On a directed variation of the 1-2-3 and 1-2 Conjectures

Emma Barme ${ }^{\text {a }}$, Julien Bensmail ${ }^{\text {b }}$, Jakub Przybyło ${ }^{\text {c }}$, Mariusz Woźniak ${ }^{\text {c }}$

a: ENS Lyon, France
b: Technical University of Denmark
c: AGH University, Poland

JGA 2015

November 5th, 2015

1-2-3 Conjecture

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G: simple graph
w : k-edge-weighting of G

Sum-colouring edge-weightings

G : simple graph
w : k-edge-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper

Sum-colouring edge-weightings

G : simple graph
w : k-edge-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper
$\chi_{\Sigma}^{e}(G): \min \{k: G$ has a sum-colouring k-edge-weighting $\}$

1-2-3 Conjecture

Note: $\chi_{\Sigma}^{e}\left(K_{2}\right)$ undefined

1-2-3 Conjecture

Note: $\chi_{\Sigma}^{e}\left(K_{2}\right)$ undefined

G nice: no K_{2} component

1-2-3 Conjecture - Karoński, Łuczak, Thomason (2004)

For every nice graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.

1-2-3 Conjecture

Note: $\chi_{\Sigma}^{e}\left(K_{2}\right)$ undefined

G nice: no K_{2} component

1-2-3 Conjecture - Karoński, Łuczak, Thomason (2004)

For every nice graph G, we have $\chi_{\Sigma}^{e}(G) \leq 3$.
$\chi_{\Sigma}^{e}(G) \leq 5$ [Kalkowski, Karoński, Pfender (2010)]

Going to digraphs

A 1-2-3 Conjecture for digraphs?

Going to digraphs

A 1-2-3 Conjecture for digraphs?

D: simple digraph
w : k-arc-weighting of D

Going to digraphs

A 1-2-3 Conjecture for digraphs?

D : simple digraph
w : k-arc-weighting of D
Note: out-going sums (σ^{+}) and in-coming sums (σ^{-}) by w

Going to digraphs

A 1-2-3 Conjecture for digraphs?

D: simple digraph
w : k-arc-weighting of D
Note: out-going sums (σ^{+}) and in-coming sums (σ^{-}) by w

Distinguishing neighbours via σ^{+}and σ^{-}?

Playing around with σ^{+}and σ^{-}

Considered options:

Playing around with σ^{+}and σ^{-}

Considered options:

1. relative sums ($\sigma^{+}-\sigma^{-}$) [Borowiecki, Grytczuk, Pilśniak (2012)]

- $\{1,2\}$ suffice (tight)
- list version holds

Playing around with σ^{+}and σ^{-}

Considered options:

1. relative sums ($\sigma^{+}-\sigma^{-}$) [Borowiecki, Grytczuk, Pilśniak (2012)]

- $\{1,2\}$ suffice (tight)
- list version holds

2. single-type sums (either σ^{+}or σ^{-}) [Baudon, B., Sopena (2015)]

- $\{1,2,3\}$ suffice (tight)
- list version holds

Playing around with σ^{+}and σ^{-}

Considered options:

1. relative sums ($\sigma^{+}-\sigma^{-}$) [Borowiecki, Grytczuk, Pilśniak (2012)]

- $\{1,2\}$ suffice (tight)
- list version holds

2. single-type sums (either σ^{+}or σ^{-}) [Baudon, B., Sopena (2015)]

- $\{1,2,3\}$ suffice (tight)
- list version holds

Not satisfying:

- 1-2-3 Conjecture: induction possible, no exceptions, etc.
- directed context: what about the arcs' direction?

Playing around with σ^{+}and σ^{-}

Considered options:

1. relative sums ($\sigma^{+}-\sigma^{-}$) [Borowiecki, Grytczuk, Pilśniak (2012)]

- $\{1,2\}$ suffice (tight)
- list version holds

2. single-type sums (either σ^{+}or σ^{-}) [Baudon, B., Sopena (2015)]

- $\{1,2,3\}$ suffice (tight)
- list version holds

Not satisfying:

- 1-2-3 Conjecture: induction possible, no exceptions, etc.
- directed context: what about the arcs' direction?

