}^n \times \mathbb{R}^t$ be a semi-algebraic set and $\pi : (x, y) \in \mathbb{R}^n \times \mathbb{R}^t \to y$.

Tarski-Seidenberg's theorem

 $\pi(S)$ is a semi-algebraic set.

Quantifier elimination (and many other problems) is decidable !

Finiteness of connected components

S has finitely many connected components and all of them are semi-algebraic sets.

Let $S \subset \mathbb{R}^n$ be a real algebraic set defined by polynomials of degree $\leq D$.

Quantitative aspects

The number of connected components of S is bounded by $O(D)^n$.

Algebraic sets and their properties

Algebraic sets in \mathbb{C}^n are the sets of complex solutions to polynomial systems of equations with coefficients in \mathbb{C} .

A real algebraic set is the real trace of an algebraic set defined by polynomials with coefficients in \mathbb{R} .

Zariski topology.

Algebraic sets are closed sets for the **Zariski topology**.

By definition, Zariski open sets are complements of Zariski closed sets. A non-empty Zariski open set is dense in \mathbb{C}^n .

Constructible sets are finite unions of sets which are the intersection of a (Zariski) open set and a (Zariski) closed set.

Projections. The projection of a constructible set is constructible. The projection of an algebraic set is a constructible set.

Some applications to our algorithmic problems (I)

Gene regulation \rightarrow Dynamical Systems $\dot{\mathbf{X}} = \mathsf{M}(X)$

Information on the eigenvalues of M(X) \rightarrow Emptiness decision on the real solution set of polynomial systems. 10 variables – degree 8

Voronoi diagram of 3 lines in \mathbb{R}^3 Topological invariance determined by the existence of real solutions to a polynomial inequality.

4 variables – degree 18

Some applications to our algorithmic problems (II)

Size optimization of sextic polynomials in the number field sieve,

S. Bai and P. Zimmermann, Math. of Comp., 2012.

Problem: global infimum of a rational fraction under some linear constraints.

This is a One-Block Quantifier Elimination Problem

Input size:

- 6 variables are involved;
- Degree of the polynomial is 12 (162 monomials);
- Coefficients of bit size $\simeq 254$ bits;

Output:

- 14 local minimizers very close and of large magnitude ($\simeq 10^{67}$);
- 200 digits are needed to distinguish these points;

Some applications to our algorithmic problems (III)

 \mathscr{S} is a configuration space (algebraic, semi-algebraic)

Problem: given two query points q_0 and q_1 , find a continuous path $\gamma: [0,1] \to \mathscr{S}$ such that

$$\gamma(0) = q_0, \quad \gamma(1) = q_1, \quad \forall t \in [0, 1]$$

or determine that such a path does not exist.

Algorithmic Needs

- **Reliability issues** crucial for decision problems/algebraic nature
- Efficiency issues complexity may be exponential in n
- Main challenge: obtain fast implementations through algorithms with asymptotically optimal complexities.
- Use of symbolic computation / computer algebra.
 - ▶ Efficient tools for algebraic/exact computations
 - Large algorithmic scope (differential algebra \rightarrow arithmetics)
 - BUT algebraic manipulations on polynomial expressions give information on complex roots
- Millions of users.

State of the art

 Collins ~ 70's Cylindrical algebraic decomposition – doubly exponential in n Hong, McCallum, Arnon, Brown, Strzebonski, Anai, Sturm, Weispfenning
 Software: QEPCAD, Redlog, SyNRAC, Mathematica, Maple, ...

 \triangleright Quest for algorithms singly exponential in $n~(\sim 90's)$ Grigoriev/Vorobjov, Canny, Renegar, Heintz/Roy/Solerno, Basu/Pollack/Roy

Existence $D^{O(n)}$

- ▷ **Challenge:** combine theoretical and practical efficiency
- $\triangleright \ \mathbf{Primary \ goal: \ obtain \ fast \ and \ reliable \ software} \rightarrow \underline{RAGlib}$
- \triangleright Better understanding of the complexity \rightarrow **constant in the exponent?**

Part II: Some algebra and reductions Polynomial optimization

Encoding finite (real) algebraic sets

Easy (univariate) case: q(T) = 0 + isolating intervals for real roots.

