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G: simple graph
w: k-edge-weighting of G
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S 1

w sum-colouring: obtained vertex-colouring o is proper
X5 (G): min{k : G has a sum-colouring k-edge-weighting}
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G nice: no K, component

1-2-3 Conjecture — Karonski, tuczak, Thomason (2004)

For every nice graph G, we have x£(G) < 3.

X5 (G) <5 [Kalkowski, Karoriski, Pfender (2010)]
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D: simple digraph
w: k-arc-weighting of D
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Distinguishing neighbours via ¢ and 077
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o {1,2,3} suffice (tight)
e list version holds

Not satisfying:
e 1-2-3 Conjecture: induction possible, no exceptions, etc.
e directed context: what about the arcs’ direction?

So what would be satisfying?
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A directed 1-2-3 Conjecture

Note: x{(D) undefined if D has

D nice: no such configuration

Directed 1-2-3 Conjecture — tuczak

For every nice digraph D, we have xf(D) < 3.
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Theorem — Barme, B., Przybyto, Wozniak (2015+)

For every nice bipartite digraph D, we have x{(D) < 3.

Dy, Dy
B

Vv e A dj(v)= dgu(v) +0and dy(v)=0+d, (v)

™

Vv e B, di(v)=0+ dgﬁ(v) and dp (v) =dp  (v)+0

= D, and D44 can be weighted independently
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Tightness of {1,2,3} — Bipartite digraphs

vVav € E(D), o™ (u) # o (v)

So x{ (D) = max{x{(Dy,); xi (Dy1)} and eg. x{(Dyy) = x5 (und(D,))
= If D= Dy and x§(und(D,,)) = 3, then x{(D) =3
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Relation between D and G(D)
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w sum-colouring edge-weighting of G(D) — w' arc-weighting of D
€ E(G(D)), ow(v;") # ow(v;) = 0, (vi) # 7,,(v))

= w’ sum-colouring

1. = 2. Make G anti-matched, and construct the corresponding D(G) |

The Directed 1-2-3 Conjecture then follows from KLT's result
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Daring question
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Answer: No! Odd directed cycles
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Going a little further

Note: G(odd directed cyclee) = Gars2 and x5 (Cak42) =3
G(D*) bipartite with x£(G(D%)) <2 = x{(D) <2

Characterization? Not clear...

Theorem — Chang, Lu, Wu, Yu (2011)

For G = (A, B) nice bipartite with |A| or |B| even, we have x£(G) < 2.

= Directed 1-2 Conjecture true for nice digraphs with even order
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New attempt for a directed 1-2-3 Conjecture

Arc version true, total version partially answered

Equivalence with edge-weighting bipartite undirected graphs
Which are the nice bipartite graphs G for which x§(G) < 27
@ What if relaxed along a perfect matching?

@ Directed 1-2 Conjectures never true... 777

Thanks!
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