Decidability issues for timed models

 an application of computer algebra techniquesBéatrice Bérard
Université Pierre \& Marie Curie, LIP6/MoVe, CNRS UMR 7606
Based on joint work with S. Haddad, C. Picaronny, M. Safey El Din, M. Sassolas

EJCIM, mars 2015

An infinite transition system

for the set of words $L=a b^{*} a=\left\{a b^{n} a \mid n \in \mathbb{N}\right\}$ over alphabet $\Sigma=\{a, b\}$

An infinite transition system

for the set of words $L=a b^{*} a=\left\{a b^{n} a \mid n \in \mathbb{N}\right\}$ over alphabet $\Sigma=\{a, b\}$

An infinite transition system

for the set of words $L=a b^{*} a=\left\{a b^{n} a \mid n \in \mathbb{N}\right\}$ over alphabet $\Sigma=\{a, b\}$

... and its finite quotient

Quotients

Σ alphabet, Σ^{*} set of words over Σ, language : subset of Σ^{*}

For a language $M \subseteq \Sigma^{*}$ and a word $u \in \Sigma^{*}$

$$
u^{-1} M=\left\{v \in \Sigma^{*} \mid u v \in M\right\}
$$

$u^{-1} M$, also noted $M \backslash u$, is a quotient of M.

For the example $L=a b^{*} a$
$a^{-1} L=b^{*} a \quad b^{-1} L=\emptyset=(b u)^{-1} L$ for any u
A partition of Σ^{*} is obtained by quotient under \sim_{L} :
$u_{1} \sim_{L} u_{2}$ if $u_{1}^{-1} L=u_{2}^{-1} L$.

Quotients

Σ alphabet, Σ^{*} set of words over Σ, language : subset of Σ^{*}

For a language $M \subseteq \Sigma^{*}$ and a word $u \in \Sigma^{*}$

$$
u^{-1} M=\left\{v \in \Sigma^{*} \mid u v \in M\right\}
$$

$u^{-1} M$, also noted $M \backslash u$, is a quotient of M.

For the example $L=a b^{*} a$
$a^{-1} L=b^{*} a \quad b^{-1} L=\emptyset=(b u)^{-1} L$ for any u
A partition of Σ^{*} is obtained by quotient under \sim_{L} :
$u_{1} \sim_{L} u_{2}$ if $u_{1}^{-1} L=u_{2}^{-1} L$.
[Nerode, 1958]
A language is accepted by a finite automaton if and only if it has a finite number of quotients.

Quotients and finite automata

States $=$ quotients, with transitions:

initial state: $L=\varepsilon^{-1} L$
final states : those containing ε

$$
\begin{aligned}
& L=a b^{*} a \\
& a^{-1} L=b^{*} a \text { and } b^{-1} L=\emptyset \\
& (a b)^{-1} L=b^{-1}\left(a^{-1} L\right)=b^{-1}\left(b^{*} a\right)=b^{*} a=a^{-1} L \\
& (a)^{-1} L=a^{-1}\left(b^{*} a\right)=\{\varepsilon\} \\
& a^{-1}\{\varepsilon\}=b^{-1}\{\varepsilon\}=\emptyset
\end{aligned}
$$

Quotients for infinite transition systems

or the reductionist approach [Henzinger, Majumdar, Raskin, 2003]

A transition system

$\mathcal{T}=(S, E)$ with

- S set of configurations
- $E \subseteq S \times S$ set of transitions

An equivalence \sim over S producing a quotient

$\mathcal{T}_{\sim}=\left(S / \sim, E_{\sim}\right)$ with

- S / \sim set of equivalence classes
- $E_{\sim} \subseteq Q / \sim \times Q / \sim$ such that $P \rightarrow P^{\prime}$ if $q \rightarrow q^{\prime}$ in E for some $q \in P$ and $q^{\prime} \in P^{\prime}$

Adding propositions on states or labels on transitions, Goal: build finite quotients preserving specific classes of properties like accepted language, reachability, LTL, CTL or μ-calculus model checking, ...

Hybrid automata

A heating device controller

Configurations in $S:(q, v(\theta))$, with $q \in\{\mathrm{ON}, \mathrm{OFF}\}$ and $v(\theta)$ the temperature value. Evolution: continuous for θ in a fixed q (following the differential equation), discrete when firing a transition.