Let $V \subset \mathbb{C}^n$ be a finite algebraic set \rightarrow **parametrizations**

$$\begin{cases} X_n = q_n(T) \\ \vdots \\ X_1 = q_1(T) \\ q(T) = 0 \end{cases} + \text{ isolating boxes to encode } V \cap \mathbb{R}^n$$

with q square-free

We may also use **rational parametrizations**

$$\begin{cases} X_n &= q_n(T)/q_0(T) \\ \vdots \\ X_1 &= q_1(T)/q_0(T) \\ q(T) &= 0 \end{cases}$$
 with $gcd(q, q_0) = 1$.

Note that $\deg(q) = \sharp V$.

Algebraic operations – Ideals

Parametrizations may be obtained by algebraic operations.

Recall that $V \subset \mathbb{C}^n$ is given as the solution set of $F_1 = \cdots = F_p = 0$.

Nullstellensatz (Hilbert)

 $V = \emptyset$ iff there exists Q_1, \ldots, Q_p in $\mathbb{Q}[X_1, \ldots, X_n]$ s.t. $1 = Q_1 F_1 + \cdots + Q_p F_p$.

 $\{Q_1F_1 + \dots + Q_pF_p\}$ is the ideal $\langle F_1, \dots, F_p \rangle$ Let $\mathbb{Q}_d[X_1, \dots, X_n] = \{F \in \mathbb{Q}[X_1, \dots, X_n] \mid \deg(F) \leq d\}.$

Note that $\langle F_1, \ldots, F_p \rangle \cap \mathbb{Q}_d[X_1, \ldots, X_n]$ is a finite-dimensional \mathbb{Q} -vector space. \rightarrow reductions to linear algebra are around.

Let $\pi_i: (x_1, \ldots, x_n) \to (x_1, \ldots, x_i).$

Elimination theorem

 $\langle F_1, \ldots, F_p \rangle \cap \mathbb{Q}[X_1, \ldots, X_i]$ defines the Zariski closure of $\pi_i(V)$.

Gröbner bases (I)

$$F_1 = \dots = F_p = 0$$
 in $\mathbb{Q}[X_1, \dots, X_n]$

Assume that the number of monomials == the number of equations

$$\begin{cases} X_1 X_2 + X_3^2 - X_2 X_3 &= 1 \\ X_1 X_2 + 2X_3^2 + X_2 X_3 &= 3 \\ 5X_1 X_2 - X_3^2 + X_2 X_3 &= 7 \end{cases}$$

• Substitute monomials by new variables

$$\begin{cases} Y_1 + Y_2 - Y_3 &= 1 & F_1 \rightarrow \\ Y_1 + 2Y_2 + Y_3 &= 3 & \rightsquigarrow & F_2 \rightarrow \\ 5Y_1 - Y_2 + Y_3 &= 7 & F_3 \rightarrow \end{cases} \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & 2 & 1 & 3 \\ 5 & -1 & 1 & 7 \end{bmatrix}$$

Solve the linear system (gaussian elimination) and retrieve the initial solutions

BUT, usually number of equations \ll number of monomials

Gröbner bases (II)

Need of more rewriting rules \leadsto monomial ordering \leadsto Macaulay's matrix

$$\mathsf{Mac}_{\succ}(\mathbf{F},d) = \begin{array}{ccc} m_1 & \cdots & m_{\ell(d),d} \\ \vdots \\ \vdots \\ t_k F_p \rightarrow \end{array} \left[\begin{array}{cccc} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \vdots & \vdots \\ \cdots & \cdots & \cdots \end{array} \right] \quad \text{with } d \ge \deg(t_i F_j)$$

Property For *d* large enough, a row echelon form of $Mac_{\succ}(\mathbf{F}, d)$ provides a basis of $\langle \mathbf{F} \rangle \cap \mathbb{Q}_d[\mathbf{X}]$

Gröbner bases (FGB, Magma,)		Buchberger, Faugère (F4 and F5)
Finite case	When $\sharp Sols < \infty, q(T) =$	$0, X_1 = q_1(T), \dots, X_n = q_n(T)$
from a Gröbner basis + extra linear algebra operations		

From semi-algebraic sets to real algebraic sets

Let $S \subset \mathbb{R}^n$ be defined by

$$F_1 = \dots = F_p = 0, \quad G_1 > 0, \dots, G_s > 0$$

and C be a connected component of S.

