Borne inférieure de circuit : une application des expanders

Simone Bova ${ }^{1} \quad \frac{\text { Florent Capelli }^{2}}{\text { Stefan Mengel }^{3}}$ Friedrich Slivovski ${ }^{1}$
${ }^{1}$ TU Wien, ${ }^{2}$ IMJ-PRG, Paris $7,{ }^{3}$ CRIL, Lens
6 Novembre 2015

JGA 2015

Motivation

We have knowledge on a system, expressed as a list of constraints, a CNF:

$$
F=\bigwedge_{i=1}^{n} \bigvee_{j} \ell_{j} \text { where } \ell_{j} \in\{x, \neg x\} \text { for some variable } x
$$

We want to query F many times:

- Is F satisfiable? Is $F\left[x_{1} \leftarrow 0, x_{2} \leftarrow 1, x_{3} \leftarrow 0\right]$ still satisfiable?

■ How many assignments do satisfy $F\left[x_{1} \leftarrow 0\right]$?

- etc.

Example: car configuration on the website of Renault.

Motivation

- Problem: All these queries are hard (NP or \#P complete).

■ Strategy: Compile F to an optimized data structure that support these queries in polynomial time.

- Main idea: Spend time (possibly exponential) only once to optimize and not for each query

Data structure: boolean circuits with good properties.

Which data structure?

In this talk DNNF: Decomposable Negation Normal Form A DNNF:

- a boolean circuit C with \vee and \wedge gates
- Negation Normal Form: inputs are labeled by x or $\neg x$ with x a variable
- Decomposable: For α an \wedge-gate whose inputs are α_{1} et α_{2}, we have $\operatorname{var}\left(\alpha_{1}\right) \cap \operatorname{var}\left(\alpha_{2}\right)=\emptyset$

Remarks

- DNFs are DNNFs
- Stable by partially assigning variables

■ One of the most general family of circuits that still supports interesting queries

- Satisfiability in linear time
- Enumeration of satisfying assignments with linear delay
- Existential quantification of a subset of variables

Questions: upper bounds

Question (Upper bounds)

How can we use the structure of a formula to compile it in FPT-time?

Figure: Incidence graph

■ Which parameters are relevent?
■ Close to the parametrized complexity of \#SAT.

Questions: Lower bounds

In this talk:

Question (Lower bounds)

Can we transform every CNF-formula F into a DNNF of polynomial size in $|F|$?

The answer is no:

- A $2^{\Omega(\sqrt{|F|})}$ lower can be deduced from known lower bound on monotone circuits
- In this talk: we use expanders to get a $2^{\Omega(|F|)}$ lower bound on an infinite family of CNF.

Graph formula and vertex covers

- Given a graph $G=(V, E)$, define $F_{G}=\bigwedge_{(x, y) \in E}(x \vee y)$
- Satisfying assignment of $F=$ vertex covers of G

■ $S \subseteq V: \operatorname{VC}(G, S)=$ vertex covers C of G such that $S \subseteq C$

Key theorem:

Theorem

Let G be a graph of degree d and $\mu_{d}=\left(1+2^{-d}\right)>1$:

$$
\# \mathrm{VC}(G, S) \leq \mu_{d}^{-|S|} \# \mathrm{VC}(G)
$$

\rightarrow if S is big, $\operatorname{VC}(G, S)$ is exponentially smaller than $\operatorname{VC}(G)$

Proof of the key theorem

For $S=\{s\}, N_{s}=$ neighbors $(s),\left|N_{s}\right|=d:$
■ \#VC($G)=\# \mathrm{VC}$ that contain $s+\# \mathrm{VC}$ that do not contain s

- Transform a VC C containing s to one which do not.

Remember $C \cap N_{S}$

Proof of the key theorem

For $S=\{s\}, N_{s}=$ neighbors $(s),\left|N_{s}\right|=d$:
■ \#VC($G)=\# \mathrm{VC}$ that contain $s+\# \mathrm{VC}$ that do not contain s

- Transform a VC C containing s to one which do not.

Remember $C \cap N_{S}$

- From this and $C \cap N_{s}$, one can reconstruct C
- \#VC containing $s \leq 2^{d} \times \# \mathrm{VC}$ that don't

■ $\left(1+2^{-d}\right) \# \mathrm{VC}(G,\{s\}) \leq \# \mathrm{VC}(G)$
■ For $|S|>1$, induction.

