
Sort & Search techniques

Sort & Search techniques

V T’kindt, C Lenté

tkindt@univ-tours.fr, Université Francois-Rabelais, CNRS, Tours, France

March 2015

T’kindt Sort & Search 1 / 26

Sort & Search techniques

1 The principles of the original method

2 Formalization of the original method

3 Extension of Sort & Search

4 Application to a scheduling problem

T’kindt Sort & Search 2 / 26

Sort & Search techniques

1 The principles of the original method

2 Formalization of the original method

3 Extension of Sort & Search

4 Application to a scheduling problem

T’kindt Sort & Search 3 / 26

Sort & Search techniques

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([1]) to solve the
knapsack problem,

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Assume we are given a decision/optimization problem (I
denotes an instance of the problem),

[1] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Sort & Search 4 / 26

Sort & Search techniques

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([1]) to solve the
knapsack problem,

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Assume we are given a decision/optimization problem (I
denotes an instance of the problem),

[1] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Sort & Search 4 / 26

Sort & Search techniques

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([1]) to solve the
knapsack problem,

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Assume we are given a decision/optimization problem (I
denotes an instance of the problem),

[1] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Sort & Search 4 / 26

Sort & Search techniques

Sort & Search : the principles

It is an old technique which consists in sorting“data” to make
the search for an optimal solution more efficient,

It has been proposed by Horowitz and Sahni ([1]) to solve the
knapsack problem,

The idea : cut the cake into two equal-size pieces and just pay
for one (but take both !),

Assume we are given a decision/optimization problem (I
denotes an instance of the problem),

[1] E. Horowitz and G. Sahni. Computing partitions with applications to the knapsack problem, Journal of

the ACM, vol 21, pp.277-292, 1974

T’kindt Sort & Search 4 / 26

Sort & Search techniques

Sort & Search : the principles

The idea is the following : separate the instance into 2
sub-instances,

I1 I2

Instance I

Then, enumerate all partial solutions from I1 and all partial
solutions from I2,

T’kindt Sort & Search 5 / 26

Sort & Search techniques

Sort & Search : the principles

The idea is the following : separate the instance into 2
sub-instances,

I1 I2

Instance I

Then, enumerate all partial solutions from I1 and all partial
solutions from I2,

I1 I2

Instance IS1

S2

T’kindt Sort & Search 5 / 26

Sort & Search techniques

Sort & Search : the principles

By recombination of partial solutions, find the optimal
solution of the initial problem

I1 I2

Instance IS1

S2

s1 s2

A complete solution s = s1 + s2

The combinatoric appears when building S1 and S2 by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).

T’kindt Sort & Search 6 / 26

Sort & Search techniques

Sort & Search : the principles

By recombination of partial solutions, find the optimal
solution of the initial problem

I1 I2

Instance IS1

S2

s1 s2

A complete solution s = s1 + s2

The combinatoric appears when building S1 and S2 by
enumeration (sort phase) and when finding in these sets the
optimal solution (search phase).

T’kindt Sort & Search 6 / 26

Sort & Search techniques

Sort & Search : illustration

Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

T’kindt Sort & Search 7 / 26

Sort & Search techniques

Sort & Search : illustration

Let us start with the KNAPSACK problem,

Let be O = {o1, . . . , on} a set of n objects,
Each object oi is defined by a value v(oi) and a weight w(oi),
1 ≤ i ≤ n,
The, integer, capacity W of the knapsack.
Goal : Find O ′ ⊆ O such that

∑
o∈O′ w(o) ≤W and∑

o∈O′ v(o) is maximum.

We can easily show that ENUM is in O∗(2n) time,

T’kindt Sort & Search 7 / 26

Sort & Search techniques

Sort & Search : illustration

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Sort & Search 8 / 26

Sort & Search techniques

Sort & Search : illustration

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Sort & Search 8 / 26

Sort & Search techniques

Sort & Search : illustration

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Sort & Search 8 / 26

Sort & Search techniques

Sort & Search : illustration

We have n = 6, O = {a, b, c, d , e, f } and W = 9.

