Decidability issues for timed models an application of computer algebra techniques

Béatrice Bérard

Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606

Based on joint work with S. Haddad, C. Picaronny, M. Safey El Din, M. Sassolas

EJCIM, mars 2015

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ • ○ Q ○ 1/26

An infinite transition system

for the set of words $L = ab^*a = \{ab^na \mid n \in \mathbb{N}\}$ over alphabet $\Sigma = \{a, b\}$

•

An infinite transition system

for the set of words $L = ab^*a = \{ab^na \mid n \in \mathbb{N}\}$ over alphabet $\Sigma = \{a, b\}$

An infinite transition system

for the set of words $L = ab^*a = \{ab^na \mid n \in \mathbb{N}\}$ over alphabet $\Sigma = \{a, b\}$

... and its finite quotient

Quotients

 Σ alphabet, Σ^* set of words over Σ , language : subset of Σ^*

For a language $M \subseteq \Sigma^*$ and a word $u \in \Sigma^*$

$$u^{-1}M = \{v \in \Sigma^* \mid uv \in M\}$$

 $u^{-1}M$, also noted $M \setminus u$, is a quotient of M.

For the example $L = ab^*a$ $a^{-1}L = b^*a$ $b^{-1}L = \emptyset = (bu)^{-1}L$ for any u

A partition of Σ^* is obtained by quotient under \sim_L : $u_1 \sim_L u_2$ if $u_1^{-1}L = u_2^{-1}L$.

Quotients

 Σ alphabet, Σ^* set of words over Σ , language : subset of Σ^*

For a language $M \subseteq \Sigma^*$ and a word $u \in \Sigma^*$

$$u^{-1}M = \{v \in \Sigma^* \mid uv \in M\}$$

 $u^{-1}M$, also noted $M \setminus u$, is a quotient of M.

For the example $L = ab^*a$ $a^{-1}L = b^*a$ $b^{-1}L = \emptyset = (bu)^{-1}L$ for any u

A partition of Σ^* is obtained by quotient under \sim_L : $u_1 \sim_L u_2$ if $u_1^{-1}L = u_2^{-1}L$.

[Nerode, 1958]

A language is accepted by a finite automaton if and only if it has a finite number of quotients.

Quotients and finite automata

States = quotients, with transitions:

$$u^{-1}L \xrightarrow{a} (ua)^{-1}L$$

initial state: $L = \varepsilon^{-1}L$

final states : those containing ε

 $L = ab^*a$

Quotients for infinite transition systems

or the reductionist approach [Henzinger, Majumdar, Raskin, 2003]

A transition system

- $\mathcal{T} = (S, E)$ with
 - S set of configurations
 - $E \subseteq S \times S$ set of transitions

An equivalence \sim over S producing a quotient

 $\mathcal{T}_{\sim} = (\mathit{S}/{\sim}, \mathit{E}_{\sim})$ with

• S/\sim set of equivalence classes

►
$$E_{\sim} \subseteq Q/\sim \times Q/\sim$$

such that $P \to P'$ if $q \to q'$ in E for some $q \in P$ and $q' \in P$

Adding propositions on states or labels on transitions,

Goal: build finite quotients preserving specific classes of properties like accepted language, reachability, LTL, CTL or μ -calculus model checking, ...

Hybrid automata

A heating device controller

Configurations in S: $(q, v(\theta))$, with $q \in \{\text{ON}, \text{OFF}\}$ and $v(\theta)$ the temperature value. Evolution: continuous for θ in a fixed q (following the differential equation), discrete when firing a transition.

With *n* real variables, flows and invariants on control states Q, guards and updates on transitions, configurations : $Q \times \mathbb{R}^n$.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ Q ○ 6/26

Hybrid automata

A heating device controller

Configurations in S: $(q, v(\theta))$, with $q \in \{\text{ON}, \text{OFF}\}$ and $v(\theta)$ the temperature value. Evolution: continuous for θ in a fixed q (following the differential equation), discrete when firing a transition.

