

Sort & Search techniques

V T'kindt, C Lenté

tkindt@univ-tours.fr, Université Francois-Rabelais, CNRS, Tours, France

March 2015

Extension of Sort & Search

Application to a scheduling problem

1) The principles of the original method

2) Formalization of the original method

3 Extension of Sort & Search

4 Application to a scheduling problem

- It is an old technique which consists in **sorting** "data" to make the **search** for an optimal solution more efficient,
- It has been proposed by Horowitz and Sahni ([1]) to solve the knapsack problem,
- The idea : cut the cake into two equal-size pieces and just pay for one (but take both !),
- Assume we are given a decision/optimization problem (*I* denotes an instance of the problem),

- It is an old technique which consists in **sorting** "data" to make the **search** for an optimal solution more efficient,
- It has been proposed by Horowitz and Sahni ([1]) to solve the knapsack problem,
- The idea : cut the cake into two equal-size pieces and just pay for one (but take both !),
- Assume we are given a decision/optimization problem (*I* denotes an instance of the problem),

- It is an old technique which consists in **sorting** "data" to make the **search** for an optimal solution more efficient,
- It has been proposed by Horowitz and Sahni ([1]) to solve the knapsack problem,
- The idea : cut the cake into two equal-size pieces and just pay for one (but take both !),
- Assume we are given a decision/optimization problem (*I* denotes an instance of the problem),

- It is an old technique which consists in **sorting** "data" to make the **search** for an optimal solution more efficient,
- It has been proposed by Horowitz and Sahni ([1]) to solve the knapsack problem,
- The idea : cut the cake into two equal-size pieces and just pay for one (but take both !),
- Assume we are given a decision/optimization problem (I denotes an instance of the problem),

• The idea is the following : separate the instance into **2** sub-instances,

• Then, enumerate all partial solutions from I_1 and all partial solutions from I_2 ,

 The idea is the following : separate the instance into 2 sub-instances,

• Then, enumerate all partial solutions from I_1 and all partial solutions from I_2 ,

By recombination of partial solutions, find the optimal solution of the initial problem

• The combinatoric appears when building S_1 and S_2 by enumeration (*sort* phase) and when finding in these sets the optimal solution (*search* phase).

By recombination of partial solutions, find the optimal solution of the initial problem

• The combinatoric appears when building S_1 and S_2 by enumeration (*sort* phase) and when finding in these sets the optimal solution (*search* phase).

Let us start with the KNAPSACK problem,

- Let be $O = \{o_1, \ldots, o_n\}$ a set of n objects,
- Each object o_i is defined by a value $v(o_i)$ and a weight $w(o_i)$, $1 \le i \le n$,
- The, integer, capacity W of the knapsack.
- Goal : Find $O' \subseteq O$ such that $\sum_{o \in O'} w(o) \leq W$ and $\sum_{o \in O'} v(o)$ is maximum.

 \circ We can easily show that ENUM is in $O^*(2^n)$ time,

Let us start with the KNAPSACK problem,

- Let be $O = \{o_1, \ldots, o_n\}$ a set of n objects,
- Each object o_i is defined by a value $v(o_i)$ and a weight $w(o_i)$, $1 \le i \le n$,
- The, integer, capacity W of the knapsack.
- Goal : Find $O' \subseteq O$ such that $\sum_{o \in O'} w(o) \leq W$ and $\sum_{o \in O'} v(o)$ is maximum.
- We can easily show that ENUM is in $O^st(2^n)$ time,

Next, we enumerate the set of all possible assignments for O_1 (Table T_1),

Next, we enumerate the set of all possible assignments for O_1 (Table T_1),

Next, we enumerate the set of all possible assignments for O_1 (Table T_1),

• Next, we enumerate the set of all possible assignments for O_1 (Table T_1),

• Next, we do the same for O_2 (Table T_2),

T_2	Ø	$\{e\}$	$\{d\}$	$\{f\}$	$\{d,e\}$	$\{e, f\}$	$\{d,f\}$	$\{d, e, f\}$
$\sum v$	0	1	5	3	6	4	8	9
$\sum w$	0	2	3	5	5	7	8	10
ℓ_k	1	2	3	3	5	5	7	8

<u>Note</u>: In table T_2 , columns are sorted by increasing order of $\sum w$. <u>Note</u>: ℓ_k is the column number with maximum $\sum v$ "on the left" of the current column.

