Borne inférieure de circuit : une application des expanders

 $\frac{\text{Simone Bova}^1}{\text{Stefan Mengel}^3} \xrightarrow{\text{Friedrich Slivovski}^1}$

¹TU Wien, ²IMJ-PRG, Paris 7, ³CRIL, Lens

6 Novembre 2015

JGA 2015

We have knowledge on a system, expressed as a list of constraints, a CNF :

$$\mathcal{F} = igwedge_{i=1}^n igvee_j \ell_j$$
 where $\ell_j \in \{x,
eg x\}$ for some variable x

We want to query F many times:

- Is F satisfiable? Is $F[x_1 \leftarrow 0, x_2 \leftarrow 1, x_3 \leftarrow 0]$ still satisfiable?
- How many assignments do satisfy $F[x_1 \leftarrow 0]$?

etc.

Example: car configuration on the website of Renault.

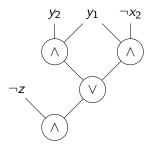
- **Problem**: All these queries are hard (NP or #P complete).
- **Strategy**: Compile *F* to an optimized data structure that support these queries in polynomial time.
- Main idea: Spend time (possibly exponential) only once to optimize and not for each query

Data structure: boolean circuits with good properties.

Which data structure?

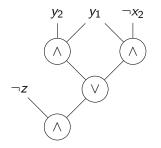
In this talk DNNF: *Decomposable Negation Normal Form* A DNNF:

- a boolean circuit C with \lor and \land gates
- *Negation Normal Form:* inputs are labeled by *x* or ¬*x* with *x* a variable
- Decomposable: For α an ∧-gate whose inputs are α₁ et α₂, we have var(α₁) ∩ var(α₂) = Ø



Remarks

- DNFs are DNNFs
- Stable by partially assigning variables
- One of the most general family of circuits that still supports interesting queries
 - Satisfiability in linear time
 - Enumeration of satisfying assignments with linear delay
 - Existential quantification of a subset of variables



Questions: upper bounds

Question (Upper bounds)

How can we use the structure of a formula to compile it in FPT-time?

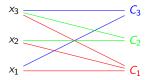


Figure: Incidence graph

- Which parameters are relevent?
- Close to the parametrized complexity of #SAT.

In this talk:

Question (Lower bounds)

Can we transform every CNF-formula F into a DNNF of polynomial size in |F|?

The answer is no:

- A 2^{Ω(√|F|)} lower can be deduced from known lower bound on monotone circuits
- In this talk: we use expanders to get a 2^{Ω(|F|)} lower bound on an infinite family of CNF.

- Given a graph G = (V, E), define $F_G = \bigwedge_{(x,y) \in E} (x \lor y)$
- Satisfying assignment of F = vertex covers of G
- $S \subseteq V$: VC(G,S) = vertex covers C of G such that $S \subseteq C$

Key theorem:

Theorem

Let G be a graph of degree d and $\mu_d = (1+2^{-d}) > 1$:

$$\#\mathsf{VC}(G,S) \le \mu_d^{-|S|} \#\mathsf{VC}(G)$$

\rightarrow if S is big, VC(G,S) is exponentially smaller than VC(G)

Proof of the key theorem

For $S = \{s\}$, $N_s = neighbors(s)$, $|N_s| = d$:

- #VC(G) = #VC that contain s + #VC that do not contain s
- Transform a VC C containing s to one which do not. Remember $C \cap N_S$

Proof of the key theorem

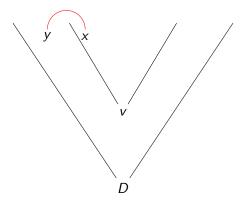
For $S = \{s\}$, $N_s = \text{neighbors}(s)$, $|N_s| = d$:

- #VC(G) = #VC that contain s + #VC that do not contain s
- Transform a VC C containing s to one which do not. Remember $C \cap N_S$

- From this and $C \cap N_s$, one can reconstruct C
- #VC containing $s \le 2^d \times \#$ VC that don't
- $(1+2^{-d})\#VC(G, \{s\}) \le \#VC(G)$
- For |S| > 1, induction.