Theorem There exists e > 0 s.t. for any 0 < e' < e the following holds. There exists $\{i_1, \ldots, i_\ell\} \subset \{1, \ldots, s\}$ and a connected component C' of the real algebraic set defined by

$$F_1 = \dots = F_p = 0, \quad G_{i_1} = \dots = G_{i_s} = e'$$

such that $C' \subset C$.

Sample points: first reduction

 \Downarrow

Systems of equations in $\mathbb{Q}[X_1, \ldots, X_n]$

 \Downarrow

Systems of equations in $\mathbb{Q}[X_1, \ldots, X_n]$ with finitely many complex solutions

\Downarrow

Rational parametrizations $q(T) = 0, X_i = q_i(T)/q_0(T)$

We retrieve a univariate situation.

One-Block Quantifier Elimination: second reduction

$$\exists \mathbf{X} \in \mathbb{R}^n \Phi(\mathbf{X}, \mathbf{Y}) \Longleftrightarrow \Psi(\mathbf{Y})$$

This can be seen as a **decision problem with parameters** \rightarrow running algorithms for computing sample points yield

Connectivity queries: third reduction

Polynomial optimization – Critical points (I)

Reduction of the dimension through Global Optimization

Properties of Critical Points

Vorobjov, Renegar, Gournay/Risler, Heintz/Roy/Solerno, Basu/Pollack/Roy 96 Polynomial optimization – Critical points and polar variety (II)

For
$$1 \le i \le n$$
, let $\pi_i : (\mathbf{x}_1, \dots, \mathbf{x}_n) \to (\mathbf{x}_1, \dots, \mathbf{x}_i)$ and $\mathbf{F} = (F_1, \dots, F_p)$

$$V = V(\mathbf{F}) \subset \mathbb{C}^n, \text{ jac}(\mathbf{F}, i) = \begin{bmatrix} \frac{\partial F_1}{\partial X_{i+1}} & \cdots & \cdots & \frac{\partial F_1}{\partial X_n} \\ \frac{\partial F_2}{\partial X_{i+1}} & \cdots & \cdots & \frac{\partial F_2}{\partial X_n} \\ \vdots & & \vdots \\ \frac{\partial F_p}{\partial X_{i+1}} & \cdots & \cdots & \frac{\partial F_p}{\partial X_n} \end{bmatrix}, \text{ jac}(\mathbf{F}) = \text{ jac}(\mathbf{F}, 0).$$

Polar variety crit(π_i, V) associated to π_i and $V = V(F_1, \ldots, F_p) \subset \mathbb{C}^n$

$$F_1 = \dots = F_p = 0$$
 and $\operatorname{rank}(\operatorname{jac}(\mathbf{F}, i)) \le p - 1$

Regularity hyp.: $reg(V) = \{x \in V \mid rank(jac_x(\mathbf{F})) = p\}$ is Zariski dense in V.

Critical points $\operatorname{crit}(\pi_i, V) \cap \operatorname{reg}(V)$.

Critical values image by π_i of the critical locus.

Polynomial optimization – Critical points (III)

Modelings

- $\triangleright \ {\bf Minors \ of \ the \ truncated \ jacobian \ matrix \ \rightsquigarrow \ Determinantal \ modeling}$
- $\triangleright \ \ Linearly \ independant \ vectors \ in \ the \ kernel \ \rightsquigarrow \ Lagrange \ system$

$$\mathbf{F} = 0, \qquad \mathbf{\Lambda} \cdot \operatorname{jac}(\mathbf{F}, 1) = \mathbf{0}, \quad \mathbf{u} \cdot \mathbf{\Lambda} = 1$$

Can we compute efficiently finitely many critical points?