- That was the *Sort* phase!
- $\circ\,$ Running time (and space) should be "about" $2^{n/2}$,

• Next, we do the same for O_2 (Table T_2),

T_2	Ø	$\{e\}$	$\{d\}$	$\{f\}$	$\{d,e\}$	$\{e, f\}$	$\{d,f\}$	$\{d, e, f\}$
$\sum v$	0	1	5	3	6	4	8	9
$\sum w$	0	2	3	5	5	7	8	10
ℓ_k	1	2	3	3	5	5	7	8

<u>Note</u>: In table T_2 , columns are sorted by increasing order of $\sum w$. <u>Note</u>: ℓ_k is the column number with maximum $\sum v$ "on the left" of the current column.

- That was the Sort phase!
- $\circ\,$ Running time (and space) should be "about" $2^{n/2}$,

• Next, we do the same for O_2 (Table T_2),

T_2	Ø	$\{e\}$	$\{d\}$	$\{f\}$	$\{d,e\}$	$\{e, f\}$	$\{d,f\}$	$\{d, e, f\}$
$\sum v$	0	1	5	3	6	4	8	9
$\sum w$	0	2	3	5	5	7	8	10
ℓ_k	1	2	3	3	5	5	7	8

<u>Note</u> : In table T_2 , columns are sorted by increasing order of $\sum w$. <u>Note</u> : ℓ_k is the column number with maximum $\sum v$ "on the left" of the current column.

- That was the *Sort* phase!
- | ullet Running time (and space) should be "about" $2^{n/2}$,

Search phase can start,

- For any column $j \in T_1$, find the "best" complementing column $k \in T_2$,
- Best : column k which maximizes $\sum w...$ then column ℓ_k will be the one which maximizes $\sum v$,
- The search phase leads to,

- Search phase can start,
- For any column $j \in T_1$, find the "best" complementing column $k \in T_2$,
- Best : column k which maximizes $\sum w...$ then column ℓ_k will be the one which maximizes $\sum v$,
- The search phase leads to,

- Search phase can start,
- For any column $j \in T_1$, find the "best" complementing column $k \in T_2$,
- Best : column k which maximizes $\sum w...$ then column ℓ_k will be the one which maximizes $\sum v$,
- The search phase leads to,

- Search phase can start,
- For any column $j \in T_1$, find the "best" complementing column $k \in T_2$,
- Best : column k which maximizes $\sum w...$ then column ℓ_k will be the one which maximizes $\sum v$,
- The search phase leads to,

	Ø	\set{a}	${b}$	$\{c\}$	$\{a, b\}$	$\{a, c\}$	$\{b, c\}$	$\{a, b, c\}$
k	$\{d, f\}$	$\{d,e\}$	$\{e, f\}$	$\set{d,f}$	$\set{d}{}$	$\set{d}{}$	$\set{d,e}$	$\{e\}$
$w(O'_i) + w(O'_k)$	8	9	9	9	9	8	8	9
$v(O'_i) + v(O'_{\ell_h})$	8	9	10	10	12	10	12	10

1) The principles of the original method

- 2) Formalization of the original method
- Extension of Sort & Search
- Application to a scheduling problem

- Sort & Search is a powerfull technique which can be applied to a lot of problems,
- Intuitively, to be applicable efficiently, problems must satisfy two properties :
 - Two partial solutions can be combined in polynomial time to get a feasible solution.
 - orteldore terrorezodo hostedi. O

tables.