With *n* real variables, flows and invariants on control states Q, guards and updates on transitions, configurations : $Q \times \mathbb{R}^n$.

Verification problems are mostly undecidable

Decidability requires restricting either the flows [Henzinger, Kopke, Puri Varayia, 1998] or the jumps [Alur, Henzinger, Lafferrière, Pappas, 2000] for flows $\dot{x} = Ax$

◆□▶◆□▶◆≧▶◆≧▶ ≧ ���� 6/26

Outline

Timed Automata

Interrupt Timed Automata

Using Cylindrical Decomposition

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り Q @ 7/26

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x - c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Examples (with two clocks x and y)

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x - c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Examples (with two clocks x and y)

Ex. 2: A geometric view of a trajectory

$$y := 0 \bigcirc x := 0$$

◆□▶◆□▶◆≧▶◆≧▶ ≧ ���@ 8/26

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x - c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Examples (with two clocks x and y) Ex. 2: A geometric view of a trajectory $\left[\begin{array}{c|c}0\\0\end{array}\right]\xrightarrow{1.2}\left[\begin{array}{c}1.2\\1.2\end{array}\right]$ VO x := 0x

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x - c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x - c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

Variables: clocks with flow $\dot{x} = 1$ for each $x \in X$ Guards: conjunctions of $x - c \bowtie 0$, with $c \in \mathbb{Q}$ and \bowtie in $\{<, \leq, =, \geq, >\}$ Updates: conjunctions of reset x := 0Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n_+$ if $X = \{x_1, \dots, x_n\}$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 • � � � 9/26

A finite quotient for timed automata

[Alur, Dill, 1990]

From \mathcal{A} , build a finite automaton $Reg(\mathcal{A})$ preserving reachability of a control state and accepting the untimed part of the language (with labels).

Transition system $\mathcal{T}_{\mathcal{A}}$

with clocks $X = \{x_1, \ldots, x_n\}$, set of control states Q, set of transitions E:

- configurations $S = Q \times \mathbb{R}^n_+$
- time steps $(q, v) \xrightarrow{d} (q, v+d)$
- ▶ discrete steps $(q, v) \xrightarrow{e} (q', v')$ for a transition $e = q \xrightarrow{g, u} q'$ in *E* if clock values *v* satisfy the guard *g* and v' = v[u]

Equivalence \sim over \mathbb{R}^n_+ producing a quotient $Reg(\mathcal{A})$

- $Q \times \mathcal{R}$, for a set \mathcal{R} of **regions** partitioning \mathbb{R}^n_+ ,
- ▶ abstract time steps $(q, R) \rightarrow (q, succ(R))$
- ▶ discrete steps $(q, R) \xrightarrow{e} (q', R')$

both steps consistent with \sim

A geometric view with two clocks x and y, maximal constant m = 2

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● の Q ○ 11/26

A geometric view with two clocks x and y, maximal constant m = 2

• Equivalent valuations must be consistent with constraints $x \bowtie k$

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and frac(x) > frac(y)

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and frac(x) > frac(y)

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and frac(x) > frac(y)

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and frac(x) > frac(y)

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and frac(x) > frac(y)

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

A geometric view with two clocks x and y, maximal constant m = 2

region R defined by 0 < x < 1 and 1 < y < 2and frac(x) > frac(y)

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

- Equivalent valuations must be consistent with constraints $x \bowtie k$
- Equivalent valuations must be consistent with time elapsing

$$\begin{array}{c} \hline q_0 \\ x \leq 1 \end{array} x \leq 1, a, y := 0 \\ \hline x \leq 1 \end{array} x \geq 1, y = 0, b \\ \hline q_2 \\ \hline q_2 \\ \hline \end{array}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ○ 12/26

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ○ 12/26

Exemple from [Alur et Dill, 1990]

Interrupt Timed Automata (ITA)