Part III: Computing sample points in semi-algebraic sets

A = -1.3333

A = -1.0000

A = -.66667

A = .66667

A = 1.0000

Geometry of polar varieties (I)

Let
$$V = \{ \mathbf{x} \in \mathbb{C}^n \mid F_1(\mathbf{x}) = \dots = F_p(\mathbf{x}) = 0 \}$$

Regularity assumption: $V - \operatorname{reg}(V)$ is finite.

Transfer of properties of V to polar varieties in generic coordinates.

We need first to control the dimension of polar varieties

Dimension is well controlled

$$\operatorname{crit}(\pi_1, V) \subset \operatorname{crit}(\pi_2, V) \subset \cdots \subset \operatorname{crit}(\pi_i, V)$$

 $\dim(\operatorname{crit}(\pi_1, V)) = 0, \dim(\operatorname{crit}(\pi_2, V)) = 1, \dots, \dim(\operatorname{crit}(\pi_i, V)) = i - 1$

Geometry of polar varieties (II)

Closedness of projections. Let C be a connected comp. of $V \cap \mathbb{R}^n$. $\operatorname{crit}(\pi_1, V) \cap C = \emptyset$ and $V \cap \mathbb{R}^n \neq \emptyset \Longrightarrow \pi_1(V \cap \mathbb{R}^n) = \mathbb{R}$

Transfer of **Noether position** properties to polar varieties.

Can be checked algebraically

Algorithmic consequence. In generic coordinates

- If V is finite, compute a parametrization of V else
- Compute $\operatorname{crit}(\pi_1, V)$
- Recursive call to $V \cap \pi_1^{-1}(0)$

Summary

	Before	Now
Existence	$D^{O(n)}$	$\simeq O(D^{3n})$ (regular)
		$\simeq O(D^{4n})$ (singular)
1-Block QE	$D^{O(r(n-r))}$	$\simeq O(D^{3r(n-r)})$ (boundary of projection)

Software RAGlib (Real Algebraic Geometry Library) Scales to $\simeq 8-10$ variables (D = 4, n = 8, dense equation $\rightarrow 2$ hours)

Applications in biology, comput. geometry, numerical analysis, robotics, etc.

- Non-validity of models in bio-informatics
- Discovery fo the stability region of MacCormack's scheme for PDEs
- Computational geometry: Voronoi diagram, Perspective problems, etc.

HRL LABORATORIES, LLC Used for an engineering application

Systems of inequalities with $\simeq 6 \rightarrow 8$ variables Unreachable by current CAD implementations

Part IV: Quantifier elimination over the reals

One-block quantifier elimination and its variants

$$\exists \mathbf{X} \in \mathbb{R}^n \Phi(\mathbf{X}, \mathbf{Y}) \Longleftrightarrow \Psi(\mathbf{Y})$$

Recall our observations on the length of formula.

$$\exists x \in \mathbb{R} \quad x^2 + bx + c = 0 \Leftrightarrow b^2 - 4c \ge 0$$

$$\exists x \in \mathbb{R} \quad ax^2 + bx + c = 0 \Leftrightarrow \\ (a \neq 0 \land b^2 - 4c \ge 0) \lor (a = 0 \land b \neq 0) \lor (a = 0 \land b = 0 \land c = 0)$$

Variant Quantifier Elimination

- Input: $\exists \mathbf{X} \in \mathbb{R}^n \Phi(\mathbf{X}, \mathbf{Y})$
- Output: $\Psi'(\mathbf{Y})$ such that
 - $\blacktriangleright \ \operatorname{Sols}(\Psi'(\mathbf{Y})) \subset \operatorname{Sols}(\Psi(\mathbf{Y}))$
 - ► $\mathsf{Sols}(\Psi(\mathbf{Y})) \mathsf{Sols}(\Psi'(\mathbf{Y}))$ has dimension less than $\sharp \mathbf{Y}$.