Sort & Search, as introduced by Horowitz and Sahni, can be applied to a class of problems called *Single Constraint Problems* (SCP),

- Sort & Search is a powerfull technique which can be applied to a lot of problems,
- Intuitively, to be applicable efficiently, problems must satisfy two properties :
 - Two partial solutions can be combined in polynomial time to get a feasible solution,
 - 2 The Sort phase must enable to lead to a Search phase which complexity does not exceed the one required to build the tables.
- Sort & Search, as introduced by Horowitz and Sahni, can be applied to a class of problems called Single Constraint Problems (SCP),

- Sort & Search is a powerfull technique which can be applied to a lot of problems,
- Intuitively, to be applicable efficiently, problems must satisfy two properties :
 - Two partial solutions can be combined in polynomial time to get a feasible solution,
 - The Sort phase must enable to lead to a Search phase which complexity does not exceed the one required to build the tables.
- Sort & Search, as introduced by Horowitz and Sahni, can be applied to a class of problems called Single Constraint Problems (SCP),

- Sort & Search is a powerfull technique which can be applied to a lot of problems,
- Intuitively, to be applicable efficiently, problems must satisfy two properties :
 - Two partial solutions can be combined in polynomial time to get a feasible solution,
 - The Sort phase must enable to lead to a Search phase which complexity does not exceed the one required to build the tables.
- Sort & Search, as introduced by Horowitz and Sahni, can be applied to a class of problems called Single Constraint Problems (SCP),

- Sort & Search is a powerfull technique which can be applied to a lot of problems,
- Intuitively, to be applicable efficiently, problems must satisfy two properties :
 - Two partial solutions can be combined in polynomial time to get a feasible solution,
 - The Sort phase must enable to lead to a Search phase which complexity does not exceed the one required to build the tables.
- Sort & Search, as introduced by Horowitz and Sahni, can be applied to a class of problems called Single Constraint Problems (SCP),

- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = ((b_1, b_1'), (b_2, b_2') \dots (b_{n_B}, b_{n_B}'))$ a table of n_B couples,
- Let f and g' be two functions from \mathbb{R}^{d_A+1} to \mathbb{R} , increasing with respect to their last variable,
- The (SCP) :

 $\begin{array}{l} \text{Minimize } f(\vec{a_j}, b_k) \\ \text{s.t.} \\ g'(\vec{a_j}, b'_k) \geq 0 \\ \vec{a_j} \in A, \ (b_k, b'_k) \in B. \end{array}$

There exists a Sort & Search algorithm in O(n_B log₂(n_B) + n_A log₂(n_B)) time and O(n_A + n_B) space.
KNAPSACK : n_A = n_B = 2^{n/2} ⇒ O*(2^{n/2}) time and space.

- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = ((b_1, b_1'), (b_2, b_2') \dots (b_{n_B}, b_{n_B}'))$ a table of n_B couples,
- Let f and g' be two functions from \mathbb{R}^{d_A+1} to \mathbb{R} , increasing with respect to their last variable,
- The (SCP) :

 $\begin{array}{l} \text{Minimize } f(\vec{a_j}, b_k) \\ \text{s.t.} \\ g'(\vec{a_j}, b'_k) \geq 0 \\ \vec{a_j} \in A, \ (b_k, b'_k) \in B. \end{array}$

• There exists a Sort & Search algorithm in $O(n_B \log_2(n_B) + n_A \log_2(n_B))$ time and $O(n_A + n_B)$ space.

- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = ((b_1, b_1'), (b_2, b_2') \dots (b_{n_B}, b_{n_B}'))$ a table of n_B couples,
- Let f and g' be two functions from \mathbb{R}^{d_A+1} to \mathbb{R} , increasing with respect to their last variable,
- The (SCP) :

 $\begin{array}{l} \text{Minimize } f(\vec{a_j}, b_k) \\ \text{s.t.} \\ g'(\vec{a_j}, b'_k) \geq 0 \\ \vec{a_j} \in A, \ (b_k, b'_k) \in B. \end{array}$

- There exists a Sort & Search algorithm in $O(n_B \log_2(n_B) + n_A \log_2(n_B))$ time and $O(n_A + n_B)$ space.
- KNAPSACK : $n_A = n_B = 2^{\frac{n}{2}} \Rightarrow O^*(2^{\frac{n}{2}})$ time and space.