Control states on levels $\{1, \ldots, n\}$, a single clock x_k active on level k

ITA: syntax

- ► Variables: stopwatches with flow $\dot{x} = 1$ or $\dot{x} = 0$, clock x_k active at level $k \in \{1, ..., n\}$
- ▶ Guards: conjunctions of linear constraints with rational coefficients $\sum_{j=1}^{k} a_j x_j + b \bowtie 0$ at level k, with \bowtie in $\{<, \leq, =, \geq, >\}$
- Clock valuation: $v = (v(x_1), \dots, v(x_n)) \in \mathbb{R}^n$
- ▶ $\lambda: Q \to \{1, \dots, n\}$ state level, with $x_{\lambda(q)}$ the active clock in state q

Transitions:

$$(q, 3)$$
 $2x_3 - \frac{1}{3}x_2 + x_1 + 1 > 0$

ITA: updates

From level k to k'

increasing level $k \leq k'$

Level higher than k': unchanged Level from k + 1 to k': reset Level $i \le k$: unchanged or linear update $x_i := \sum_{i \le i} a_i x_j + b$.

ITA: updates

From level k to k'

increasing level $k \leq k'$

Level higher than k': unchanged Level from k + 1 to k': reset Level $i \le k$: unchanged or linear update $x_i := \sum_{i \le i} a_i x_j + b$.

Example

ITA: updates

From level k to k'

increasing level $k \leq k'$

Level higher than k': unchanged Level from k + 1 to k': reset Level $i \le k$: unchanged or linear update $x_i := \sum_{i \le i} a_i x_i + b$.

Example

$$x_{1} := 1 x_{2} > 2x_{1}, x_{2} := 2x_{1} (x_{3} := 0, x_{4} := 0) (q_{1}, 2) (q_{2}, 4) (q_{2}, 4) (q_{3}, 3) (q_{$$

◆□▶◆□▶◆≧▶◆≧▶ ≧ ∽�� 16/26

Decreasing level

Level higher than k': unchanged Otherwise: linear update $x_i := \sum_{j < i} a_j x_j + b$.

In a state at level k, clocks from higher levels are irrelevant.

ITA: semantics

A transition system $\mathcal{T}_{\mathcal{A}}$

- configurations $S = Q imes \mathbb{R}^n$
- time steps from q at level k: only xk is active, (q, v) → (q, v + d), with all clocks in v + d unchanged except (v + d)(xk) = v(xk) + d
- discrete steps $(q, v) \xrightarrow{e} (q', v')$ for a transition $e : q \xrightarrow{g, u} q'$ if v satisfies the guard g and v' = v[u].

Example: trajectories

A finite quotient for ITA

[BH 2009]

From A, build a finite automaton Reg(A) preserving reachability of a control state and accepting the untimed part of the language.

A finite quotient for ITA

[BH 2009]

From \mathcal{A} , build a finite automaton $Reg(\mathcal{A})$ preserving reachability of a control state and accepting the untimed part of the language.

Principle - 1

Build sets of linear expressions E_k for each level k, starting from $\{0, x_k\}$ iteratively downward:

- adding the *complements* of x_k in guards from level k,
- ► saturating E_k by applying updates of appropriate transitions to expressions of E_k,
- saturating E_j (j < k) by applying updates of appropriate transitions to differences of expressions of E_k.

$$q_0, 1$$
 $x_1 < 1, a, (x_2 := 0)$ $q_1, 2$ $x_1 + 2x_2 = 2, b$ $q_2, 2$

Starting from $E_2 = \{0, x_2\}$ and $E_1 = \{0, x_1\}$, first add $-\frac{1}{2}x_1 + 1$ to E_2 and 2 to E_1 . Then add 1 to E_1 .

A finite quotient for ITA

Principle - 2

Two valuations are equivalent in state q at level k if they produce the same preorders for linear expressions in each E_i , $i \leq k$.

