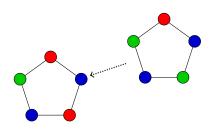
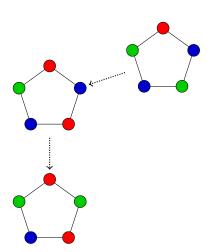
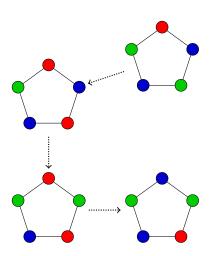
Kempe equivalence of colorings

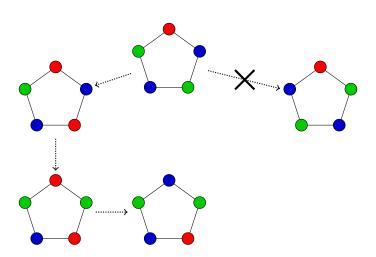
Marthe Bonamy Nicolas Bousquet
Carl Feghali Matthew Johnson

JGA 2015

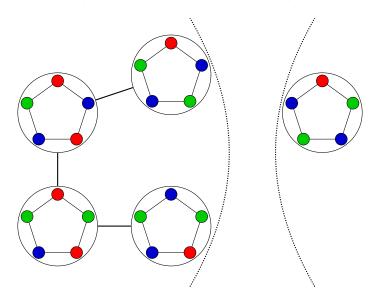








Solutions // Nodes. Most similar solutions // Neighbors.



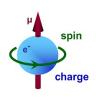
Motivations

• Obtain a 'random' coloring of a graph.

Motivations

- Obtain a 'random' coloring of a graph.
- Obtain lower bounds on the mixing time of a Markov chain.

A spin configuration of G=(V,E) is a function $\sigma:V\to\{1,\ldots,k\}$. (a graph coloring)



A spin configuration of G=(V,E) is a function $\sigma:V\to\{1,\ldots,k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

A spin configuration of G=(V,E) is a function $\sigma:V\to\{1,\ldots,k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a k-state Potts model when $T \to 0$.

 \Leftrightarrow All the *k*-colorings of *G*.

A spin configuration of G=(V,E) is a function $\sigma:V\to\{1,\ldots,k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a k-state Potts model when $T \to 0$.

 \Leftrightarrow All the *k*-colorings of *G*.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics.
- Generate all the possible states of a Glauber dynamics.

A spin configuration of G=(V,E) is a function $\sigma:V\to\{1,\ldots,k\}$. (a graph coloring)

Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a k-state Potts model when $T \to 0$.

 \Leftrightarrow All the *k*-colorings of *G*.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics. We need to recolor only one vertex at a time.
- Generate all the possible states of a Glauber dynamics.
 We have no constraint on the method.

• In many applications, colors are interchangeable.

- In many applications, colors are interchangeable.
- More actions may be available.

- In many applications, colors are interchangeable.
- More actions may be available.
- Which type of actions ensures that the reconfiguration graph is connected?

- In many applications, colors are interchangeable.
- More actions may be available.
- Which type of actions ensures that the reconfiguration graph is connected?

Idea: Recoloring vertices along a Kempe chain.

Kempe chains

Let a, b be two colors.

Kempe chains

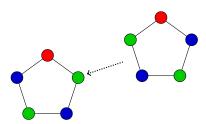
Let a, b be two colors.

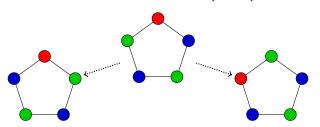
 A connected component of the graph induced by the vertices colored by a or b is a Kempe chain.

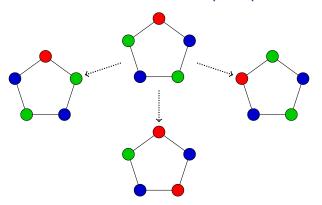
Kempe chains

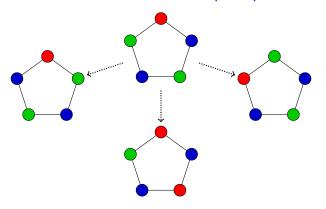
Let a, b be two colors.

- A connected component of the graph induced by the vertices colored by a or b is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.









Definition (Kempe equivalent)

Two colorings are Kempe equivalent if we can transform the one into the other within a sequence of Kempe changes.

△: Maximum degree of the graph

△: Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

△: Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the \triangle -colorings of a graph are Kempe equivalent.

△: Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the \triangle -colorings of a graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the (k + 1)-colorings of a k-degenerate graph are Kempe equivalent.

(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

△: Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the \triangle -colorings of a graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the (k + 1)-colorings of a k-degenerate graph are Kempe equivalent.

Remark (Mohar '06): All the Δ -colorings of a graph G are Kempe equivalent if G is connected and not regular.