1) The principles of the original method

- 2) Formalization of the original method
- 3 Extension of Sort & Search
- 4) Application to a scheduling problem

Sort & Search : generalization

- We can extend the original *Sort & Search* approach to *Multiple Constraint Problems* (MCP),
- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B=(ec{b}_1,\ ec{b}_2,\ldots ec{b}_{n_B})$ a table of n_B vectors $ec{b}_k=(b^0_k,b^1_k,\ldots,b^{d_B}_k)$ of dimension d_B+1 ,
- Let f and g_{ℓ} $(1 \leq \ell \leq d_B)$ be $d_B + 1$ functions from \mathbb{R}^{d_A+1} to \mathbb{R} (increasing with respect to their last variable),
- The (MCP) is defined by :

Minimize $f(\vec{a_j}, b_k^0)$

s.t.

 $g_{\ell}(\vec{a_j}, b_k^{\ell}) \ge 0, \quad (1 \le \ell \le d_B)$ $\vec{a_j} \in A, \ \vec{b_k} \in B.$

Sort & Search : generalization

- We can extend the original *Sort & Search* approach to *Multiple Constraint Problems* (MCP),
- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = (\vec{b}_1, \ \vec{b}_2, \dots \vec{b}_{n_B})$ a table of n_B vectors $\vec{b}_k = (b_k^0, b_k^1, \dots, b_k^{d_B})$ of dimension $d_B + 1$,
- Let f and g_{ℓ} $(1 \leq \ell \leq d_B)$ be $d_B + 1$ functions from \mathbb{R}^{d_A+1} to \mathbb{R} (increasing with respect to their last variable),
- The (MCP) is defined by :

```
Minimize f(\vec{a_i}, b_k^0)
```

s.t.

 $g_{\ell}(\vec{a_j}, b_k^{\ell}) \ge 0, \quad (1 \le \ell \le d_B)$ $\vec{a_j} \in A, \ \vec{b_k} \in B.$

- We can extend the original *Sort & Search* approach to *Multiple Constraint Problems* (MCP),
- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = (\vec{b}_1, \ \vec{b}_2, \dots \vec{b}_{n_B})$ a table of n_B vectors $\vec{b}_k = (b_k^0, b_k^1, \dots, b_k^{d_B})$ of dimension $d_B + 1$,
- Let f and g_{ℓ} $(1 \leq \ell \leq d_B)$ be $d_B + 1$ functions from \mathbb{R}^{d_A+1} to \mathbb{R} (increasing with respect to their last variable),
- The (MCP) is defined by :

Minimize $f(\vec{a_i}, b_k^0)$

s.t.

 $g_{\ell}(\vec{a_j}, b_k^{\ell}) \ge 0, \quad (1 \le \ell \le d_B)$ $\vec{a_j} \in A, \ \vec{b_k} \in B.$

- We can extend the original *Sort & Search* approach to *Multiple Constraint Problems* (MCP),
- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = (\vec{b}_1, \ \vec{b}_2, \dots \vec{b}_{n_B})$ a table of n_B vectors $\vec{b}_k = (b_k^0, b_k^1, \dots, b_k^{d_B})$ of dimension $d_B + 1$,
- Let f and g_{ℓ} $(1 \le \ell \le d_B)$ be $d_B + 1$ functions from \mathbb{R}^{d_A+1} to \mathbb{R} (increasing with respect to their last variable),
- The (MCP) is defined by :

```
Minimize f(\vec{a_j}, b_k^0)
```

s.t.

 $g_{\ell}(\vec{a_j}, b_k^{\ell}) \ge 0, \quad (1 \le \ell \le d_B)$ $\vec{a_i} \in A, \ \vec{b_k} \in B.$

- We can extend the original *Sort & Search* approach to *Multiple Constraint Problems* (MCP),
- Let be $A = (\vec{a}_1, \ \vec{a}_2, \dots \vec{a}_{n_A})$ a table of n_A vectors of dimension d_A ,
- Let be $B = (\vec{b}_1, \ \vec{b}_2, \dots \vec{b}_{n_B})$ a table of n_B vectors $\vec{b}_k = (b_k^0, b_k^1, \dots, b_k^{d_B})$ of dimension $d_B + 1$,
- Let f and g_{ℓ} $(1 \le \ell \le d_B)$ be $d_B + 1$ functions from \mathbb{R}^{d_A+1} to \mathbb{R} (increasing with respect to their last variable),
- The (MCP) is defined by :

Minimize $f(\vec{a_i}, \vec{b_k})$

s.t.