So what would be satisfying?

A new candidate directed variant

Łuczak's question and condition

What about requiring $\sigma^{+}(u) \neq \sigma^{-}(v)$ whenever $\overrightarrow{u v}$ is an arc?

$$
\ominus_{u}^{\sigma^{+}} \sigma^{-} \times \xrightarrow{\sigma^{+}} \sigma^{-}
$$

A new candidate directed variant

Łuczak's question and condition

What about requiring $\sigma^{+}(u) \neq \sigma^{-}(v)$ whenever $\overrightarrow{u v}$ is an arc?

$$
\stackrel{\sigma}{u}_{\sigma^{+}}^{\sigma^{-}} x \xrightarrow{\sigma^{+}} \sigma^{-}
$$

w sum-colouring: every arc satisfies Łuczak's condition

A new candidate directed variant

Łuczak's question and condition

What about requiring $\sigma^{+}(u) \neq \sigma^{-}(v)$ whenever $\overrightarrow{u v}$ is an arc?

w sum-colouring: every arc satisfies Łuczak's condition
$\chi_{\mathrm{E}}^{\mathrm{e}}(D): \min \{k: D$ has a sum-colouring k-arc-weighting $\}$

A directed 1-2-3 Conjecture

Note: $\chi_{\mathrm{t}}^{e}(D)$ undefined if D has

A directed 1-2-3 Conjecture

Note: $\chi_{\mathrm{t}}^{e}(D)$ undefined if D has

D nice: no such configuration

Directed 1-2-3 Conjecture - Łuczak

For every nice digraph D, we have $\chi_{\grave{\llcorner }}^{e}(D) \leq 3$.

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Theorem - Barme, B., Przybyło, Woźniak (2015+)
For every nice bipartite digraph D, we have $\chi_{\mathfrak{Ł}}^{e}(D) \leq 3$.

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Theorem - Barme, B., Przybyło, Woźniak (2015+)
For every nice bipartite digraph D, we have $\chi_{\dot{⿺}}^{e}(D) \leq 3$.

$$
\begin{aligned}
& \forall v \in A, d_{D}^{+}(v)=d_{D_{\downarrow \downarrow}}^{+}(v)+0 \text { and } d_{D}^{-}(v)=0+d_{D_{\uparrow \uparrow}}^{-}(v) \\
& \forall v \in B, d_{D}^{+}(v)=0+d_{D_{\uparrow \uparrow}}^{+}(v) \text { and } d_{D}^{-}(v)=d_{D_{\downarrow \downarrow}}^{-}(v)+0
\end{aligned}
$$

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Theorem - Barme, B., Przybyło, Woźniak (2015+)
For every nice bipartite digraph D, we have $\chi_{\dot{⿺}}^{e}(D) \leq 3$.

$$
\begin{aligned}
& \forall v \in A, d_{D}^{+}(v)=d_{D_{\downarrow \downarrow}}^{+}(v)+0 \text { and } d_{D}^{-}(v)=0+d_{D_{\uparrow \uparrow}}^{-}(v) \\
& \forall v \in B, d_{D}^{+}(v)=0+d_{D_{\uparrow \uparrow}}^{+}(v) \text { and } d_{D}^{-}(v)=d_{D_{\downarrow \downarrow}}^{-}(v)+0
\end{aligned}
$$

$\Rightarrow D_{\downarrow \downarrow}$ and $D_{\uparrow \uparrow}$ can be weighted independently

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Tightness of $\{1,2,3\}$ - Bipartite digraphs

$\forall u v \in E\left(\operatorname{und}\left(D_{\downarrow \downarrow}\right)\right), \sigma(u) \neq \sigma(v) \quad \forall u v \in E\left(\operatorname{und}\left(D_{\uparrow \uparrow}\right)\right), \sigma(u) \neq \sigma(v)$ Karoński, Łuczak, Thomason \Rightarrow 1-2-3 Conjecture holds for bipartite graphs