(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

△: Maximum degree of the graph

Theorem (Brooks '41)

Every graph is Δ -colorable, except for cliques and odd cycles.

Conjecture Mohar '05

All the k-colorings of a k-regular graph are Kempe equivalent.

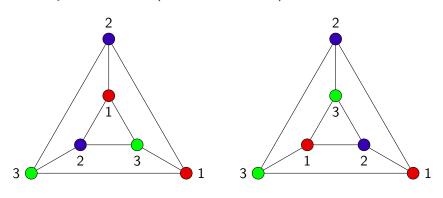
Theorem (Las Vergnas, Meyniel '81): All the (k + 1)-colorings of a k-degenerate graph are Kempe equivalent.

Remark (Mohar '06): All the Δ -colorings of a graph G are Kempe equivalent if G is connected and not regular.

(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Results

The conjecture is false! (van den Heuvel '13)



(3-prism)

Results (2)

Theorem (Feghali, Johnson, Paulusma '15)

All the 3-colorings of a connected 3-regular graphs (other than the 3-prism) are Kempe equivalent.

Results (2)

Theorem (Feghali, Johnson, Paulusma '15)

All the 3-colorings of a connected 3-regular graphs (other than the 3-prism) are Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the k-colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_3 . All the colorings where u and v are colored alike are Kempe equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_3 . All the colorings where u and v are colored alike are Kempe equivalent.

Sketch:

- Identify u and v.
- ullet The resulting graph is $(\Delta-1)$ -degenerate.
- ullet Δ -colorings of a $(\Delta-1)$ -degenerate graph are equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_3 . All the colorings where u and v are colored alike are Kempe equivalent.

Sketch:

- Identify *u* and *v*.
- The resulting graph is $(\Delta 1)$ -degenerate.
- Δ -colorings of a $(\Delta 1)$ -degenerate graph are equivalent.

Consequence: If any coloring is equivalent to a coloring where u and v are colored alike, all the colorings are Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

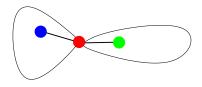
By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

• If G is not 3-connected \Rightarrow contradiction.

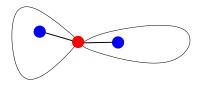


Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

• If G is not 3-connected \Rightarrow contradiction.

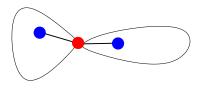


Theorem (Bonamy, B., Feghali, Johnson '15)

All the colorings of a connected k-regular graph with $k \ge 4$ are Kempe equivalent.

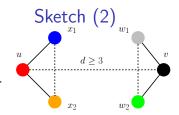
By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

- If G is not 3-connected \Rightarrow contradiction.
- If G does not have diameter at least $3 \Rightarrow$ contradiction.
- \Rightarrow *G* is 3-connected of diameter \geq 3.



So G is 3-connected of diameter > 3.

- Let u, v at distance ≥ 3 .
- Let w_1, w_2 in N(u) s.t. $(w_1, w_2) \notin E$.
- Let x_1, x_2 in N(v) s.t. $(x_1, x_2) \notin E$.



So G is 3-connected of diameter ≥ 3 .

- Let u, v at distance ≥ 3 .
- Let w_1, w_2 in N(u) s.t. $(w_1, w_2) \notin E$.
- Let x_1, x_2 in N(v) s.t. $(x_1, x_2) \notin E$.

Sketch (2) u $d \ge 3$ v v v

If:

- (i) There exists a coloring s.t. w_1, w_2 are colored alike and x_1, x_2 are colored alike.
- (ii) Any coloring is equivalent to a coloring where w_1, w_2 are colored alike or x_1, x_2 are colored alike.

Then all the colorings are Kempe equivalent.

So G is 3-connected of diameter > 3.

- Let u, v at distance > 3.
- Let w_1, w_2 in N(u) s.t. $(w_1, w_2) \notin E$.

• Let x_1, x_2 in N(v) s.t. $(x_1, x_2) \notin E$. If:



- (i) There exists a coloring s.t. w_1, w_2 are colored alike and x_1, x_2 are colored alike.
- (ii) Any coloring is equivalent to a coloring where w_1, w_2 are colored alike or x_1, x_2 are colored alike.

Then all the colorings are Kempe equivalent.

Sketch:

$$\Delta$$
-coloring β
 \uparrow
 Δ -col. β' s.t.

 $\beta'(w_1) = \beta'(w_2)$

• Maximal distance between two colorings?

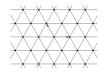
- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- ullet Characterize the graphs for which all the $(\Delta-1)$ -colorings are Kempe equivalent.

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta-1)$ -colorings are Kempe equivalent.

Question

Number of Kempe classes for the triangular lattice for k = 5?

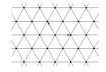


Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta-1)$ -colorings are Kempe equivalent.

Question

Number of Kempe classes for the triangular lattice for k = 5?



Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

Thanks for your attention!