Proof strategy

Let $G=(V, E)$ be a graph $(x, y) \in E, D$ a DNNF for $F_{G}, v \in D$ such that:

Solutions of D_{v} and D :

- must assign x or y to 1 (otherwise, not a solution of F)

Proof strategy

Let $G=(V, E)$ be a graph $(x, y) \in E, D$ a DNNF for $F_{G}, v \in D$ such that:

Solutions of D_{v} and D :

- must assign x or y to 1 (otherwise, not a solution of F)

■ Actually they either all assign x to 1 or all y to 1

How to find such gates

$\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ an induced matching of G and v a gate such that:

One can always find $S \subseteq X \cup Y$ of size n such that each solution of v must contain S

1 Choose G wisely
2 Greedily look for a gate v with enough variables in subcircuit: roughly $|V| / 2$
3 Extract large induced matching S from $\operatorname{var}(v)$ to $V \backslash \operatorname{var}(v)$

1 Choose G wisely
2 Greedily look for a gate v with enough variables in subcircuit: roughly $|V| / 2$
3 Extract large induced matching S from $\operatorname{var}(v)$ to $V \backslash \operatorname{var}(v)$
4 All solutions of D_{v} fixe the same value to a large number of variables

1 Choose G wisely
2 Greedily look for a gate v with enough variables in subcircuit: roughly $|V| / 2$
3 Extract large induced matching S from $\operatorname{var}(v)$ to $V \backslash \operatorname{var}(v)$
4 All solutions of D_{v} fixe the same value to a large number of variables
5 Solutions of $D_{v}=$ exponentially smaller than the solutions of D

1 Choose G wisely
2 Greedily look for a gate v with enough variables in subcircuit: roughly $|V| / 2$
3 Extract large induced matching S from $\operatorname{var}(v)$ to $V \backslash \operatorname{var}(v)$
4 All solutions of D_{v} fixe the same value to a large number of variables
5 Solutions of $D_{v}=$ exponentially smaller than the solutions of D
6 Disconnect v : it removes a small fraction of solutions
7 Go to 2 until you have removed all gates

1 Choose G wisely
2 Greedily look for a gate v with enough variables in subcircuit: roughly $|V| / 2$
3 Extract large induced matching S from $\operatorname{var}(v)$ to $V \backslash \operatorname{var}(v)$
4 All solutions of D_{V} fixe the same value to a large number of variables
5 Solutions of $D_{v}=$ exponentially smaller than the solutions of D
6 Disconnect v : it removes a small fraction of solutions
7 Go to 2 until you have removed all gates

Expanders

■ Goal: ensure that there is always a large induce matching between $W \subseteq V$ of size roughly $|V| / 2$ and $(V \backslash W)$ in G
■ Boundary expansion: $G=(V, E)$ is a (c, d)-expander iff

- it is of degree d and
- for each $W \subseteq V$, if $\frac{|V|}{d} \leq|W| \leq \frac{|V|}{2}$ then $\partial W=\left|N_{W} \backslash W\right| \geq c|W|$.
■ Bounded degree + expansion: one can find large induced matching from subset of variables W of size roughly $|V| / 2$ to $V \backslash W$

Theorem

There exists a familly of CNF formulas $\left(F_{n}\right)_{n \in \mathbb{N}}$ such that $\left|\operatorname{var}\left(F_{n}\right)=n\right|$ and every DNNF computing F_{n} is of size $2^{\Omega(n)}$.

Trying to explain old lower bounds

■ Known lower bounds of this kind are usually of the form $2^{\Omega(\sqrt{|F|})}$

- Most examples are based on ($n \times n$) matrices or grids

■ In grids, large subsets of variables have a boundary of size roughly \sqrt{N} where $N=n^{2}$ is the number of variables

- Expander is a way of having a linear size boundary and allows us to lift lower bounds

Conclusion

- We prove a strong exponential lower bound on some family of circuits representing a very restricted class of CNF formulas (2-CNF, monotone, read 3)
- Closes open questions in the domain of knowledge compilation (Marquis, Darwich, 2002)
- Can we find other lower bounds using these kind of techniques?