With n real variables, flows and invariants on control states Q, guards and updates on transitions, configurations : $Q \times \mathbb{R}^{n}$.

Hybrid automata

A heating device controller

Configurations in $S:(q, v(\theta))$, with $q \in\{\mathrm{ON}, \mathrm{OFF}\}$ and $v(\theta)$ the temperature value. Evolution: continuous for θ in a fixed q (following the differential equation), discrete when firing a transition.

With n real variables, flows and invariants on control states Q, guards and updates on transitions, configurations : $Q \times \mathbb{R}^{n}$.

Verification problems are mostly undecidable
Decidability requires restricting either the flows [Henzinger, Kopke, Puri Varayia, 1998] or the jumps [Alur, Henzinger, Lafferrière, Pappas, 2000] for flows $\dot{x}=A x$

Outline

Timed Automata

Interrupt Timed Automata

Using Cylindrical Decomposition

Timed automata

Variables: clocks with flow $\dot{x}=1$ for each $x \in X$
Guards: conjunctions of $x-c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq,=, \geq,>\}$
Updates: conjunctions of reset $x:=0$
Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}_{+}^{n}$ if $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Examples (with two clocks x and y)
Ex. 1

Timed automata

Variables: clocks with flow $\dot{x}=1$ for each $x \in X$
Guards: conjunctions of $x-c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq,=, \geq,>\}$
Updates: conjunctions of reset $x:=0$
Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}_{+}^{n}$ if $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Examples (with two clocks x and y)
Ex. 2: A geometric view of a trajectory

x

Timed automata

Variables: clocks with flow $\dot{x}=1$ for each $x \in X$
Guards: conjunctions of $x-c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq,=, \geq,>\}$
Updates: conjunctions of reset $x:=0$
Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}_{+}^{n}$ if $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Examples (with two clocks x and y)
Ex. 2: A geometric view of a trajectory

Timed automata

Variables: clocks with flow $\dot{x}=1$ for each $x \in X$
Guards: conjunctions of $x-c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq,=, \geq,>\}$
Updates: conjunctions of reset $x:=0$
Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}_{+}^{n}$ if $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Examples (with two clocks x and y)
Ex. 2: A geometric view of a trajectory

$$
y:=0 \bigcirc x:=0
$$

Timed automata

Variables: clocks with flow $\dot{x}=1$ for each $x \in X$
Guards: conjunctions of $x-c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq,=, \geq,>\}$
Updates: conjunctions of reset $x:=0$
Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}_{+}^{n}$ if $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Examples (with two clocks x and y)
Ex. 2: A geometric view of a trajectory

$$
y:=0 \bigcirc x:=0
$$

Timed automata

Variables: clocks with flow $\dot{x}=1$ for each $x \in X$
Guards: conjunctions of $x-c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq,=, \geq,>\}$ Updates: conjunctions of reset $x:=0$
Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}_{+}^{n}$ if $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Examples (with two clocks x and y)
Ex. 2: A geometric view of a trajectory

Zones for timed automata

Zones for timed automata

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\circ} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\circ}
$$

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\circ} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \xrightarrow{\bullet y:=0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\circ}
$$

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\bullet} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\bullet} \xrightarrow{y:=0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\bullet} \xrightarrow{0.5}\left[\begin{array}{l}
1.5 \\
0.5
\end{array}\right]^{\bullet}
$$

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\bullet} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\circ} \xrightarrow{y:=0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\bullet} \xrightarrow{0.5}\left[\begin{array}{l}
1.5 \\
0.5
\end{array}\right]^{\bullet} \xrightarrow{x:=0}\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]^{\bullet} \ldots
$$

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\bullet} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\bullet} \xrightarrow{y:=0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\bullet} \xrightarrow{0.5}\left[\begin{array}{l}
1.5 \\
0.5
\end{array}\right]^{\bullet} \xrightarrow{x:=0}\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]^{\bullet} \ldots
$$

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\bullet} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\bullet} \xrightarrow{y:=0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\bullet} \xrightarrow{0.5}\left[\begin{array}{l}
1.5 \\
0.5
\end{array}\right]^{\bullet} \xrightarrow{x:=0}\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]^{\bullet} \ldots
$$

Zones for timed automata

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]^{\bullet} \xrightarrow{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{\bullet} \xrightarrow{y:=0}\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{\bullet} \xrightarrow{0.5}\left[\begin{array}{l}
1.5 \\
0.5
\end{array}\right]^{\bullet} \xrightarrow{x:=0}\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]^{\bullet} \ldots
$$

A finite quotient for timed automata

[Alur, Dill, 1990]

From \mathcal{A}, build a finite automaton $\operatorname{Reg}(\mathcal{A})$ preserving reachability of a control state and accepting the untimed part of the language (with labels).