 $g_\ell(ec{a_j}, b_k^\ell) \geq 0, \quad (1 \leq \ell \leq d_B) \ ec{a_j} \in A, \ ec{b}_k \in B.$

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(ec{a_j}, b_k^\ell) \geq 0$, $(1 \leq \ell \leq d_B)...$
- ... let be $\beta_j^k = \min\{b_k^\ell | 1 \le k \le n_B \text{ and } g_\ell(\vec{a_j}, b_k^\ell) \ge 0\}$
- Beside, let be $eta \in \{b_k^0 | 1 \leq k \leq n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $\mathcal{Q} = [-\infty; \beta] \times [\beta_j^1; +\infty] \times \ldots \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- \circ We can iterate through all values of β ,

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(ec{a_j}, b_k^\ell) \geq 0$, $(1 \leq \ell \leq d_B)...$
- ... let be $eta_j^k = \min\{b_k^\ell | 1 \le k \le n_B \text{ and } g_\ell(ec{a_j}, b_k^\ell) \ge 0\}$
- \circ Beside, let be $eta \in \{b_k^0 | 1 \leq k \leq n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $\mathcal{Q} = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- We can iterate through all values of β ,

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(\vec{a_j}, b_k^\ell) \ge 0$, $(1 \le \ell \le d_B)$...
- ... let be $eta_j^k = \min\{b_k^\ell | 1 \le k \le n_B \text{ and } g_\ell(ec{a_j}, b_k^\ell) \ge 0\}$
- Beside, let be $eta \in \{b_k^0 | 1 \leq k \leq n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $\mathcal{Q} = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- We can iterate through all values of β ,

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(ec{a_j}, b_k^\ell) \geq 0$, $(1 \leq \ell \leq d_B)...$
- ... let be $\beta_j^k = \min\{b_k^\ell | 1 \le k \le n_B \text{ and } g_\ell(\vec{a_j}, b_k^\ell) \ge 0\}$
- Beside, let be $eta \in \{b_k^0 | 1 \leq k \leq n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $\mathcal{Q} = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- We can iterate through all values of β ,

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(\vec{a_j}, b_k^\ell) \ge 0$, $(1 \le \ell \le d_B)$...
- ... let be $eta_j^k = \min\{b_k^\ell | 1 \le k \le n_B \text{ and } g_\ell(\vec{a_j}, b_k^\ell) \ge 0\}$
- Beside, let be $eta \in \{b_k^0 | 1 \le k \le n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $\mathcal{Q} = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- We can iterate through all values of β ,

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(\vec{a_j}, b_k^\ell) \geq 0$, $(1 \leq \ell \leq d_B)$...
- ... let be $eta_j^k = \min\{b_k^\ell | 1 \leq k \leq n_B \text{ and } g_\ell(ec{a_j}, b_k^\ell) \geq 0\}$
- Beside, let be $eta \in \{b_k^0 | 1 \leq k \leq n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $Q = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- \circ We can iterate through all values of eta,

- The same process, as in the (SCP), will be iterated : for each vector $\vec{a_j} \in A$, find the vector $\vec{b_k}$ answering the constraints and minimizing f,
- Assume that $\vec{a_j}$ is given,
- For any constraint $g_\ell(\vec{a_j}, b_k^\ell) \geq 0$, $(1 \leq \ell \leq d_B)$...
- ... let be $\beta_j^k = \min\{b_k^\ell | 1 \le k \le n_B \text{ and } g_\ell(\vec{a_j}, b_k^\ell) \ge 0\}$
- Beside, let be $eta \in \{b_k^0 | 1 \le k \le n_B\}$,
- If there is at least one vector $\vec{b_k} \in B$ with coordinates in $Q = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]...$ then we know that the optimal solution of the (MCP) (when $\vec{a_j}$ is fixed) is at most β ,
- We can iterate through all values of β ,