O a b c d e f

v 3 4 2 5 1 3
w 4 2 1 3 2 5

O1 = {a, b, c} O2 = {d , e, f }

Next, we enumerate the set of all possible assignments for O1

(Table T1),

T1 ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}∑
v 0 3 4 2 7 5 6 9∑
w 0 4 2 1 6 5 3 7

T’kindt Sort & Search 8 / 26

Sort & Search techniques

Sort & Search : illustration

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,

T’kindt Sort & Search 9 / 26

Sort & Search techniques

Sort & Search : illustration

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,

T’kindt Sort & Search 9 / 26

Sort & Search techniques

Sort & Search : illustration

Next, we do the same for O2 (Table T2),

T2 ∅ {e} {d} {f } {d , e} {e, f } {d , f } {d , e, f }∑
v 0 1 5 3 6 4 8 9∑
w 0 2 3 5 5 7 8 10

`k 1 2 3 3 5 5 7 8

Note : In table T2, columns are sorted by increasing order of∑
w .

Note : `k is the column number with maximum
∑

v “on the
left” of the current column.

That was the Sort phase !

Running time (and space) should be “about”2n/2,

T’kindt Sort & Search 9 / 26

Sort & Search techniques

Sort & Search : illustration

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

The search phase leads to,

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f } {d, e} {e, f } {d, f } {d} {d} {d, e} {e}

w(O′
j) + w(O′

k) 8 9 9 9 9 8 8 9

v(O′
j) + v(O′

`k
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution has value 12 and is
achieved with {a, b, d} or {b, c, d , e}.

T’kindt Sort & Search 10 / 26

Sort & Search techniques

Sort & Search : illustration

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

The search phase leads to,

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f } {d, e} {e, f } {d, f } {d} {d} {d, e} {e}

w(O′
j) + w(O′

k) 8 9 9 9 9 8 8 9

v(O′
j) + v(O′

`k
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution has value 12 and is
achieved with {a, b, d} or {b, c, d , e}.

T’kindt Sort & Search 10 / 26

Sort & Search techniques

Sort & Search : illustration

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

The search phase leads to,

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f } {d, e} {e, f } {d, f } {d} {d} {d, e} {e}

w(O′
j) + w(O′

k) 8 9 9 9 9 8 8 9

v(O′
j) + v(O′

`k
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution has value 12 and is
achieved with {a, b, d} or {b, c, d , e}.

T’kindt Sort & Search 10 / 26

Sort & Search techniques

Sort & Search : illustration

Search phase can start,

For any column j ∈ T1, find the “best” complementing column
k ∈ T2,

Best : column k which maximizes
∑

w ... then column `k will
be the one which maximizes

∑
v ,

The search phase leads to,

j ∅ {a} {b} {c} {a, b} {a, c} {b, c} {a, b, c}
k {d, f } {d, e} {e, f } {d, f } {d} {d} {d, e} {e}

w(O′
j) + w(O′

k) 8 9 9 9 9 8 8 9

v(O′
j) + v(O′

`k
) 8 9 10 10 12 10 12 10

Consequently, the optimal solution has value 12 and is
achieved with {a, b, d} or {b, c, d , e}.

T’kindt Sort & Search 10 / 26

Sort & Search techniques

1 The principles of the original method

2 Formalization of the original method

3 Extension of Sort & Search

4 Application to a scheduling problem

T’kindt Sort & Search 11 / 26

Sort & Search techniques

Sort & Search : formalization

Sort & Search is a powerfull technique which can be applied
to a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Sort & Search 12 / 26

Sort & Search techniques

Sort & Search : formalization

Sort & Search is a powerfull technique which can be applied
to a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Sort & Search 12 / 26

Sort & Search techniques

Sort & Search : formalization

Sort & Search is a powerfull technique which can be applied
to a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Sort & Search 12 / 26

Sort & Search techniques

Sort & Search : formalization

Sort & Search is a powerfull technique which can be applied
to a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Sort & Search 12 / 26

Sort & Search techniques

Sort & Search : formalization

Sort & Search is a powerfull technique which can be applied
to a lot of problems,

Intuitively, to be applicable efficiently, problems must satisfy
two properties :

1 Two partial solutions can be combined in polynomial time to
get a feasible solution,

2 The Sort phase must enable to lead to a Search phase which
complexity does not exceed the one required to build the
tables.

Sort & Search, as introduced by Horowitz and Sahni, can be
applied to a class of problems called Single Constraint
Problems (SCP),

T’kindt Sort & Search 12 / 26

Sort & Search techniques

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk)
s.t.

g ′(~aj , b
′
k) ≥ 0

~aj ∈ A, (bk , b
′
k) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB) + nA log2(nB)) time and O(nA + nB) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2) time and space.

T’kindt Sort & Search 13 / 26

Sort & Search techniques

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk)
s.t.

g ′(~aj , b
′
k) ≥ 0

~aj ∈ A, (bk , b
′
k) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB) + nA log2(nB)) time and O(nA + nB) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2) time and space.