A = -1.3333

A = -1.0000

A = -.66667

A = .66667

A = 1.0000

From Ehresmann's theorem to Quantifier Elimination

Topology

$\mathbf{Polar} \ \mathbf{varieties} \leftrightarrow \mathbf{Critical} \ \mathbf{points} \leftrightarrow \mathbf{Morse} \ \mathbf{theory}$

Ehresmann's fibration theorem

- Under some properness assumptions, the boundary of $\pi_i(V \cap \mathbb{R}^n)$ is contained in the image by π_i of $\operatorname{crit}(\pi_i, V)$.
- Describing the components of the complement of $\pi_i(\operatorname{crit}(\pi_i, V))$ allows to solve our VQE problem.
- Projection of critical points computed with evaluation/interpolation techniques

Asymptotically optimal complexity.

Singular situations

We want to compute $\pi_{\mathbf{Y}}(\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^t \mid \mathbf{F}(x, y) = 0, \mathbf{G}(x, y) > 0\}).$ $\mathbf{F} = \mathbf{G} = 0$ with $\sharp\{\mathbf{x} \in V(\mathbf{F}, \mathbf{G}) \mid \mathrm{jac}_x(\mathbf{F}, \mathbf{G}) \text{ rank defective}\} = \infty$

Regularization techniques: $\rightsquigarrow \mathbf{F} = 0, G = \varepsilon$ ideal theoretic operations

Some practical results

	IBVP	LW	LV	MC	Stab1	Stab2
[n,t,D]	[6,2,2]	$[4,\!2,\!6]$	$[4,\!2,\!7]$	[4, 2, 14]	[4,2,2]	$[4,\!2,\!2]$
QEPCAD	∞	∞	∞	∞	∞	∞
Mathematica	∞	∞	∞	∞	∞	∞
						_
VQE	13.5 sec.	18.5 sec.	63 sec.	$\approx 12h$	$\approx 1.6 \mathrm{h}$	$\approx 2.3 h$
VQE VQE Proj	13.5 sec. 6 sec.	18.5 sec. 4 sec.	63 sec. 7 sec.	$\approx 12h$ $\approx 3h$	$\approx 1.6h$ 35 sec.	$\frac{\approx 2.3 h}{12.5 min.}$
VQE VQE Proj Dec+Lift	13.5 sec. 6 sec. 8 sec.	18.5 sec. 4 sec. 16 sec.	63 sec. 7 sec. 55 sec.	$\approx 12h$ $\approx 3h$ 9 h.	$\approx 1.6h$ 35 sec. 1.5h	$\approx 2.3h$ 12.5 min. 2h.

Part V: Connectivity queries

Connectivity queries

Roadmaps

Consider an algebraic set V.

An algebraic set $\mathscr{R} \subset \mathbb{C}^n$ is a roadmap of V if:

- Each connected component of $V \cap \mathbb{R}^n$ has a non-empty and connected intersection with $\mathscr{R} \cap \mathbb{R}^n$.
- \mathscr{R} is contained in V.
- \mathscr{R} is a curve.

Adding a finite set of control points \mathscr{P} to our input, \mathscr{R} is a roadmap of (V, \mathscr{P}) if we also have:

 $\blacksquare \ \mathscr{R} \text{ contains } \mathscr{P}.$

Roadmaps

Consider an algebraic set V.

An algebraic set $\mathscr{R} \subset \mathbb{C}^n$ is a roadmap of V if:

- Each connected component of $V \cap \mathbb{R}^n$ has a non-empty and connected intersection with $\mathscr{R} \cap \mathbb{R}^n$.
- \mathscr{R} is contained in V.
- $\blacksquare \mathscr{R}$ is a curve.

Adding a finite set of control points \mathscr{P} to our input, \mathscr{R} is a roadmap of (V, \mathscr{P}) if we also have:

 $\blacksquare \ \mathscr{R} \text{ contains } \mathscr{P}.$

Upshot: once we have the roadmap, we have to decide connectivity on a space curve; *relatively* easy.