Transition system $\mathcal{T}_{\mathcal{A}}$

with clocks $X=\left\{x_{1}, \ldots, x_{n}\right\}$, set of control states Q, set of transitions E :

- configurations $S=Q \times \mathbb{R}_{+}^{n}$
- time steps $(q, v) \xrightarrow{d}(q, v+d)$
- discrete steps $(q, v) \xrightarrow{e}\left(q^{\prime}, v^{\prime}\right)$ for a transition $e=q \xrightarrow{g, u} q^{\prime}$ in E if clock values v satisfy the guard g and $v^{\prime}=v[u]$

Equivalence \sim over \mathbb{R}_{+}^{n} producing a quotient $\operatorname{Reg}(\mathcal{A})$

- $Q \times \mathcal{R}$, for a set \mathcal{R} of regions partitioning \mathbb{R}_{+}^{n},
- abstract time steps $(q, R) \rightarrow(q, \operatorname{succ}(R))$
- discrete steps $(q, R) \xrightarrow{e}\left(q^{\prime}, R^{\prime}\right)$
both steps consistent with \sim

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

\square region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

Time successor of R $x=1$ and $1<y<2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

\square
region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

Time successor of R $x=1$ and $1<y<2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

\square
region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

Time successor of R $x=1$ and $1<y<2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

\square
region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

Time successor of R $x=1$ and $1<y<2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

\square region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

Time successor of R $x=1$ and $1<y<2$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

\square

$$
\begin{aligned}
& \text { region } R \text { defined by } \\
& 0<x<1 \text { and } 1<y<2 \\
& \text { and } \operatorname{frac}(x)>\operatorname{frac}(y) \\
& \text { Time successor of } R \\
& x=1 \text { and } 1<y<2
\end{aligned}
$$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Quotient construction

A geometric view with two clocks x and y, maximal constant $m=2$

region R defined by $0<x<1$ and $1<y<2$ and $\operatorname{frac}(x)>\operatorname{frac}(y)$

Time successor of R

$$
x=1 \text { and } 1<y<2
$$

Discrete step from R with $y:=0$
$0<x<1$ and $y=0$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

Example of quotient

$$
\rightarrow \begin{gathered}
q_{0} \\
x \leq 1
\end{gathered}{ }^{q_{1}} \begin{aligned}
& x \leq 1, a, y:=0 \\
& x \leq 1
\end{aligned} q_{2}
$$

Example of quotient

$$
\rightarrow \begin{gathered}
q_{0} \\
x \leq 1
\end{gathered}{ }^{q_{1}} \begin{gathered}
\\
x \leq 1, a, y:=0
\end{gathered} q_{2}
$$

Example of quotient

Example of quotient

Example of quotient

Exemple from [Alur et Dill, 1990]

Interrupt Timed Automata (ITA)

Control states on levels $\{1, \ldots, n\}$, a single clock x_{k} active on level k

level 4	$x_{4}:=0$	
level 3		1
	x_{3}	1
		।
	$x_{2}:=0$	\checkmark
level 2		1
		1
		।
		1
		1
		।
		।
		1
level $1 \quad x_{1}:=0$		\bigcirc

1
1
1
1
1
1
1
1
1
1
1

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \xrightarrow{1.5}\left[\begin{array}{c}
1.5 \\
0 \\
0 \\
0
\end{array}\right] \xrightarrow{2.1}\left[\begin{array}{c}
1.5 \\
0 \\
2.1 \\
0
\end{array}\right] \xrightarrow{1.7}\left[\begin{array}{c}
1.5 \\
0 \\
2.1 \\
1.7
\end{array}\right] \xrightarrow{2.2}\left[\begin{array}{c}
3.7 \\
0 \\
2.1 \\
1.7
\end{array}\right]
$$

