On a directed variation of the 1-2-3 and 1-2 Conjectures

Emma Barme^a, Julien Bensmail^b, Jakub Przybyło^c, Mariusz Woźniak^c

a: ENS Lyon, Franceb: Technical University of Denmarkc: AGH University, Poland

JGA 2015 November 5th, 2015

1-2-3 Conjecture

G: simple graph w: k-edge-weighting of G

W: K-edge-weighting of G

G: simple graph

w: k-edge-weighting of G

G: simple graph

w: k-edge-weighting of G

G: simple graph

w: k-edge-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper

G: simple graph

w: k-edge-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper $\chi^{e}_{\Sigma}(G)$: min{k : G has a sum-colouring k-edge-weighting}

Note: $\chi^{e}_{\Sigma}(K_{2})$ undefined

Note: $\chi^{e}_{\Sigma}(K_2)$ undefined

G nice: no K_2 component

1-2-3 Conjecture – Karoński, Łuczak, Thomason (2004)

For every *nice* graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

Note: $\chi^{e}_{\Sigma}(K_2)$ undefined

G nice: no K_2 component

1-2-3 Conjecture – Karoński, Łuczak, Thomason (2004)

For every *nice* graph G, we have $\chi^{e}_{\Sigma}(G) \leq 3$.

 $\chi^{e}_{\Sigma}(G) \leq 5$ [Kalkowski, Karoński, Pfender (2010)]

D: simple digraph w: k-arc-weighting of D

- D: simple digraph
- w: k-arc-weighting of D

Note: out-going sums (σ^+) and in-coming sums (σ^-) by w

- D: simple digraph
- w: k-arc-weighting of D

Note: out-going sums (σ^+) and in-coming sums (σ^-) by w

Distinguishing neighbours via σ^+ and σ^- ?

Considered options:

Considered options:

- 1. relative sums $(\sigma^+ \sigma^-)$ [Borowiecki, Grytczuk, Pilśniak (2012)]
 - {1,2} suffice (tight)
 - list version holds

Considered options:

- 1. relative sums $(\sigma^+ \sigma^-)$ [Borowiecki, Grytczuk, Pilśniak (2012)]
 - {1,2} suffice (tight)
 - list version holds
- 2. single-type sums (either σ^+ or σ^-) [Baudon, B., Sopena (2015)]
 - {1,2,3} suffice (tight)
 - list version holds

Considered options:

- 1. relative sums $(\sigma^+ \sigma^-)$ [Borowiecki, Grytczuk, Pilśniak (2012)]
 - {1,2} suffice (tight)
 - list version holds
- 2. single-type sums (either σ^+ or σ^-) [Baudon, B., Sopena (2015)]
 - {1,2,3} suffice (tight)
 - list version holds

Not satisfying:

- 1-2-3 Conjecture: induction possible, no exceptions, etc.
- *directed context*: what about the arcs' direction?

Considered options:

- 1. relative sums ($\sigma^+ \sigma^-$) [Borowiecki, Grytczuk, Pilśniak (2012)]
 - {1,2} suffice (tight)
 - list version holds
- 2. single-type sums (either σ^+ or σ^-) [Baudon, B., Sopena (2015)]
 - {1,2,3} suffice (tight)
 - list version holds

Not satisfying:

- 1-2-3 Conjecture: induction possible, no exceptions, etc.
- directed context: what about the arcs' direction?

So what would be satisfying?

Łuczak's question and condition

What about requiring $\sigma^+(u) \neq \sigma^-(v)$ whenever \overrightarrow{uv} is an arc?

Łuczak's question and condition

What about requiring $\sigma^+(u) \neq \sigma^-(v)$ whenever \overrightarrow{uv} is an arc?

w sum-colouring: every arc satisfies Łuczak's condition

Łuczak's question and condition

What about requiring $\sigma^+(u) \neq \sigma^-(v)$ whenever \overrightarrow{uv} is an arc?

w sum-colouring: every arc satisfies Łuczak's condition $\chi_{t}^{e}(D)$: min{*k* : *D* has a sum-colouring *k*-arc-weighting}

A directed 1-2-3 Conjecture

Note: $\chi_{t}^{e}(D)$ undefined if D has

A directed 1-2-3 Conjecture

Note: $\chi_{t}^{e}(D)$ undefined if D has

D nice: no such configuration

Directed 1-2-3 Conjecture – Łuczak

For every *nice* digraph *D*, we have $\chi_{\mathbf{L}}^{e}(D) \leq 3$.