Tightness of $\{1,2,3\}$ - Bipartite digraphs

$\forall \overrightarrow{u v} \in E\left(D_{\downarrow \downarrow}\right), \sigma^{+}(u) \neq \sigma^{-}(v) \quad \forall \overrightarrow{u v} \in E\left(D_{\uparrow \uparrow}\right), \sigma^{+}(u) \neq \sigma^{-}(v)$

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Tightness of $\{1,2,3\}$ - Bipartite digraphs

Tightness of $\{1,2,3\}$ - Bipartite digraphs

So $\chi_{\downarrow}^{e}(D)=\max \left\{\chi_{\llcorner }^{e}\left(D_{\downarrow \downarrow}\right), \chi_{\llcorner }^{e}\left(D_{\uparrow \uparrow}\right)\right\}$ and e.g. $\chi_{\llcorner }^{e}\left(D_{\downarrow \downarrow}\right)=\chi_{\Sigma}^{e}\left(\operatorname{und}\left(D_{\downarrow \downarrow}\right)\right)$
\Rightarrow If $D=D_{\downarrow \downarrow}$ and $\chi_{\Sigma}^{e}\left(\operatorname{und}\left(D_{\downarrow \downarrow}\right)\right)=3$, then $\chi_{\llcorner }^{e}(D)=3$

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

$$
v_{1}^{+} \bullet \quad \bullet v_{1}^{-}
$$

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

$$
\begin{array}{ll}
v_{1}^{+} \bullet & \bullet v_{1}^{-} \\
v_{2}^{+} \bullet & \bullet v_{2}^{-}
\end{array}
$$

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately

Theorem - Barme, B., Przybyło, Woźniak (2015+)

The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

$$
\begin{array}{ll}
v_{1}^{+} \bullet & \bullet v_{1}^{-} \\
v_{2}^{+} \bullet & \bullet v_{2}^{-}
\end{array}
$$

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately

Theorem - Barme, B., Przybyło, Woźniak (2015+)

The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately

Theorem - Barme, B., Przybyło, Woźniak (2015+)

The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

A solution to the Directed 1-2-3 Conjecture

Idea: treat σ^{+}and σ^{-}separately
Theorem - Barme, B., Przybyło, Woźniak (2015+)
The following two problems are equivalent:

1. The Directed 1-2-3 Conjecture for nice digraphs.
2. The 1-2-3 Conjecture for nice bipartite graphs.
3. $\Rightarrow 1$. Construct the anti-matched representation $\dddot{G}(D)$ of D

Relation between D and $G(D)$

w sum-colouring edge-weighting of $\ddot{G}(D) \rightarrow w^{\prime}$ arc-weighting of D

Relation between D and $\bar{G}(D)$

w sum-colouring edge-weighting of $\bar{G}(D) \rightarrow w^{\prime}$ arc-weighting of D $\forall v_{i}^{+} v_{j}^{-} \in E(\bar{G}(D)), \sigma_{w}\left(v_{i}^{+}\right) \neq \sigma_{w}\left(v_{j}^{-}\right) \Rightarrow \sigma_{w^{\prime}}^{+}\left(v_{i}\right) \neq \sigma_{w^{\prime}}^{-}\left(v_{j}\right)$

Relation between D and $\bar{G}(D)$

w sum-colouring edge-weighting of $\bar{G}(D) \rightarrow w^{\prime}$ arc-weighting of D $\forall v_{i}^{+} v_{j}^{-} \in E(\bar{G}(D)), \sigma_{w}\left(v_{i}^{+}\right) \neq \sigma_{w}\left(v_{j}^{-}\right) \Rightarrow \sigma_{w^{\prime}}^{+}\left(v_{i}\right) \neq \sigma_{w^{\prime}}^{-}\left(v_{j}\right)$
$\Rightarrow w^{\prime}$ sum-colouring