- Next question : how computing efficiently $Q = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]$?
- This is a *rectangular query*,
- . We can make use of range trees to sort the vectors $ec{b_k}\in B$,

- Next question : how computing efficiently $Q = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]$?
- This is a rectangular query,
- . We can make use of range trees to sort the vectors $ec{b_k}\in B$,

- Next question : how computing efficiently $Q = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]$?
- This is a rectangular query,
- We can make use of range trees to sort the vectors $ec{b_k}\in B$,

- Next question : how computing efficiently $Q = [-\infty; \beta] \times [\beta_j^1; +\infty] \times ... \times [\beta_j^{d_B}; +\infty]$?
- This is a rectangular query,
- | ullet We can make use of range trees to sort the vectors $ec{b_k} \in B$,

• What about the complexity?

... we can establish a Sort & Search algorithm in $O(n_B \log_2^{d_B}(n_B) + n_A \log_2^{d_B+2}(n_B))$ time and $O(n_B \log_2^{d_B-1}(n_B))$ space ([7]).

[7] C. Lente, M. Liedloff, A. Soukhal and V. T'kindt. On an extension of the Sort & Search method with application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

- What about the complexity?
- ... we can establish a *Sort & Search* algorithm in $O(n_B \log_2^{d_B}(n_B) + n_A \log_2^{d_B+2}(n_B))$ time and $O(n_B \log_2^{d_B-1}(n_B))$ space ([7]).

[7] C. Lente, M. Liedloff, A. Soukhal and V. T'kindt. On an extension of the Sort & Search method with application to scheduling theory, Theoretical Computer Science, vol 511, pp. 13-22, 2013.

1) The principles of the original method

- 2) Formalization of the original method
- 3 Extension of Sort & Search
- Application to a scheduling problem

• Consider the following scheduling problem :

- 3 identical machines are available to process n jobs,
- Each job i is defined by a processing time p_i and can be processed by any of the 3 machines,
- Find a schedule which minimizes the makespan $C_{max} = \max_i(C_i)$ with C_i the completion time of job i.
- \circ This problem is \mathcal{NP} -hard.
- \circ The worst-case time complexity of ENUM is in $O^*(3^n)$,

- Consider the following scheduling problem :
 - 3 identical machines are available to process n jobs,
 - Each job i is defined by a processing time p_i and can be processed by any of the 3 machines,
 - Find a schedule which minimizes the makespan

 $C_{max} = \max_i(C_i)$ with C_i the completion time of job *i*.

- \circ This problem is \mathcal{NP} -hard.
- The worst-case time complexity of ENUM is in $O^*(3^n)$

- Consider the following scheduling problem :
 - 3 identical machines are available to process n jobs,
 - Each job i is defined by a processing time p_i and can be processed by any of the 3 machines,
 - Find a schedule which minimizes the makespan

 $C_{max} = \max_i(C_i)$ with C_i the completion time of job *i*.

- This problem is \mathcal{NP} -hard.
- The worst-case time complexity of ENUM is in $O^*(3^n)$

- Consider the following scheduling problem :
 - 3 identical machines are available to process n jobs,
 - Each job i is defined by a processing time p_i and can be processed by any of the 3 machines,
 - Find a schedule which minimizes the makespan

 $C_{max} = \max_i(C_i)$ with C_i the completion time of job *i*.