T’kindt Sort & Search 13 / 26

Sort & Search techniques

Sort & Search : formalization

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = ((b1, b
′
1), (b2, b

′
2) . . . (bnB , b

′
nB

)) a table of nB
couples,

Let f and g ′ be two functions from RdA+1 to R, increasing
with respect to their last variable,

The (SCP) :

Minimize f (~aj , bk)
s.t.

g ′(~aj , b
′
k) ≥ 0

~aj ∈ A, (bk , b
′
k) ∈ B .

There exists a Sort & Search algorithm in
O(nB log2(nB) + nA log2(nB)) time and O(nA + nB) space.

KNAPSACK : nA = nB = 2
n
2 ⇒ O∗(2

n
2) time and space.

T’kindt Sort & Search 13 / 26

Sort & Search techniques

1 The principles of the original method

2 Formalization of the original method

3 Extension of Sort & Search

4 Application to a scheduling problem

T’kindt Sort & Search 14 / 26

Sort & Search techniques

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Sort & Search 15 / 26

Sort & Search techniques

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Sort & Search 15 / 26

Sort & Search techniques

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Sort & Search 15 / 26

Sort & Search techniques

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Sort & Search 15 / 26

Sort & Search techniques

Sort & Search : generalization

We can extend the original Sort & Search approach to
Multiple Constraint Problems (MCP),

Let be A = (~a1, ~a2, . . . ~anA) a table of nA vectors of
dimension dA,

Let be B = (~b1, ~b2, . . .~bnB
) a table of nB vectors

~bk = (b0k , b
1
k , . . . , b

dB
k) of dimension dB + 1,

Let f and g` (1 ≤ ` ≤ dB) be dB + 1 functions from RdA+1 to
R (increasing with respect to their last variable),

The (MCP) is defined by :

Minimize f (~aj , b
0
k)

s.t.
g`(~aj , b

`
k) ≥ 0, (1 ≤ ` ≤ dB)

~aj ∈ A, ~bk ∈ B .

T’kindt Sort & Search 15 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

The same process, as in the (SCP), will be iterated : for each
vector ~aj ∈ A, find the vector ~bk answering the constraints
and minimizing f ,

Assume that ~aj is given,

For any constraint g`(~aj , b
`
k) ≥ 0, (1 ≤ ` ≤ dB)...

... let be βkj = min{b`k |1 ≤ k ≤ nB and g`(~aj , b
`
k) ≥ 0}

Beside, let be β ∈ {b0k |1 ≤ k ≤ nB},
If there is at least one vector ~bk ∈ B with coordinates in
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞]... then we know
that the optimal solution of the (MCP) (when ~aj is fixed) is
at most β,

We can iterate through all values of β,

T’kindt Sort & Search 16 / 26

Sort & Search techniques

Sort & Search : generalization

Next question : how computing efficiently
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞] ?

This is a rectangular query,

We can make use of range trees to sort the vectors ~bk ∈ B ,

T’kindt Sort & Search 17 / 26

Sort & Search techniques

Sort & Search : generalization

Next question : how computing efficiently
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞] ?

This is a rectangular query,

We can make use of range trees to sort the vectors ~bk ∈ B ,

T’kindt Sort & Search 17 / 26

Sort & Search techniques

Sort & Search : generalization

Next question : how computing efficiently
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞] ?

This is a rectangular query,

We can make use of range trees to sort the vectors ~bk ∈ B ,

T’kindt Sort & Search 17 / 26

Sort & Search techniques

Sort & Search : generalization

Next question : how computing efficiently
Q = [−∞;β]× [β1j ; +∞]× ...× [βdBj ; +∞] ?

This is a rectangular query,

We can make use of range trees to sort the vectors ~bk ∈ B ,

T’kindt Sort & Search 17 / 26

Sort & Search techniques

Sort & Search : generalization

T’kindt Sort & Search 18 / 26

Sort & Search techniques

Sort & Search : generalization

What about the complexity ?

... we can establish a Sort & Search algorithm in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time and

O(nB logdB−12 (nB)) space ([7]).

[7] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Sort & Search 19 / 26

Sort & Search techniques

Sort & Search : generalization

What about the complexity ?

... we can establish a Sort & Search algorithm in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time and

O(nB logdB−12 (nB)) space ([7]).