Relation between D and $\bar{G}(D)$

w sum-colouring edge-weighting of $\bar{G}(D) \rightarrow w^{\prime}$ arc-weighting of D
$\forall v_{i}^{+} v_{j}^{-} \in E(\bar{G}(D)), \sigma_{w}\left(v_{i}^{+}\right) \neq \sigma_{w}\left(v_{j}^{-}\right) \Rightarrow \sigma_{w^{\prime}}^{+}\left(v_{i}\right) \neq \sigma_{w^{\prime}}^{-}\left(v_{j}\right)$
$\Rightarrow w^{\prime}$ sum-colouring

1. $\Rightarrow 2$. Make G anti-matched, and construct the corresponding $\bar{D}(G)$

Relation between D and $G(D)$

w sum-colouring edge-weighting of $\dddot{G}(D) \rightarrow w^{\prime}$ arc-weighting of D
$\forall v_{i}^{+} v_{j}^{-} \in E(\bar{G}(D)), \sigma_{w}\left(v_{i}^{+}\right) \neq \sigma_{w}\left(v_{j}^{-}\right) \Rightarrow \sigma_{w^{\prime}}^{+}\left(v_{i}\right) \neq \sigma_{w^{\prime}}^{-}\left(v_{j}\right)$
$\Rightarrow w^{\prime}$ sum-colouring

1. $\Rightarrow 2$. Make G anti-matched, and construct the corresponding $\bar{D}(G)$

The Directed 1-2-3 Conjecture then follows from $K \nsucceq T$'s result

1-2 Conjecture

Sum-colouring arc-weightings

$w:(k, k)$-total-weighting of G

Sum-colouring arc-weightings

$w:(k, k)$-total-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper

Sum-colouring arc-weightings

$w:(k, k)$-total-weighting of G

w sum-colouring: obtained vertex-colouring σ is proper
$\chi_{\Sigma}^{t}(G): \min \{k: G$ has a sum-colouring (k, k)-total-weighting $\}$

1-2 Conjecture

Note: $\chi_{\Sigma}^{t}\left(K_{2}\right)=2$

1-2 Conjecture

Note: $\chi_{\Sigma}^{t}\left(K_{2}\right)=2$

Clearly $\chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{e}(G) \forall G$
1-2 Conjecture - Przybyło, Woźniak (2010)
For every graph G, we have $\chi_{\Sigma}^{t}(G) \leq 2$.

1-2 Conjecture

Note: $\chi_{\Sigma}^{t}\left(K_{2}\right)=2$

Clearly $\chi_{\Sigma}^{t}(G) \leq \chi_{\Sigma}^{e}(G) \forall G$

1-2 Conjecture - Przybyło, Woźniak (2010)

For every graph G, we have $\chi_{\Sigma}^{t}(G) \leq 2$.
$\chi_{\Sigma}^{t}(G) \leq 3[$ Kalkowski (2015)]

Going to digraphs

$w:(k, k)$-total-weighting of D

Going to digraphs

$w:(k, k)$-total-weighting of D
Convention: count every vertex weight in both σ^{+}and σ^{-}(= loop)

Going to digraphs

$w:(k, k)$-total-weighting of D
Convention: count every vertex weight in both σ^{+}and σ^{-}(= loop)

w sum-colouring: every arc satisfies Łuczak's (total) condition

Going to digraphs

$w:(k, k)$-total-weighting of D
Convention: count every vertex weight in both σ^{+}and σ^{-}(= loop)

w sum-colouring: every arc satisfies Łuczak's (total) condition $\chi_{\mathrm{⿺}}^{t}(D): \min \{k: D$ has a sum-colouring (k, k)-total-weighting $\}$

A daring directed 1-2 Conjecture

Daring question

Do we have $\chi_{\mathrm{t}}^{t}(D) \leq 2$ for every digraph D ?

A daring directed 1-2 Conjecture

Daring question

Do we have $\chi_{\llcorner }^{t}(D) \leq 2$ for every digraph D ?

Answer: No! Odd directed cycles

Second chance

Clearly $\chi_{\mathfrak{Ł}}^{t}(D) \leq \chi_{\mathfrak{Ł}}^{e}(D) \leq 3$ for every nice digraph D
Directed 1-2 Conjecture - Barme, B., Przybyło, Woźniak (2015+)
For every nice digraph D, we have $\chi_{\mathrm{t}}^{t}(D) \leq 2$.