- This problem is \mathcal{NP} -hard.
- The worst-case time complexity of ENUM is in $O^*(3^n)$,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1=\{1,\ldots,\left\lfloor rac{n}{2}
 ight
 floor\}$ be the subset of the $\left\lfloor rac{n}{2}
 ight
 floor$ first job of ${\mathcal J}$,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of \mathcal{J} ,
- Let be $\mathcal{E}_1^j=(E_{1,1}^j,E_{1,2}^j,E_{1,3}^j)$ a 3-partition of I_1 $(1\leq j\leq 3^{|I_1|})$,
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1 \le j \le 3^{|I_2|})$,
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1 = \{1, \dots, \lfloor \frac{n}{2} \rfloor\}$ be the subset of the $\lfloor \frac{n}{2} \rfloor$ first job of \mathcal{J} ,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of \mathcal{J} ,
- Let be $\mathcal{E}_1^j = (E_{1,1}^j, E_{1,2}^j, E_{1,3}^j)$ a 3-partition of I_1 $(1 \le j \le 3^{|I_1|})$,
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1 \le j \le 3^{|I_2|})$,
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1=\{1,\ldots,\left\lfloor rac{n}{2}
 ight
 floor\}$ be the subset of the $\left\lfloor rac{n}{2}
 ight
 floor$ first job of ${\mathcal J}$,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of \mathcal{J} ,
- Let be $\mathcal{E}_1^j=(E_{1,1}^j,E_{1,2}^j,E_{1,3}^j)$ a 3-partition of I_1 $(1\leq j\leq 3^{|I_1|}),$
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1\leq j\leq 3^{|I_2|}),$
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1=\{1,\ldots,\left\lfloor \frac{n}{2}
 ight
 floor\}$ be the subset of the $\left\lfloor \frac{n}{2}
 ight
 floor$ first job of $\mathcal J$,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of $\mathcal J$,
- Let be $\mathcal{E}_1^j=(E_{1,1}^j,E_{1,2}^j,E_{1,3}^j)$ a 3-partition of I_1 $(1\leq j\leq 3^{|I_1|})$,
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1 \le j \le 3^{|I_2|})$,
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1 = \{1, \dots, \left\lfloor \frac{n}{2}
 ight
 floor\}$ be the subset of the $\left\lfloor \frac{n}{2}
 ight
 floor$ first job of $\mathcal J$,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of $\mathcal J$,
- Let be $\mathcal{E}_1^j = (E_{1,1}^j, E_{1,2}^j, E_{1,3}^j)$ a 3-partition of I_1 $(1 \le j \le 3^{|I_1|})$,
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1\leq j\leq 3^{|I_2|})$,
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1 = \{1, \dots, \lfloor \frac{n}{2} \rfloor\}$ be the subset of the $\lfloor \frac{n}{2} \rfloor$ first job of $\mathcal J$,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of \mathcal{J} ,
- Let be $\mathcal{E}_1^j = (E_{1,1}^j, E_{1,2}^j, E_{1,3}^j)$ a 3-partition of I_1 $(1 \le j \le 3^{|I_1|})$,
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1\leq j\leq 3^{|I_2|}),$
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

- Let I be an instance with n jobs given in a set $\mathcal J,$
- Let $I_1=\{1,\ldots,\left\lfloor rac{n}{2}
 ight
 floor\}$ be the subset of the $\left\lfloor rac{n}{2}
 ight
 floor$ first job of ${\mathcal J}$,
- Let $I_2 = \{\lfloor \frac{n}{2} \rfloor + 1, \dots, n\}$ be the subset of the $\lceil \frac{n}{2} \rceil$ last job of \mathcal{J} ,
- Let be $\mathcal{E}_1^j=(E_{1,1}^j,E_{1,2}^j,E_{1,3}^j)$ a 3-partition of I_1 $(1\leq j\leq 3^{|I_1|})$,
- We associate to it a schedule s₁^j containing the sequence of jobs on machines,
- Similarly, let be \mathcal{E}_2^k a 3-partition of I_2 $(1\leq j\leq 3^{|I_2|}),$
- We associate to it a schedule s₂^k containing the sequence of jobs on machines,