ITA: syntax

- Variables: stopwatches with flow $\dot{x}=1$ or $\dot{x}=0$, clock x_{k} active at level $k \in\{1, \ldots, n\}$
- Guards: conjunctions of linear constraints with rational coefficients

$$
\sum_{j=1}^{k} a_{j} x_{j}+b \bowtie 0 \text { at level } k, \text { with } \bowtie \text { in }\{<, \leq,=, \geq,>\}
$$

- Clock valuation: $v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}^{n}$
- $\lambda: Q \rightarrow\{1, \ldots, n\}$ state level, with $x_{\lambda(q)}$ the active clock in state q
- Transitions:

ITA: updates

From level k to k^{\prime}

increasing level $k \leq k^{\prime}$

Level higher than k^{\prime} : unchanged
Level from $k+1$ to k^{\prime} : reset
Level $i \leq k$: unchanged or linear update $x_{i}:=\sum_{j<i} a_{j} x_{j}+b$.

ITA: updates

From level k to k^{\prime}

increasing level $k \leq k^{\prime}$

Level higher than k^{\prime} : unchanged
Level from $k+1$ to k^{\prime} : reset
Level $i \leq k$: unchanged or linear update $x_{i}:=\sum_{j<i} a_{j} x_{j}+b$.

Example

$$
\begin{array}{ll}
x_{1}:=1 \\
x_{2}>2 x_{1}, & x_{2}:=2 x_{1} \\
& \left(x_{3}:=0, x_{4}:=0\right)
\end{array}
$$

ITA: updates

From level k to k^{\prime}

increasing level $k \leq k^{\prime}$

Level higher than k^{\prime} : unchanged
Level from $k+1$ to k^{\prime} : reset
Level $i \leq k$: unchanged or linear update $x_{i}:=\sum_{j<i} a_{j} x_{j}+b$.

Example

$x_{1}:=1$
$x_{2}>2 x_{1}$,
$x_{2}:=2 x_{1}$
$\left(x_{3}:=0, x_{4}:=0\right)$
:---
$x_{2}:=0$
$x_{2}:=x_{1}+1$,
$x_{3}:=2 x_{2}$

Decreasing level

Level higher than k^{\prime} : unchanged Otherwise: linear update $x_{i}:=\sum_{j<i} a_{j} x_{j}+b$.

In a state at level k, clocks from higher levels are irrelevant.

ITA: semantics

A transition system $\mathcal{T}_{\mathcal{A}}$

- configurations $S=Q \times \mathbb{R}^{n}$
- time steps from q at level k : only x_{k} is active, $(q, v) \xrightarrow{d}\left(q, v+{ }_{k} d\right)$, with all clocks in $v+_{k} d$ unchanged except $\left(v+{ }_{k} d\right)\left(x_{k}\right)=v\left(x_{k}\right)+d$
- discrete steps $(q, v) \xrightarrow{e}\left(q^{\prime}, v^{\prime}\right)$ for a transition $e: q \xrightarrow{g, u} q^{\prime}$ if v satisfies the guard g and $v^{\prime}=v[u]$.

Example: trajectories

grey zone for state q_{1} :

$$
0<x_{1}<1 \text { and } 0<x_{2}<-\frac{1}{2} x_{1}+1
$$

A finite quotient for ITA

[BH 2009]

From \mathcal{A}, build a finite automaton $\operatorname{Reg}(\mathcal{A})$ preserving reachability of a control state and accepting the untimed part of the language.

A finite quotient for ITA

[BH 2009]

From \mathcal{A}, build a finite automaton $\operatorname{Reg}(\mathcal{A})$ preserving reachability of a control state and accepting the untimed part of the language.

Principle - 1

Build sets of linear expressions E_{k} for each level k, starting from $\left\{0, x_{k}\right\}$ iteratively downward:

- adding the complements of x_{k} in guards from level k,
- saturating E_{k} by applying updates of appropriate transitions to expressions of E_{k},
- saturating $E_{j}(j<k)$ by applying updates of appropriate transitions to differences of expressions of E_{k}.

Starting from $E_{2}=\left\{0, x_{2}\right\}$ and $E_{1}=\left\{0, x_{1}\right\}$, first add $-\frac{1}{2} x_{1}+1$ to E_{2} and 2 to E_{1}. Then add 1 to E_{1}.

A finite quotient for ITA

Principle - 2

Two valuations are equivalent in state q at level k if they produce the same preorders for linear expressions in each $E_{i}, i \leq k$.