Tightness of $\{1, 2, 3\}$ – Bipartite digraphs

Theorem – Barme, B., Przybyło, Woźniak (2015+)

For every nice *bipartite* digraph *D*, we have $\chi_{L}^{e}(D) \leq 3$.

Theorem – Barme, B., Przybyło, Woźniak (2015+)

For every nice *bipartite* digraph *D*, we have $\chi_{L}^{e}(D) \leq 3$.

 $\forall v \in A, \ d_D^+(v) = d_{D_{\downarrow\downarrow}}^+(v) + 0 \text{ and } d_D^-(v) = 0 + d_{D_{\uparrow\uparrow}}^-(v)$ $\forall v \in B, \ d_D^+(v) = 0 + d_{D_{\uparrow\uparrow}}^+(v) \text{ and } d_D^-(v) = d_{D_{\downarrow\downarrow}}^-(v) + 0$ Theorem – Barme, B., Przybyło, Woźniak (2015+)

For every nice *bipartite* digraph D, we have $\chi_{L}^{e}(D) \leq 3$.

 $\forall v \in A, \ d_D^+(v) = d_{D_{\downarrow\downarrow}}^+(v) + 0 \text{ and } d_D^-(v) = 0 + d_{D_{\uparrow\uparrow}}^-(v)$ $\forall v \in B, \ d_D^+(v) = 0 + d_{D_{\uparrow\uparrow}}^+(v) \text{ and } d_D^-(v) = d_{D_{\downarrow\downarrow}}^-(v) + 0$

 $\Rightarrow D_{\downarrow\downarrow}$ and $D_{\uparrow\uparrow}$ can be weighted independently

Tightness of $\{1, 2, 3\}$ – Bipartite digraphs

Tightness of $\{1,2,3\}$ – Bipartite digraphs

Tightness of $\{1,2,3\}$ – Bipartite digraphs

Tightness of $\{1, 2, 3\}$ – Bipartite digraphs

 $\forall uv \in E(\text{und}(D_{\downarrow\downarrow})), \sigma(u) \neq \sigma(v) \qquad \forall uv \in E(\text{und}(D_{\uparrow\uparrow})), \sigma(u) \neq \sigma(v)$ Karoński, Łuczak, Thomason \Rightarrow 1-2-3 Conjecture holds for bipartite graphs

 $\forall \overrightarrow{uv} \in E(D_{\downarrow\downarrow}), \sigma^+(u) \neq \sigma^-(v) \qquad \forall \overrightarrow{uv} \in E(D_{\uparrow\uparrow}), \sigma^+(u) \neq \sigma^-(v)$

 $\forall \overrightarrow{uv} \in E(D), \sigma^+(u) \neq \sigma^-(v) \qquad \forall \overrightarrow{uv} \in E(D), \sigma^+(u) \neq \sigma^-(v)$

 $\forall \overrightarrow{uv} \in E(D), \sigma^+(u) \neq \sigma^-(v)$

 $\forall \overrightarrow{uv} \in E(D), \sigma^+(u) \neq \sigma^-(v)$

So $\chi_{L}^{e}(D) = \max\{\chi_{L}^{e}(D_{\downarrow\downarrow}), \chi_{L}^{e}(D_{\uparrow\uparrow})\}$ and e.g. $\chi_{L}^{e}(D_{\downarrow\downarrow}) = \chi_{\Sigma}^{e}(\operatorname{und}(D_{\downarrow\downarrow}))$ $\Rightarrow \text{ If } D = D_{\downarrow\downarrow} \text{ and } \chi_{\Sigma}^{e}(\operatorname{und}(D_{\downarrow\downarrow})) = 3, \text{ then } \chi_{L}^{e}(D) = 3$