- ▶ a class is a pair $C = (q, \{ \preceq_k \}_{k \leq \lambda(q)})$ where \preceq_k is a total preorder on E_k
- ▶ abstract time steps $(q, R) \rightarrow (q, succ(R))$ and discrete steps $(q, R) \xrightarrow{a} (q', R')$ consistent with preorders.

Discrete transitions *a* from C_0 and C_0^1

Example (cont.)

Discrete transitions **b** : from classes such that $x_2 = -\frac{1}{2}x_1 + 1$.

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ 20/26

Example: class automaton

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 • ○ Q ○ 21/26

Cylindrical decomposition

Example for polynomial $P_3 = X_1^2 + X_2^2 + X_3^2 - 1$

- Elimination phase produces the polynomials $P_2 = X_1^2 + X_2^2 1$ and $P_1 = X_1^2 1$
- Lifting phase produces partitions of \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 organized in a tree of cells where the signs of these polynomials (in $\{-1, 0, 1\}$) are constant.

Cylindrical decomposition

Example for polynomial $P_3 = X_1^2 + X_2^2 + X_3^2 - 1$

- Elimination phase produces the polynomials $P_2 = X_1^2 + X_2^2 1$ and $P_1 = X_1^2 1$
- Lifting phase produces partitions of \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 organized in a tree of cells where the signs of these polynomials (in $\{-1, 0, 1\}$) are constant.

Level 1 : partition of \mathbb{R} in 5 cells $C_{-\infty} =] - \infty, -1[, C_{-1} = \{-1\}, C_0 =] - 1, 1[, C_1 = \{1\}, C_{+\infty} =]1, +\infty[$

Cylindrical decomposition

Example for polynomial $P_3 = X_1^2 + X_2^2 + X_3^2 - 1$

Elimination phase produces the polynomials $P_2 = X_1^2 + X_2^2 - 1$ and $P_1 = X_1^2 - 1$

Lifting phase produces partitions of \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 organized in a tree of cells where the signs of these polynomials (in $\{-1, 0, 1\}$) are constant.

Level 2 : partition of
$$\mathbb{R}^2$$

Above $C_{-\infty}$: a single cell $C_{-\infty} \times \mathbb{R}$
Above C_{-1} : three cells
 $\{-1\}\times] - \infty, 0[, \{(-1,0)\}, \{-1\}\times]0, +\infty[$

Level 1 : partition of \mathbb{R} in 5 cells $C_{-\infty} =] - \infty, -1[, C_{-1} = \{-1\}, C_0 =] - 1, 1[, C_1 = \{1\}, C_{+\infty} =]1, +\infty[$

Level 2 above C₀

Level 2 above C_0

Level 2 above C₀

$$C_{0,1} \quad \begin{cases} -1 < x_1 < 1 \\ x_2 = \sqrt{1 - x_1^2} \end{cases}$$

$$C_{0,0} \quad \begin{cases} -1 < x_1 < 1 \\ -\sqrt{1 - x_1^2} < x_2 < \sqrt{1 - x_1^2} \end{cases}$$

$$C_{0,-1} \quad \begin{cases} -1 < x_1 < 1 \\ x_2 = -\sqrt{1 - x_1^2} \end{cases}$$

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ○ 23/26

Level 2 above C_0

The tree of cells

Polynomial ITA

An extension using cylindrical decomposition (work in progress)

Principle

- Replacing linear expressions on clocks by polynomials
- Replacing the saturation procedure by the elimination step
- Using the lifting step to build the class automaton

A PolITA $0 < x_1 < 1, x_1 := 0$ $q_1, 1$ $x_1^2 + x_2^2 + x_3^2 \ge 1$ $0 < x_1 < 1$ $x_1^2 + x_2^2 = 1$ $x_1^2 + x_2^2 < 1$ $x_2 := 1 - x_1^2$

Conclusion

When computer algebra meets model checking... new decidability questions can be solved.

Complexity questions are next!

Thank you