Second chance

Clearly $\chi_{\mathrm{Ł}}^{t}(D) \leq \chi_{\mathfrak{Ł}}^{e}(D) \leq 3$ for every nice digraph D

Directed 1-2 Conjecture - Barme, B., Przybyło, Woźniak (2015+)

For every nice digraph D, we have $\chi_{\mathrm{Ł}}^{t}(D) \leq 2$.

Observation: matched representation $\bar{G}(D)$ of $D \Rightarrow \chi_{\mathrm{⿺}}^{t}(D) \leq 3$

$\bar{G}\left(D^{\ell}\right)$

D^{ℓ}

D

Second chance

Clearly $\chi_{\mathrm{Ł}}^{t}(D) \leq \chi_{\mathfrak{Ł}}^{e}(D) \leq 3$ for every nice digraph D

Directed 1-2 Conjecture - Barme, B., Przybyło, Woźniak (2015+)

For every nice digraph D, we have $\chi_{\mathrm{t}}^{t}(D) \leq 2$.

Observation: matched representation $\bar{G}(D)$ of $D \Rightarrow \chi_{\mathrm{L}}^{t}(D) \leq 3$

$\bar{G}\left(D^{\ell}\right)$

D^{ℓ}

D

$$
\chi_{\Sigma}^{e}\left(\bar{G}\left(D^{\ell}\right)\right) \leq 3 \Rightarrow \chi_{\llcorner }^{e}\left(D^{\ell}\right) \leq 3 \Rightarrow \chi_{\mathrm{Ł}}^{t}(D) \leq 3
$$

Going a little further

Note: $\bar{G}\left(\right.$ odd directed cycle $\left.{ }^{\ell}\right)=C_{4 k+2}$ and $\chi_{\Sigma}^{e}\left(C_{4 k+2}\right)=3$

Going a little further

Note: $\bar{G}\left(\right.$ odd directed cycle $\left.{ }^{\ell}\right)=C_{4 k+2}$ and $\chi_{\Sigma}^{e}\left(C_{4 k+2}\right)=3$
$\bar{G}\left(D^{\ell}\right)$ bipartite with $\chi_{\Sigma}^{e}\left(\bar{G}\left(D^{\ell}\right)\right) \leq 2 \Rightarrow \chi_{\mathrm{⿺}}^{t}(D) \leq 2$

Going a little further

Note: $\bar{G}\left(\right.$ odd directed cycle $\left.{ }^{\ell}\right)=C_{4 k+2}$ and $\chi_{\Sigma}^{e}\left(C_{4 k+2}\right)=3$
$\bar{G}\left(D^{\ell}\right)$ bipartite with $\chi_{\Sigma}^{e}\left(\bar{G}\left(D^{\ell}\right)\right) \leq 2 \Rightarrow \chi_{\mathrm{t}}^{t}(D) \leq 2$
Characterization? Not clear...
Theorem - Chang, Lu, Wu, Yu (2011)
For $G=(A, B)$ nice bipartite with $|A|$ or $|B|$ even, we have $\chi_{\Sigma}^{e}(G) \leq 2$.
\Rightarrow Directed 1-2 Conjecture true for nice digraphs with even order

Conclusion

Conclusion

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered

Conclusion

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi_{\Sigma}^{e}(G) \leq 2$?

Conclusion

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi_{\Sigma}^{e}(G) \leq 2$?
- What if relaxed along a perfect matching?

Conclusion

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi_{\Sigma}^{e}(G) \leq 2$?
- What if relaxed along a perfect matching?
- Directed 1-2 Conjectures never true... ???

Conclusion

- New attempt for a directed 1-2-3 Conjecture
- Arc version true, total version partially answered
- Equivalence with edge-weighting bipartite undirected graphs
- Which are the nice bipartite graphs G for which $\chi_{\Sigma}^{e}(G) \leq 2$?
- What if relaxed along a perfect matching?
- Directed 1-2 Conjectures never true... ???

Thanks!

