Kempe equivalence of colorings

Marthe Bonamy Nicolas Bousquet
Carl Feghali Matthew Johnson

Graph recoloring

Graph recoloring

Solutions // Nodes. Most similar solutions // Neighbors.

Motivations

- Obtain a 'random' coloring of a graph.

Motivations

- Obtain a 'random' coloring of a graph.
- Obtain lower bounds on the mixing time of a Markov chain.

Anti-ferromagnetic Potts Model A spin configuration of $G=(V, E)$ is a func-
 tion $\sigma: V \rightarrow\{1, \ldots, k\}$. (a graph coloring)

Anti-ferromagnetic Potts Model

 A spin configuration of $G=(V, E)$ is a function $\sigma: V \rightarrow\{1, \ldots, k\}$. (a graph coloring)Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Anti-ferromagnetic Potts Model

 A spin configuration of $G=(V, E)$ is a function $\sigma: V \rightarrow\{1, \ldots, k\}$. (a graph coloring)Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)

Limit of a k-state Potts model when $T \rightarrow 0$.
\Leftrightarrow All the k-colorings of G.

Anti-ferromagnetic Potts Model

 A spin configuration of $G=(V, E)$ is a function $\sigma: V \rightarrow\{1, \ldots, k\}$. (a graph coloring)Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)
Limit of a k-state Potts model when $T \rightarrow 0$.
\Leftrightarrow All the k-colorings of G.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics.
- Generate all the possible states of a Glauber dynamics.

Anti-ferromagnetic Potts Model

 A spin configuration of $G=(V, E)$ is a function $\sigma: V \rightarrow\{1, \ldots, k\}$. (a graph coloring)Probability that a configuration appears is inversely proportional to the number of monochromatic edges divided by the temperature of the system.

Definition (Glauber dynamics)
Limit of a k-state Potts model when $T \rightarrow 0$.
\Leftrightarrow All the k-colorings of G.

The physicists want to:

- Find the mixing time of Markov chains on Glauber dynamics. We need to recolor only one vertex at a time.
- Generate all the possible states of a Glauber dynamics. We have no constraint on the method.

Limit of the recoloring model

- In many applications, colors are interchangeable.

Limit of the recoloring model

- In many applications, colors are interchangeable.
- More actions may be available.

Limit of the recoloring model

- In many applications, colors are interchangeable.
- More actions may be available.
- Which type of actions ensures that the reconfiguration graph is connected?

Limit of the recoloring model

- In many applications, colors are interchangeable.
- More actions may be available.
- Which type of actions ensures that the reconfiguration graph is connected?

Idea: Recoloring vertices along a Kempe chain.

Kempe chains

Let a, b be two colors.

Kempe chains

Let a, b be two colors.

- A connected component of the graph induced by the vertices colored by a or b is a Kempe chain.

Kempe chains

Let a, b be two colors.

- A connected component of the graph induced by the vertices colored by a or b is a Kempe chain.
- Permuting the colors of a Kempe chain is a Kempe change.

Kempe equivalence

Kempe equivalence

Kempe equivalence

Kempe equivalence

Kempe equivalence

Definition (Kempe equivalent)

Two colorings are Kempe equivalent if we can transform the one into the other within a sequence of Kempe changes.

Mohar conjecture

Δ : Maximum degree of the graph

Mohar conjecture

Δ : Maximum degree of the graph
Theorem (Brooks '41)
Every graph is Δ-colorable, except for cliques and odd cycles.

Mohar conjecture

Δ : Maximum degree of the graph
Theorem (Brooks '41)
Every graph is Δ-colorable, except for cliques and odd cycles.

Conjecture Mohar '05
All the Δ-colorings of a graph are Kempe equivalent.

Mohar conjecture

Δ : Maximum degree of the graph
Theorem (Brooks '41)
Every graph is Δ-colorable, except for cliques and odd cycles.

Conjecture Mohar '05
All the Δ-colorings of a graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the ($k+1$)-colorings of a k-degenerate graph are Kempe equivalent.
(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Mohar conjecture

Δ : Maximum degree of the graph
Theorem (Brooks '41)
Every graph is Δ-colorable, except for cliques and odd cycles.

Conjecture Mohar '05
All the Δ-colorings of a graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the ($k+1$)-colorings of a k-degenerate graph are Kempe equivalent.
Remark (Mohar '06): All the Δ-colorings of a graph G are Kempe equivalent if G is connected and not regular.
(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Mohar conjecture

Δ : Maximum degree of the graph
Theorem (Brooks '41)
Every graph is Δ-colorable, except for cliques and odd cycles.

Conjecture Mohar '05
All the k-colorings of a k-regular graph are Kempe equivalent.

Theorem (Las Vergnas, Meyniel '81): All the ($k+1$)-colorings of a k-degenerate graph are Kempe equivalent.
Remark (Mohar '06): All the Δ-colorings of a graph G are Kempe equivalent if G is connected and not regular.
(k-degenerate: every subgraph contains a vertex of degree $\leq k$)

Results

The conjecture is false! (van den Heuvel '13)

(3-prism)

Results (2)

Theorem (Feghali, Johnson, Paulusma '15)
All the 3-colorings of a connected 3-regular graphs (other than the 3 -prism) are Kempe equivalent.