$$\begin{cases} \vec{a}_{j} = (\delta_{1}(s_{1}^{j}), \delta_{2}(s_{1}^{j})) \\ (b_{k}^{0}, b_{k}^{1}, b_{k}^{2}) = (\delta_{1}(s_{2}^{k}) + \delta_{2}(s_{2}^{k}), \delta_{1}(s_{2}^{k}), \delta_{2}(s_{2}^{k})) \\ f(\vec{a}_{j}, b_{k}^{0}) = (P + \delta_{1}(s_{1}^{j}) + \delta_{2}(s_{1}^{j}) + \delta_{1}(s_{2}^{k}) + \delta_{2}(s_{2}^{k}))/3 \\ g_{1}(\vec{a}_{j}, b_{k}^{1}) = \delta_{1}(s_{1}^{j}) + \delta_{1}(s_{2}^{k}) \\ g_{2}(\vec{a}_{j}, b_{k}^{2}) = \delta_{2}(s_{1}^{j}) + \delta_{2}(s_{2}^{k}) \end{cases}$$

Besides f, g_1 are g_2 increasing function with respect to their last variable.

- The complexity of Sort & Search is in $O(n_B \log_2^{d_B}(n_B) + n_A \log_2^{d_B+2}(n_B))$ time,
- Starting from I_1 and $I_2,$ tables A and B have respectively $n_A=n_B=3^{\frac{n}{2}}$ columns,
- Besides, $d_A = 2$, and $d_B = 2$
- Then, the worst-case time complexity is in $O(3^{\frac{n}{2}} \log_2^2(3^{\frac{n}{2}}) + 3^{\frac{n}{2}} \log_2^4(3^{\frac{n}{2}})) = O^*(3^{\frac{n}{2}}) \approx O^*(1.7321^n).$

- The complexity of Sort & Search is in $O(n_B \log_2^{d_B}(n_B) + n_A \log_2^{d_B+2}(n_B))$ time,
- Starting from I_1 and $I_2,$ tables A and B have respectively $n_A=n_B=3^{\frac{n}{2}}$ columns,
- Besides, $d_A = 2$, and $d_B = 2$
- Then, the worst-case time complexity is in $O(3^{\frac{n}{2}} \log_2^2(3^{\frac{n}{2}}) + 3^{\frac{n}{2}} \log_2^4(3^{\frac{n}{2}})) = O^*(3^{\frac{n}{2}}) \approx O^*(1.7321^n).$

- The complexity of Sort & Search is in $O(n_B \log_2^{d_B}(n_B) + n_A \log_2^{d_B+2}(n_B))$ time,
- Starting from I_1 and $I_2,$ tables A and B have respectively $n_A=n_B=3^{\frac{n}{2}}$ columns,
- Besides, $d_A = 2$, and $d_B = 2$
- Then, the worst-case time complexity is in $O(3^{\frac{n}{2}} \log_2^2(3^{\frac{n}{2}}) + 3^{\frac{n}{2}} \log_2^4(3^{\frac{n}{2}})) = O^*(3^{\frac{n}{2}}) \approx O^*(1.7321^n).$

- The complexity of Sort & Search is in $O(n_B \log_2^{d_B}(n_B) + n_A \log_2^{d_B+2}(n_B))$ time,
- Starting from I_1 and $I_2,$ tables A and B have respectively $n_A=n_B=3^{\frac{n}{2}}$ columns,
- Besides, $d_A = 2$, and $d_B = 2$
- Then, the worst-case time complexity is in $O(3^{\frac{n}{2}} \log_2^2(3^{\frac{n}{2}}) + 3^{\frac{n}{2}} \log_2^4(3^{\frac{n}{2}})) = O^*(3^{\frac{n}{2}}) \approx O^*(1.7321^n).$

Conclusions

• Sort & Search is an interesting general technique,

- Decrease of the worst-case time complexity by increasing the worst-case space complexity,
- Seems to be usable as soon as "objects have to be assigned" (source of the combinatorics).

Conclusions

- Sort & Search is an interesting general technique,
- Decrease of the worst-case time complexity by increasing the worst-case space complexity,
- Seems to be usable as soon as "objects have to be assigned" (source of the combinatorics).

Conclusions

- Sort & Search is an interesting general technique,
- Decrease of the worst-case time complexity by increasing the worst-case space complexity,
- Seems to be usable as soon as "objects have to be assigned" (source of the combinatorics).