[7] C. Lente, M. Liedloff, A. Soukhal and V. T’kindt. On an extension of the Sort & Search method with

application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

T’kindt Sort & Search 19 / 26

Sort & Search techniques

1 The principles of the original method

2 Formalization of the original method

3 Extension of Sort & Search

4 Application to a scheduling problem

T’kindt Sort & Search 20 / 26

Sort & Search techniques

Sort & Search : an application

Consider the following scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Sort & Search 21 / 26

Sort & Search techniques

Sort & Search : an application

Consider the following scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

time0

Machine 1

Machine 2

Machine 3

1

2

3

4

5

6

7

8

CmaxC6

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Sort & Search 21 / 26

Sort & Search techniques

Sort & Search : an application

Consider the following scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

time0

Machine 1

Machine 2

Machine 3

1

2

3

4

5

6

7

8

CmaxC6

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Sort & Search 21 / 26

Sort & Search techniques

Sort & Search : an application

Consider the following scheduling problem :

3 identical machines are available to process n jobs,
Each job i is defined by a processing time pi and can be
processed by any of the 3 machines,
Find a schedule which minimizes the makespan
Cmax = maxi(Ci) with Ci the completion time of job i .

time0

Machine 1

Machine 2

Machine 3

1

2

3

4

5

6

7

8

CmaxC6

This problem is NP-hard.

The worst-case time complexity of ENUM is in O∗(3n),

T’kindt Sort & Search 21 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

Let I be an instance with n jobs given in a set J ,

Let I1 = {1, . . . ,
⌊
n
2

⌋
} be the subset of the

⌊
n
2

⌋
first job of J ,

Let I2 = {
⌊
n
2

⌋
+ 1, . . . ,n} be the subset of the

⌈
n
2

⌉
last job

of J ,

Let be E j1 = (E j
1,1,E

j
1,2,E

j
1,3) a 3-partition of I1

(1 ≤ j ≤ 3|I1|),

We associate to it a schedule s j1 containing the sequence of
jobs on machines,

Similarly, let be Ek2 a 3-partition of I2 (1 ≤ j ≤ 3|I2|),

We associate to it a schedule sk2 containing the sequence of
jobs on machines,

T’kindt Sort & Search 22 / 26

Sort & Search techniques

Sort & Search : an application (main lines)

T’kindt Sort & Search 23 / 26

Sort & Search techniques

Sort & Search : an application (main lines)



~aj = (δ1(s
j
1), δ2(s

j
1))

(b0k , b
1
k , b

2
k) = (δ1(s

k
2) + δ2(s

k
2), δ1(s

k
2), δ2(s

k
2))

f (~aj , b
0
k) = (P + δ1(s

j
1) + δ2(s

j
1) + δ1(s

k
2) + δ2(s

k
2))/3

g1(~aj , b
1
k) = δ1(s

j
1) + δ1(s

k
2)

g2(~aj , b
2
k) = δ2(s

j
1) + δ2(s

k
2)

(1)
Besides f , g1 are g2 increasing function with respect to their last
variable.

T’kindt Sort & Search 24 / 26

Sort & Search techniques

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Sort & Search 25 / 26

Sort & Search techniques

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Sort & Search 25 / 26

Sort & Search techniques

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Sort & Search 25 / 26

Sort & Search techniques

Sort & Search : an application

The complexity of Sort & Search is in
O(nB logdB2 (nB) + nA logdB+2

2 (nB)) time,

Starting from I1 and I2, tables A and B have respectively
nA = nB = 3

n
2 columns,

Besides, dA = 2, and dB = 2

Then, the worst-case time complexity is in
O(3

n
2 log22(3

n
2) + 3

n
2 log42(3

n
2)) = O∗(3

n
2) ≈ O∗(1.7321n).

T’kindt Sort & Search 25 / 26

Sort & Search techniques

Conclusions

Sort & Search is an interesting general technique,

Decrease of the worst-case time complexity by increasing the
worst-case space complexity,

Seems to be usable as soon as “objects have to be assigned”
(source of the combinatorics).

T’kindt Sort & Search 26 / 26

Sort & Search techniques

Conclusions

Sort & Search is an interesting general technique,

Decrease of the worst-case time complexity by increasing the
worst-case space complexity,

Seems to be usable as soon as “objects have to be assigned”
(source of the combinatorics).

T’kindt Sort & Search 26 / 26

Sort & Search techniques

Conclusions

Sort & Search is an interesting general technique,

Decrease of the worst-case time complexity by increasing the
worst-case space complexity,

Seems to be usable as soon as “objects have to be assigned”
(source of the combinatorics).

T’kindt Sort & Search 26 / 26

	The principles of the original method
	Formalization of the original method
	Extension of Sort & Search
	Application to a scheduling problem