Roadmaps have become *"standard"* tools to high-level algorithms in real algebraic geometry

Other applications of roadmaps

Basic and fundamental routine in effective real algebraic geometry

- Semi-algebraic description of connected components
- Classification problems for polynomial systems with parameters
- Quantifier elimination over the reals
- Useful for computing the real dimension of semi-algebraic sets

Encoding roadmaps

Roadmaps are (semi)-algebraic curves

$$q(U,V) = 0, \begin{cases} X_1 = q_1(U,V)/q_0(U,V) \\ \vdots \\ X_n = q_n(U,V)/q_0(U,V) \end{cases}$$

with q unitary in U and V, $\delta = \deg(q) \ge \deg(q_i)$.

Remarks:

- The size of the output is quadratic in $\delta = \deg(q)$;
- Any algorithm that runs in time $\simeq O(\delta^3)$ is subquadratic in the output size.

New results

S./Schost (2011):

- $V = V(f); f \in \mathbb{Q}[X_1, \dots, X_n]$ of degree d.
- $V \cap \mathbb{R}^n$ is compact
- V has finitely many singular points

There exists a probabilistic algorithm computing a roadmap of V in time $(nd)^{O(n^{1.5})}$.

New results

S./Schost (2011):

- $V = V(f); f \in \mathbb{Q}[X_1, \dots, X_n]$ of degree d.
- $V \cap \mathbb{R}^n$ is compact
- V has finitely many singular points

There exists a probabilistic algorithm computing a roadmap of V in time $(nd)^{O(n^{1.5})}$.

Further improvements generalizations by Basu - Roy - S. - Schost (2014), Basu - Roy (2014) and S. - Schost (2014) $\rightsquigarrow \simeq O((nD)^{12n\log(n)})$

Polar varieties

Studied by Bank et al. in computational real geometry.

V is a smooth, r-equidimensional algebraic set; we consider projections

$$\pi_i: (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_i)$$

and

$$W_i = \operatorname{crit}(\pi_i, V) = \{ \mathbf{x} \in V \mid \pi_i(T_{\mathbf{x}}V) \neq \mathbb{C}^i \}.$$

 W_i is an algebraic set (defined by minors of a Jacobian matrix). Expectedly (in generic coordinates), it has dimension i - 1:

- W_2 is a curve,
- W_1 is a finite of points.

For $i \leq (r+3)/2$, in generic coordinates, W_i is smooth.

A general form of Canny's algorithm

Input / output

- input: a "nice" system $\mathbf{F} = (f_1, \ldots, f_p)$
 - $-V(\mathbf{F}) \cap \mathbb{R}^n$ compact, smooth; regular sequence
 - generic coordinates
- output: a roadmap of $V(\mathbf{F})$

Main idea: for a suitable i

- recursive call on W_i
- recursive call on finitely many fibers of π_{i-1} (about D^n)
- merge the results

Expectedly, running time about $D^{O(\rho n)}$, where ρ is the depth of the recursion.

Previous designs: Canny (1988)

Canny

- i = 2, so we look at W_2 (curve), and fibers of π_1 (dimension drops by 1)
- recursion of depth n, so $d^{O(n^2)}$

Handles not only hypersurfaces; complete intersections are OK (W_2 is easy and fibers too)

S./Schost 2011

V hypersurface

- take $i \simeq \sqrt{n}$
- dimension of $W_i = \sqrt{n} 1$ (dealt with using Canny's algorithm); fibers are still hypersurfaces
- recursion of depth \sqrt{n} , so $D^{O(n^{1.5})}$

generalized to arbitrary algebraic sets Basu/Roy/S./Schost

Conclusions/Perspectives

- Obtaining theoretically and practically fast algorithms is achievable in RAG.
- Develop algorithms for computing certificates (back to Hilbert)
- Develop algorithms for describing the topology of semi-algebraic sets
- Exploit the structure of systems arising comonly in applications
- Last but not least, popularize by investigating new application domains see Béatrice Bérard's talk.