Proof strategy

Let G = (V, E) be a graph $(x, y) \in E$, D a DNNF for F_G , $v \in D$ such that:

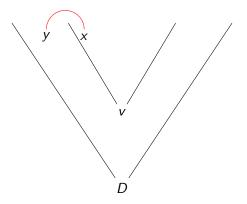


Solutions of D_v and D:

• must assign x or y to 1 (otherwise, not a solution of F)

Proof strategy

Let G = (V, E) be a graph $(x, y) \in E$, D a DNNF for F_G , $v \in D$ such that:

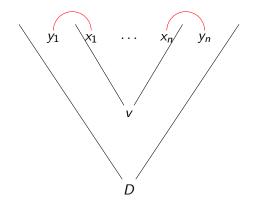


Solutions of D_v and D:

- must assign x or y to 1 (otherwise, not a solution of F)
- Actually they either *all* assign x to 1 or *all* y to 1

How to find such gates

 $(x_1, y_1), \ldots, (x_n, y_n)$ an induced matching of G and v a gate such that:



One can always find $S \subseteq X \cup Y$ of size *n* such that each solution of *v* must contain *S*

- 2 Greedily look for a gate v with enough variables in subcircuit: roughly |V|/2
- **3** Extract large induced matching S from var(v) to $V \setminus var(v)$

- 2 Greedily look for a gate v with enough variables in subcircuit: roughly |V|/2
- **3** Extract large induced matching S from var(v) to $V \setminus var(v)$
- 4 All solutions of D_v fixe the same value to a large number of variables

- 2 Greedily look for a gate v with enough variables in subcircuit: roughly |V|/2
- **3** Extract large induced matching S from var(v) to $V \setminus var(v)$
- 4 All solutions of D_v fixe the same value to a large number of variables
- **5** Solutions of $D_v =$ exponentially smaller than the solutions of D

- 2 Greedily look for a gate v with enough variables in subcircuit: roughly |V|/2
- **3** Extract large induced matching S from var(v) to $V \setminus var(v)$
- 4 All solutions of D_v fixe the same value to a large number of variables
- **5** Solutions of $D_v =$ exponentially smaller than the solutions of D
- **6** Disconnect v : it removes a small fraction of solutions
- 7 Go to 2 until you have removed all gates

"Proof"

- 2 Greedily look for a gate v with enough variables in subcircuit: roughly |V|/2
- **3** Extract large induced matching S from var(v) to $V \setminus var(v)$
- 4 All solutions of D_v fixe the same value to a large number of variables
- **5** Solutions of $D_v =$ exponentially smaller than the solutions of D
- **6** Disconnect v: it removes a small fraction of solutions
- 7 Go to 2 until you have removed all gates

- Goal: ensure that there is always a large induce matching between W ⊆ V of size roughly |V|/2 and (V \ W) in G
- **Boundary expansion**: G = (V, E) is a (c, d)-expander iff
 - it is of degree d and
 - for each $W \subseteq V$, if $\frac{|V|}{d} \leq |W| \leq \frac{|V|}{2}$ then $\partial W = |N_W \setminus W| \geq c|W|$.
- Bounded degree + expansion: one can find large induced matching from subset of variables W of size roughly |V|/2 to V \ W

Theorem

There exists a familly of CNF formulas $(F_n)_{n \in \mathbb{N}}$ such that $|\operatorname{var}(F_n) = n|$ and every DNNF computing F_n is of size $2^{\Omega(n)}$.

- Known lower bounds of this kind are usually of the form $2^{\Omega(\sqrt{|F|})}$
- Most examples are based on $(n \times n)$ matrices or grids
- In grids, large subsets of variables have a boundary of size roughly \sqrt{N} where $N = n^2$ is the number of variables
- Expander is a way of having a linear size boundary and allows us to lift lower bounds

- We prove a strong exponential lower bound on some family of circuits representing a very restricted class of CNF formulas (2-CNF, monotone, read 3)
- Closes open questions in the domain of knowledge compilation (Marquis, Darwich, 2002)
- Can we find other lower bounds using these kind of techniques?