Results (2)

Theorem (Feghali, Johnson, Paulusma '15)
All the 3-colorings of a connected 3-regular graphs (other than the 3 -prism) are Kempe equivalent.

Theorem (Bonamy, B., Feghali, Johnson '15)
All the k-colorings of a connected k-regular graph with $k \geq 4$ are Kempe equivalent.

Main lemma

Lemma
Let u, w, v be an induced P_{3}. All the colorings where u and v are colored alike are Kempe equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_{3}. All the colorings where u and v are colored alike are Kempe equivalent.

Sketch:

- Identify u and v.
- The resulting graph is $(\Delta-1)$-degenerate.
- Δ-colorings of a $(\Delta-1)$-degenerate graph are equivalent.

Main lemma

Lemma

Let u, w, v be an induced P_{3}. All the colorings where u and v are colored alike are Kempe equivalent.

Sketch:

- Identify u and v.
- The resulting graph is $(\Delta-1)$-degenerate.
- Δ-colorings of a $(\Delta-1)$-degenerate graph are equivalent.

Consequence: If any coloring is equivalent to a coloring where u and v are colored alike, all the colorings are Kempe equivalent.

$$
\begin{array}{ccc}
\Delta \text {-coloring } \alpha \\
\Downarrow \\
\Delta \text {-col. } \alpha^{\prime} \text { where } \alpha^{\prime}(u)=\alpha^{\prime}(v) & & \Delta \text {-coloring } \beta \\
\Uparrow & \Delta \text {-col. } \beta^{\prime} \text { where } \beta^{\prime}(u)=\beta^{\prime}(v)
\end{array}
$$

Sketch for the main result

Theorem (Bonamy, B., Feghali, Johnson '15)
All the colorings of a connected k-regular graph with $k \geq 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

Sketch for the main result

Theorem (Bonamy, B., Feghali, Johnson '15)
All the colorings of a connected k-regular graph with $k \geq 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

- If G is not 3 -connected \Rightarrow contradiction.

Sketch for the main result

Theorem (Bonamy, B., Feghali, Johnson '15)
All the colorings of a connected k-regular graph with $k \geq 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

- If G is not 3 -connected \Rightarrow contradiction.

Sketch for the main result

Theorem (Bonamy, B., Feghali, Johnson '15)
All the colorings of a connected k-regular graph with $k \geq 4$ are Kempe equivalent.

By contradiction: let G be a minimal k-regular graph with ≥ 2 Kempe classes.

- If G is not 3 -connected \Rightarrow contradiction.
- If G does not have diameter at least $3 \Rightarrow$ contradiction.
$\Rightarrow G$ is 3 -connected of diameter ≥ 3.

So G is 3 -connected of diameter ≥ 3.

- Let u, v at distance ≥ 3.
- Let w_{1}, w_{2} in $N(u)$ s.t. $\left(w_{1}, w_{2}\right) \notin E$.
- Let x_{1}, x_{2} in $N(v)$ s.t. $\left(x_{1}, x_{2}\right) \notin E$.

So G is 3 -connected of diameter ≥ 3.

- Let u, v at distance ≥ 3.
- Let w_{1}, w_{2} in $N(u)$ s.t. $\left(w_{1}, w_{2}\right) \notin E$.
- Let x_{1}, x_{2} in $N(v)$ s.t. $\left(x_{1}, x_{2}\right) \notin E$.

If:
(i) There exists a coloring s.t. w_{1}, w_{2} are colored alike and x_{1}, x_{2} are colored alike.
(ii) Any coloring is equivalent to a coloring where w_{1}, w_{2} are colored alike or x_{1}, x_{2} are colored alike.
Then all the colorings are Kempe equivalent.

So G is 3 -connected of diameter ≥ 3.

- Let u, v at distance ≥ 3.
- Let w_{1}, w_{2} in $N(u)$ s.t. $\left(w_{1}, w_{2}\right) \notin E$.
- Let x_{1}, x_{2} in $N(v)$ s.t. $\left(x_{1}, x_{2}\right) \notin E$.

If:
(i) There exists a coloring s.t. w_{1}, w_{2} are colored alike and x_{1}, x_{2} are colored alike.
(ii) Any coloring is equivalent to a coloring where w_{1}, w_{2} are colored alike or x_{1}, x_{2} are colored alike.
Then all the colorings are Kempe equivalent.
Sketch:

Conclusion

- Maximal distance between two colorings?

Conclusion

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?

Conclusion

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta-1)$-colorings are Kempe equivalent.

Conclusion

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta-1)$-colorings are Kempe equivalent.

Question

Number of Kempe classes for the triangular lattice for $k=5$?

Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

Conclusion

- Maximal distance between two colorings?
- Algorithmic aspects of Kempe chain reconfiguration?
- Characterize the graphs for which all the $(\Delta-1)$-colorings are Kempe equivalent.

Question

Number of Kempe classes for the triangular lattice for $k=5$?

Consequence in physics: Close the study of the Wang-Swendsen-Koteký algorithm for Glauber dynamics on triangular lattices.

Thanks for your attention!