Idea: treat σ^+ and σ^- separately

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the *anti-matched representation* $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the *anti-matched representation* $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the anti-matched representation $\overline{G}(D)$ of D

Idea: treat σ^+ and σ^- separately

Theorem – Barme, B., Przybyło, Woźniak (2015+)

- 1. The Directed 1-2-3 Conjecture for nice digraphs.
- 2. The 1-2-3 Conjecture for nice bipartite graphs.
- 2. \Rightarrow 1. Construct the *anti-matched representation* $\overline{G}(D)$ of D

w sum-colouring edge-weighting of $\overline{G}(D) \to w'$ arc-weighting of D

w sum-colouring edge-weighting of $\overline{G}(D) \to w'$ arc-weighting of D $\forall v_i^+ v_j^- \in E(\overline{G}(D)), \ \sigma_w(v_i^+) \neq \sigma_w(v_j^-) \Rightarrow \sigma_{w'}^+(v_i) \neq \sigma_{w'}^-(v_j)$

w sum-colouring edge-weighting of $\overline{G}(D) \to w'$ arc-weighting of D $\forall v_i^+ v_j^- \in E(\overline{G}(D)), \ \sigma_w(v_i^+) \neq \sigma_w(v_j^-) \Rightarrow \sigma_{w'}^+(v_i) \neq \sigma_{w'}^-(v_j)$ $\Rightarrow w'$ sum-colouring

w sum-colouring edge-weighting of $\widetilde{G}(D) \to w'$ arc-weighting of D $\forall v_i^+ v_j^- \in E(\widetilde{G}(D)), \ \sigma_w(v_i^+) \neq \sigma_w(v_j^-) \Rightarrow \sigma_{w'}^+(v_i) \neq \sigma_{w'}^-(v_j)$ $\Rightarrow w'$ sum-colouring

1. \Rightarrow 2. Make G anti-matched, and construct the corresponding $\overline{D}(G)$

w sum-colouring edge-weighting of $\widetilde{G}(D) \to w'$ arc-weighting of $D \forall v_i^+ v_j^- \in E(\widetilde{G}(D)), \sigma_w(v_i^+) \neq \sigma_w(v_j^-) \Rightarrow \sigma_{w'}^+(v_i) \neq \sigma_{w'}^-(v_j) \Rightarrow w'$ sum-colouring

1. \Rightarrow 2. Make G anti-matched, and construct the corresponding $\overline{D}(G)$

The Directed 1-2-3 Conjecture then follows from KŁT's result

1-2 Conjecture

w: (k, k)-total-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper

w: (k, k)-total-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper $\chi^t_{\Sigma}(G)$: min{k : G has a sum-colouring (k, k)-total-weighting}

1-2 Conjecture

Note: $\chi_{\Sigma}^{t}(K_{2}) = 2$

1-2 Conjecture

Note: $\chi_{\Sigma}^{t}(K_{2}) = 2$

Clearly $\chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{e}(G) \ \forall G$

1-2 Conjecture – Przybyło, Woźniak (2010)

For every graph G, we have $\chi^t_{\Sigma}(G) \leq 2$.

Note: $\chi_{\Sigma}^{t}(K_{2}) = 2$

Clearly $\chi^t_{\Sigma}(G) \leq \chi^e_{\Sigma}(G) \ \forall G$

1-2 Conjecture – Przybyło, Woźniak (2010)

For every graph G, we have $\chi^t_{\Sigma}(G) \leq 2$.

 $\chi^t_{\Sigma}(G) \leq 3$ [Kalkowski (2015)]

Going to digraphs
Going to digraphs

w: (k, k)-total-weighting of D

Convention: count every vertex weight in both σ^+ and σ^- (= loop)

Going to digraphs

w: (k, k)-total-weighting of D

Convention: count every vertex weight in both σ^+ and σ^- (= loop)

w sum-colouring: every arc satisfies Łuczak's (total) condition

Going to digraphs

w: (k, k)-total-weighting of D

Convention: count every vertex weight in both σ^+ and σ^- (= loop)

w sum-colouring: every arc satisfies Łuczak's (total) condition $\chi_t^t(D)$: min{k : D has a sum-colouring (k, k)-total-weighting}

Daring question

Do we have $\chi_{\mathbf{L}}^{t}(D) \leq 2$ for every digraph D?