- a class is a pair $C=\left(q,\left\{\preceq_{k}\right\}_{k \leq \lambda(q)}\right)$ where \preceq_{k} is a total preorder on E_{k}
- abstract time steps $(q, R) \rightarrow(q, \operatorname{succ}(R))$ and discrete steps $(q, R) \xrightarrow{a}\left(q^{\prime}, R^{\prime}\right)$ consistent with preorders.

$$
\begin{aligned}
& \text { Level } 1: E_{1}=\left\{x_{1}, 0,1,2\right\}
\end{aligned}
$$

Discrete transitions a from C_{0} and C_{0}^{1}

Example (cont.)

Discrete transitions b : from classes such that $x_{2}=-\frac{1}{2} x_{1}+1$.

Example: class automaton

Cylindrical decomposition

Example for polynomial $P_{3}=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1$
Elimination phase produces the polynomials $P_{2}=X_{1}^{2}+X_{2}^{2}-1$ and $P_{1}=X_{1}^{2}-1$
Lifting phase produces partitions of $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} organized in a tree of cells where the signs of these polynomials (in $\{-1,0,1\}$) are constant.

Cylindrical decomposition

Example for polynomial $P_{3}=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1$
Elimination phase produces the polynomials $P_{2}=X_{1}^{2}+X_{2}^{2}-1$ and $P_{1}=X_{1}^{2}-1$
Lifting phase produces partitions of $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} organized in a tree of cells where the signs of these polynomials (in $\{-1,0,1\}$) are constant.

Level 1 : partition of \mathbb{R} in 5 cells

$$
\begin{aligned}
& \left.C_{-\infty}=\right]-\infty,-1\left[, C_{-1}=\{-1\}, C_{0}=\right]-1,1[, \\
& \left.C_{1}=\{1\}, C_{+\infty}=\right] 1,+\infty[
\end{aligned}
$$

Cylindrical decomposition

Example for polynomial $P_{3}=X_{1}^{2}+X_{2}^{2}+X_{3}^{2}-1$
Elimination phase produces the polynomials $P_{2}=X_{1}^{2}+X_{2}^{2}-1$ and $P_{1}=X_{1}^{2}-1$
Lifting phase produces partitions of $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} organized in a tree of cells where the signs of these polynomials (in $\{-1,0,1\}$) are constant.

Level 2 : partition of \mathbb{R}^{2}
Above $C_{-\infty}$: a single cell $C_{-\infty} \times \mathbb{R}$
Above C_{-1} : three cells

$$
\{-1\} \times]-\infty, 0[,\{(-1,0)\},\{-1\} \times] 0,+\infty[
$$

Level 1 : partition of \mathbb{R} in 5 cells

$$
\begin{aligned}
& \left.C_{-\infty}=\right]-\infty,-1\left[, C_{-1}=\{-1\}, C_{0}=\right]-1,1[, \\
& \left.C_{1}=\{1\}, C_{+\infty}=\right] 1,+\infty[
\end{aligned}
$$

Level 2 above C_{0}

Level 2 above C_{0}

Level 2 above C_{0}

$$
\begin{aligned}
& C_{0,1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,0}\left\{\begin{array}{l}
-1<x_{1}<1 \\
-\sqrt{1-x_{1}^{2}}<x_{2}<\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,-1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=-\sqrt{1-x_{1}^{2}}
\end{array}\right.
\end{aligned}
$$

Level 2 above C_{0}

$$
\begin{aligned}
& C_{0,+\infty}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}>\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,0}\left\{\begin{array}{l}
-1<x_{1}<1 \\
-\sqrt{1-x_{1}^{2}}<x_{2}<\sqrt{1-x_{1}^{2}} \\
C_{0,-1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=-\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
C_{0,-\infty}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}<-\sqrt{1-x_{1}^{2}}
\end{array}\right.
\end{array} . \begin{array}{l}
\text { a }
\end{array}\right. \\
& \hline
\end{aligned}
$$

The tree of cells

Polynomial ITA

An extension using cylindrical decomposition (work in progress)

Principle

- Replacing linear expressions on clocks by polynomials
- Replacing the saturation procedure by the elimination step
- Using the lifting step to build the class automaton

A PollTA

Conclusion

When computer algebra meets model checking... new decidability questions can be solved.
Complexity questions are next!

Thank you