Daring question

Do we have $\chi_{\mathbf{L}}^t(D) \leq 2$ for every digraph D?

Answer: No! Odd directed cycles

Second chance

Clearly $\chi_{\mathbf{t}}^{t}(D) \leq \chi_{\mathbf{t}}^{e}(D) \leq 3$ for every *nice* digraph D

Directed 1-2 Conjecture – Barme, B., Przybyło, Woźniak (2015+)

For every *nice* digraph *D*, we have $\chi_{\mathbf{L}}^t(D) \leq 2$.

Second chance

Clearly $\chi_{\mathbf{t}}^{t}(D) \leq \chi_{\mathbf{t}}^{e}(D) \leq 3$ for every *nice* digraph D

Directed 1-2 Conjecture – Barme, B., Przybyło, Woźniak (2015+)

For every *nice* digraph *D*, we have $\chi_{\mathbf{L}}^t(D) \leq 2$.

Observation: matched representation $\overline{G}(D)$ of $D \Rightarrow \chi_t^t(D) \leq 3$

Second chance

Clearly $\chi_{\mathbf{t}}^{t}(D) \leq \chi_{\mathbf{t}}^{e}(D) \leq 3$ for every *nice* digraph D

Directed 1-2 Conjecture – Barme, B., Przybyło, Woźniak (2015+)

For every *nice* digraph *D*, we have $\chi_{\mathbf{L}}^t(D) \leq 2$.

Observation: matched representation $\overline{G}(D)$ of $D \Rightarrow \chi_t^t(D) \leq 3$

 $\chi^{e}_{\Sigma}(\overline{G}(D^{\ell})) \leq 3 \Rightarrow \chi^{e}_{L}(D^{\ell}) \leq 3 \Rightarrow \chi^{t}_{L}(D) \leq 3$

Note: $\overline{G}(\text{odd directed cycle}^{\ell}) = C_{4k+2} \text{ and } \chi^{e}_{\Sigma}(C_{4k+2}) = 3$

Note: $\overline{G}(\text{odd directed cycle}^{\ell}) = C_{4k+2} \text{ and } \chi_{\Sigma}^{e}(C_{4k+2}) = 3$ $\overline{G}(D^{\ell})$ bipartite with $\chi_{\Sigma}^{e}(\overline{G}(D^{\ell})) \leq 2 \Rightarrow \chi_{L}^{t}(D) \leq 2$ **Note:** $\overline{G}(\text{odd directed cycle}^{\ell}) = C_{4k+2} \text{ and } \chi_{\Sigma}^{e}(C_{4k+2}) = 3$ $\overline{G}(D^{\ell})$ bipartite with $\chi_{\Sigma}^{e}(\overline{G}(D^{\ell})) \leq 2 \Rightarrow \chi_{L}^{t}(D) \leq 2$ Characterization? Not clear...

Theorem – Chang, Lu, Wu, Yu (2011)

For G = (A, B) nice bipartite with |A| or |B| even, we have $\chi_{\Sigma}^{e}(G) \leq 2$.

 \Rightarrow Directed 1-2 Conjecture true for nice digraphs with *even order*

Conclusion

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which χ^e_Σ(G) ≤ 2?

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi^{e}_{\Sigma}(G) \leq 2$?
- What if relaxed along a perfect matching?

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi^{e}_{\Sigma}(G) \leq 2$?
- What if relaxed along a perfect matching?
- Directed 1-2 Conjectures never true... ???

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi^{e}_{\Sigma}(G) \leq 2$?
- What if relaxed along a perfect matching?
- Directed 1-2 Conjectures never true... ???

Thanks!